A Review of the Characteristics of Clinical Trials and Potential Medications for Alcohol Dependence: Data Analysis from ClinicalTrials.gov
Abstract
:1. Introduction
2. Methods
2.1. Data Sources and Search
2.2. Data Extraction, Collection, and Analysis
3. Results
3.1. Clinical Trials Characteristics
3.2. Most Studied Drugs in the Treatment of Alcohol Dependence
3.3. Naltrexone
3.4. Topiramate
3.5. Acamprosate
3.6. Baclofen
3.7. Ondansetron
3.8. Zonisamide
3.9. Quetiapine
3.10. Dutasteride
3.11. N-Acetylcysteine
4. Limitations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Status Report on Alcohol and Health 2018; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Room, R.; Babor, T.; Rehm, J. Alcohol and public health. Lancet 2005, 365, 519–530. [Google Scholar] [CrossRef]
- Rehm, J.; Mathers, C.; Popova, S.; Thavorncharoensap, M.; Teerawattananon, Y.; Patra, J. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet 2009, 373, 2223–2233. [Google Scholar] [CrossRef]
- Shield, K.D.; Parry, C.; Rehm, J. Chronic diseases and conditions related to alcohol use. Alcohol Res. Curr. Rev. 2014, 35, 155. [Google Scholar]
- Van Wilder, L.; Rammant, E.; Clays, E.; Devleesschauwer, B.; Pauwels, N.; De Smedt, D. A comprehensive catalogue of EQ-5D scores in chronic disease: Results of a systematic review. Qual. Life Res. 2019, 28, 3153–3161. [Google Scholar] [CrossRef]
- Subramaniam, M.; Abdin, E.; Vaingankar, J.A.; Shafie, S.; Chua, B.Y.; Sambasivam, R.; Zhang, Y.J.; Shahwan, S.; Chang, S.; Chua, H.C. Tracking the mental health of a nation: Prevalence and correlates of mental disorders in the second Singapore mental health study. Epidemiol. Psychiatr. Sci. 2020, 29, e29. [Google Scholar] [CrossRef] [Green Version]
- Rehan, W.; Antfolk, J.; Johansson, A.; Jern, P.; Santtila, P. Experiences of severe childhood maltreatment, depression, anxiety and alcohol abuse among adults in Finland. PLoS ONE 2017, 12, e0177252. [Google Scholar] [CrossRef] [Green Version]
- Hasselgard-Rowe, J.; Burke-Shyne, N.; Fordham, A. Public health and international drug control: Harm reduction and access to controlled medicines. In Research Handbook on International Drug Policy; Edward Elgar Publishing: Cheltenham, UK, 2020; pp. 248–264. [Google Scholar]
- Goel, S.; Sharma, A.; Garg, A. Effect of Alcohol Consumption on Cardiovascular Health. Curr. Cardiol. Rep. 2018, 20, 19. [Google Scholar] [CrossRef]
- Hajifathalian, K.; Torabi Sagvand, B.; McCullough, A.J. Effect of Alcohol Consumption on Survival in Nonalcoholic Fatty Liver Disease: A National Prospective Cohort Study. Hepatology 2019, 70, 511–521. [Google Scholar] [CrossRef]
- Carvalho, A.F.; Heilig, M.; Perez, A.; Probst, C.; Rehm, J. Alcohol use disorders. Lancet 2019, 394, 781–792. [Google Scholar] [CrossRef]
- Wang, H.J.; Zakhari, S.; Jung, M.K. Alcohol, inflammation, and gut-liver-brain interactions in tissue damage and disease development. World J. Gastroenterol. 2010, 16, 1304–1313. [Google Scholar] [CrossRef]
- Rehm, J.; Baliunas, D.; Borges, G.L.; Graham, K.; Irving, H.; Kehoe, T.; Parry, C.D.; Patra, J.; Popova, S.; Poznyak, V. The relation between different dimensions of alcohol consumption and burden of disease: An overview. Addiction 2010, 105, 817–843. [Google Scholar] [CrossRef] [Green Version]
- Trope, A.; Anderson, B.T.; Hooker, A.R.; Glick, G.; Stauffer, C.; Woolley, J.D. Psychedelic-Assisted Group Therapy: A Systematic Review. J. Psychoact. Drugs 2019, 51, 174–188. [Google Scholar] [CrossRef]
- Witkiewitz, K.; Marlatt, G.A.; Walker, D. Mindfulness-based relapse prevention for alcohol and substance use disorders. J. Cogn. Psychother. 2005, 19, 211–228. [Google Scholar] [CrossRef]
- Houben, K.; Wiers, R.W.; Jansen, A. Getting a grip on drinking behavior: Training working memory to reduce alcohol abuse. Psychol. Sci. 2011, 22, 968–975. [Google Scholar] [CrossRef] [Green Version]
- Wright, C.; Moore, R.D. Disulfiram treatment of alcoholism. Am. J. Med. 1990, 88, 647–655. [Google Scholar] [CrossRef]
- Bohn, M.J.; Kranzler, H.R.; Beazoglou, D.; Staehler, B.A. Naltrexone and brief counseling to reduce heavy drinking: Results of a small clinical trial. Am. J. Addict. 1994, 3, 91–99. [Google Scholar]
- Ray, L.A.; Chin, P.F.; Miotto, K. Naltrexone for the treatment of alcoholism: Clinical findings, mechanisms of action, and pharmacogenetics. CNS Neurol. Disord. Drug Targets 2010, 9, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Toljan, K.; Vrooman, B. Low-Dose Naltrexone (LDN)-Review of Therapeutic Utilization. Med. Sci. 2018, 6, 82. [Google Scholar] [CrossRef] [Green Version]
- Littleton, J.; Zieglgansberger, W. Pharmacological mechanisms of naltrexone and acamprosate in the prevention of relapse in alcohol dependence. Am. J. Addict. 2003, 12, s3–s11. [Google Scholar] [CrossRef]
- de Laat, B.; Nabulsi, N.; Huang, Y.; O’Malley, S.S.; Froehlich, J.C.; Morris, E.D.; Krishnan-Sarin, S. Occupancy of the kappa opioid receptor by naltrexone predicts reduction in drinking and craving. Mol. Psychiatry 2021, 26, 5053–5060. [Google Scholar] [CrossRef]
- Hartwell, E.E.; Feinn, R.; Morris, P.E.; Gelernter, J.; Krystal, J.; Arias, A.J.; Hoffman, M.; Petrakis, I.; Gueorguieva, R.; Schacht, J.P.; et al. Systematic review and meta-analysis of the moderating effect of rs1799971 in OPRM1, the mu-opioid receptor gene, on response to naltrexone treatment of alcohol use disorder. Addiction 2020, 115, 1426–1437. [Google Scholar] [CrossRef]
- Heilig, M.; Goldman, D.; Berrettini, W.; O’Brien, C.P. Pharmacogenetic approaches to the treatment of alcohol addiction. Nat. Rev. Neurosci. 2011, 12, 670–684. [Google Scholar] [CrossRef]
- Viudez-Martinez, A.; Garcia-Gutierrez, M.S.; Fraguas-Sanchez, A.I.; Torres-Suarez, A.I.; Manzanares, J. Effects of cannabidiol plus naltrexone on motivation and ethanol consumption. Br. J. Pharmacol. 2018, 175, 3369–3378. [Google Scholar] [CrossRef]
- Blackmore, H.; Hidrio, C.; Godineau, P.; Yeomans, M.R. The effect of implicit and explicit extrinsic cues on hedonic and sensory expectations in the context of beer. Food Qual. Prefer. 2020, 81, 103855. [Google Scholar] [CrossRef]
- Spear, L.P.; Varlinskaya, E.I. Sensitivity to ethanol and other hedonic stimuli in an animal model of adolescence: Implications for prevention science? Dev. Psychobiol. 2010, 52, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Unterwald, E.M. Naltrexone in the treatment of alcohol dependence. J. Addict. Med. 2008, 2, 121–127. [Google Scholar] [CrossRef]
- Dudek, M.; Canals, S.; Sommer, W.H.; Hyytia, P. Modulation of nucleus accumbens connectivity by alcohol drinking and naltrexone in alcohol-preferring rats: A manganese-enhanced magnetic resonance imaging study. Eur. Neuropsychopharmacol. 2016, 26, 445–455. [Google Scholar] [CrossRef] [Green Version]
- Nieto, S.J.; Quave, C.B.; Kosten, T.A. Naltrexone alters alcohol self-administration behaviors and hypothalamic-pituitary-adrenal axis activity in a sex-dependent manner in rats. Pharmacol. Biochem. Behav. 2018, 167, 50–59. [Google Scholar] [CrossRef]
- Chandler, C.M.; Maggio, S.E.; Peng, H.; Nixon, K.; Bardo, M.T. Effects of ethanol, naltrexone, nicotine and varenicline in an ethanol and nicotine co-use model in Sprague-Dawley rats. Drug Alcohol Depend. 2020, 212, 107988. [Google Scholar] [CrossRef]
- Minnaard, A.M.; Ramakers, G.M.J.; Vanderschuren, L.; Lesscher, H.M.B. Baclofen and naltrexone, but not N-acetylcysteine, affect voluntary alcohol drinking in rats regardless of individual levels of alcohol intake. Behav. Pharmacol. 2021, 32, 251–257. [Google Scholar] [CrossRef]
- Vallender, E.J.; Ruedi-Bettschen, D.; Miller, G.M.; Platt, D.M. A pharmacogenetic model of naltrexone-induced attenuation of alcohol consumption in rhesus monkeys. Drug Alcohol Depend. 2010, 109, 252–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Laat, B.; Goldberg, A.; Shi, J.; Tetrault, J.M.; Nabulsi, N.; Zheng, M.-Q.; Najafzadeh, S.; Gao, H.; Kapinos, M.; Ropchan, J. The kappa opioid receptor is associated with naltrexone-induced reduction of drinking and craving. Biol. Psychiatry 2019, 86, 864–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maisel, N.C.; Blodgett, J.C.; Wilbourne, P.L.; Humphreys, K.; Finney, J.W. Meta-analysis of naltrexone and acamprosate for treating alcohol use disorders: When are these medications most helpful? Addiction 2013, 108, 275–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guardia, J.; Caso, C.; Arias, F.; Gual, A.; Sanahuja, J.; Ramirez, M.; Mengual, I.; Gonzalvo, B.; Segura, L.; Trujols, J.; et al. A double-blind, placebo-controlled study of naltrexone in the treatment of alcohol-dependence disorder: Results from a multicenter clinical trial. Alcohol. Clin. Exp. Res. 2002, 26, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Palpacuer, C.; Duprez, R.; Huneau, A.; Locher, C.; Boussageon, R.; Laviolle, B.; Naudet, F. Pharmacologically controlled drinking in the treatment of alcohol dependence or alcohol use disorders: A systematic review with direct and network meta-analyses on nalmefene, naltrexone, acamprosate, baclofen and topiramate. Addiction 2018, 113, 220–237. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, W.E. Topiramate: A review of preclinical, pharmacokinetic, and clinical data. Clin. Ther. 1997, 19, 1294–1308. [Google Scholar] [CrossRef]
- Shank, R.P.; Gardocki, J.F.; Streeter, A.J.; Maryanoff, B.E. An overview of the preclinical aspects of topiramate: Pharmacology, pharmacokinetics, and mechanism of action. Epilepsia 2000, 41, 3–9. [Google Scholar] [CrossRef]
- Curia, G.; Aracri, P.; Colombo, E.; Scalmani, P.; Mantegazza, M.; Avanzini, G.; Franceschetti, S. Phosphorylation of sodium channels mediated by protein kinase-C modulates inhibition by topiramate of tetrodotoxin-sensitive transient sodium current. Br. J. Pharmacol. 2007, 150, 792–797. [Google Scholar] [CrossRef] [Green Version]
- White, H.S.; Brown, S.D.; Woodhead, J.H.; Skeen, G.A.; Wolf, H.H. Topiramate enhances GABA-mediated chloride flux and GABA-evoked chloride currents in murine brain neurons and increases seizure threshold. Epilepsy Res. 1997, 28, 167–179. [Google Scholar] [CrossRef]
- Simeone, T.A.; Wilcox, K.S.; White, H.S. Subunit selectivity of topiramate modulation of heteromeric GABA(A) receptors. Neuropharmacology 2006, 50, 845–857. [Google Scholar] [CrossRef]
- Gryder, D.S.; Rogawski, M.A. Selective antagonism of GluR5 kainate-receptor-mediated synaptic currents by topiramate in rat basolateral amygdala neurons. J. Neurosci. 2003, 23, 7069–7074. [Google Scholar] [CrossRef] [PubMed]
- Jefee-Bahloul, H.; Jorandby, L.; Arias, A.J. Topiramate Treatment of Alcohol Use Disorder in Clinical Practice. J. Addict. Med. 2019, 13, 23–27. [Google Scholar] [CrossRef]
- Manhapra, A.; Chakraborty, A.; Arias, A.J. Topiramate Pharmacotherapy for Alcohol Use Disorder and Other Addictions: A Narrative Review. J. Addict. Med. 2019, 13, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Baltieri, D.A.; Daro, F.R.; Ribeiro, P.L.; de Andrade, A.G. Comparing topiramate with naltrexone in the treatment of alcohol dependence. Addiction 2008, 103, 2035–2044. [Google Scholar] [CrossRef]
- Florez, G.; Garcia-Portilla, P.; Alvarez, S.; Saiz, P.A.; Nogueiras, L.; Bobes, J. Using topiramate or naltrexone for the treatment of alcohol-dependent patients. Alcohol. Clin. Exp. Res. 2008, 32, 1251–1259. [Google Scholar] [CrossRef]
- Fernández Miranda, J.J.; Marina González, P.A.; Montes Pérez, M.; Díaz González, T.; Gutiérrez Cienfuegos, E.; Antuña Díaz, M.J.; Bobes García, J. Topiramate as add-on therapy in non-respondent alcohol dependant patients: A 12 month follow-up study. Actas Esp. Psiquiatr. 2007, 35, 236–242. [Google Scholar]
- Harris, B.R.; Prendergast, M.A.; Gibson, D.A.; Rogers, D.T.; Blanchard, J.A.; Holley, R.C.; Fu, M.C.; Hart, S.R.; Pedigo, N.W.; Littleton, J.M. Acamprosate inhibits the binding and neurotoxic effects of trans-ACPD, suggesting a novel site of action at metabotropic glutamate receptors. Alcohol. Clin. Exp. Res. 2002, 26, 1779–1793. [Google Scholar] [CrossRef]
- Holter, S.M.; Spanagel, R. Effects of opiate antagonist treatment on the alcohol deprivation effect in long-term ethanol-experienced rats. Psychopharmacology 1999, 145, 360–369. [Google Scholar] [CrossRef]
- Lido, H.H.; Marston, H.; Ericson, M.; Soderpalm, B. The glycine reuptake inhibitor Org24598 and acamprosate reduce ethanol intake in the rat; tolerance development to acamprosate but not to Org24598. Addict. Biol. 2012, 17, 897–907. [Google Scholar] [CrossRef]
- Cole, J.C.; Littleton, J.M.; Little, H.J. Acamprosate, but not naltrexone, inhibits conditioned abstinence behaviour associated with repeated ethanol administration and exposure to a plus-maze. Psychopharmacology 2000, 147, 403–411. [Google Scholar] [CrossRef]
- Farook, J.M.; Krazem, A.; Lewis, B.; Morrell, D.J.; Littleton, J.M.; Barron, S. Acamprosate attenuates the handling induced convulsions during alcohol withdrawal in Swiss Webster mice. Physiol. Behav. 2008, 95, 267–270. [Google Scholar] [CrossRef] [Green Version]
- Mann, K.; Kiefer, F.; Spanagel, R.; Littleton, J. Acamprosate: Recent findings and future research directions. Alcohol. Clin. Exp. Res. 2008, 32, 1105–1110. [Google Scholar] [CrossRef]
- Koob, G.F.; Mason, B.J.; De Witte, P.; Littleton, J.; Siggins, G.R. Potential neuroprotective effects of acamprosate. Alcohol. Clin. Exp. Res. 2002, 26, 586–592. [Google Scholar] [CrossRef]
- Lingford-Hughes, A.; Watson, B.; Kalk, N.; Reid, A. Neuropharmacology of addiction and how it informs treatment. Br. Med. Bull. 2010, 96, 93–110. [Google Scholar] [CrossRef] [Green Version]
- Ghanavatian, S.; Derian, A. Baclofen; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Heaney, C.F.; Kinney, J.W. Role of GABA(B) receptors in learning and memory and neurological disorders. Neurosci. Biobehav. Rev. 2016, 63, 1–28. [Google Scholar] [CrossRef]
- Vlachou, S.; Markou, A. GABAB receptors in reward processes. Adv. Pharmacol. 2010, 58, 315–371. [Google Scholar]
- Colombo, G.; Addolorato, G.; Agabio, R.; Carai, M.A.; Pibiri, F.; Serra, S.; Vacca, G.; Gessa, G.L. Role of GABA(B) receptor in alcohol dependence: Reducing effect of baclofen on alcohol intake and alcohol motivational properties in rats and amelioration of alcohol withdrawal syndrome and alcohol craving in human alcoholics. Neurotox. Res. 2004, 6, 403–414. [Google Scholar] [CrossRef]
- Felice, D.; O’Leary, O.F.; Cryan, J.F. Targeting the GABA B receptor for the treatment of depression and anxiety disorders. In GABAB Receptor; Springer: Cham, Switzerland, 2016; pp. 219–250. [Google Scholar]
- Liu, L.; Li, C.-j.; Lu, Y.; Zong, X.-g.; Luo, C.; Sun, J.; Guo, L.-j. Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion. Sci. Rep. 2015, 5, 14474. [Google Scholar] [CrossRef] [Green Version]
- Girard, M.; Labrunie, A.; Malauzat, D.; Nubukpo, P. Evolution of BDNF serum levels during the first six months after alcohol withdrawal. World J. Biol. Psychiatry 2020, 21, 739–747. [Google Scholar] [CrossRef]
- Cooney, G.; Heydtmann, M.; Smith, I.D. Baclofen and the Alcohol Withdrawal Syndrome—A Short Review. Front. Psychiatry 2018, 9, 773. [Google Scholar] [CrossRef] [Green Version]
- Colombo, G.; Vacca, G.; Serra, S.; Brunetti, G.; Carai, M.A.; Gessa, G.L. Baclofen suppresses motivation to consume alcohol in rats. Psychopharmacology 2003, 167, 221–224. [Google Scholar] [CrossRef]
- Colombo, G.; Gessa, G.L. Suppressing Effect of Baclofen on Multiple Alcohol-Related Behaviors in Laboratory Animals. Front. Psychiatry 2018, 9, 475. [Google Scholar] [CrossRef]
- Hill, D.; Bowery, N. 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 1981, 290, 149–152. [Google Scholar] [CrossRef]
- Alfonso-Loeches, S.; Guerri, C. Molecular and behavioral aspects of the actions of alcohol on the adult and developing brain. Crit. Rev. Clin. Lab. Sci. 2011, 48, 19–47. [Google Scholar] [CrossRef]
- Li, S.P.; Park, M.S.; Jin, G.Z.; Kim, J.H.; Lee, H.L.; Lee, Y.L.; Kim, J.H.; Bahk, J.Y.; Park, T.J.; Koh, P.O.; et al. Ethanol modulates GABA(B) receptor expression in cortex and hippocampus of the adult rat brain. Brain Res. 2005, 1061, 27–35. [Google Scholar] [CrossRef]
- Daoust, M.; Saligaut, C.; Lhuintre, J.P.; Moore, N.; Flipo, J.L.; Boismare, F. GABA transmission, but not benzodiazepine receptor stimulation, modulates ethanol intake by rats. Alcohol 1987, 4, 469–472. [Google Scholar] [CrossRef]
- Colombo, G.; Serra, S.; Brunetti, G.; Atzori, G.; Pani, M.; Vacca, G.; Addolorato, G.; Froestl, W.; Carai, M.A.; Gessa, G.L. The GABA(B) receptor agonists baclofen and CGP 44532 prevent acquisition of alcohol drinking behaviour in alcohol-preferring rats. Alcohol Alcohol. 2002, 37, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Tanchuck, M.A.; Yoneyama, N.; Ford, M.M.; Fretwell, A.M.; Finn, D.A. Assessment of GABA-B, metabotropic glutamate, and opioid receptor involvement in an animal model of binge drinking. Alcohol 2011, 45, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Colombo, G.; Serra, S.; Vacca, G.; Carai, M.A.; Gessa, G.L. Baclofen-induced suppression of alcohol deprivation effect in Sardinian alcohol-preferring (sP) rats exposed to different alcohol concentrations. Eur. J. Pharmacol. 2006, 550, 123–126. [Google Scholar] [CrossRef]
- Maccioni, P.; Bienkowski, P.; Carai, M.A.; Gessa, G.L.; Colombo, G. Baclofen attenuates cue-induced reinstatement of alcohol-seeking behavior in Sardinian alcohol-preferring (sP) rats. Drug Alcohol Depend. 2008, 95, 284–287. [Google Scholar] [CrossRef]
- Lorrai, I.; Maccioni, P.; Gessa, G.L.; Colombo, G. R (+)-baclofen, but not S (−)-baclofen, alters alcohol self-administration in alcohol-preferring rats. Front. Psychiatry 2016, 7, 68. [Google Scholar] [CrossRef] [Green Version]
- Culy, C.R.; Bhana, N.; Plosker, G.L. Ondansetron: A review of its use as an antiemetic in children. Paediatr. Drugs 2001, 3, 441–479. [Google Scholar] [CrossRef]
- Szumlinski, K.K.; Diab, M.E.; Friedman, R.; Henze, L.M.; Lominac, K.D.; Bowers, M.S. Accumbens neurochemical adaptations produced by binge-like alcohol consumption. Psychopharmacology 2007, 190, 415–431. [Google Scholar] [CrossRef]
- Johnson, B.A.; Roache, J.D.; Javors, M.A.; DiClemente, C.C.; Cloninger, C.R.; Prihoda, T.J.; Bordnick, P.S.; Ait-Daoud, N.; Hensler, J. Ondansetron for reduction of drinking among biologically predisposed alcoholic patients: A randomized controlled trial. JAMA 2000, 284, 963–971. [Google Scholar] [CrossRef]
- Kranzler, H.R.; Pierucci-Lagha, A.; Feinn, R.; Hernandez-Avila, C. Effects of ondansetron in early- versus late-onset alcoholics: A prospective, open-label study. Alcohol. Clin. Exp. Res. 2003, 27, 1150–1155. [Google Scholar] [CrossRef]
- De Deurwaerdere, P.; Moison, D.; Navailles, S.; Porras, G.; Spampinato, U. Regionally and functionally distinct serotonin3 receptors control in vivo dopamine outflow in the rat nucleus accumbens. J. Neurochem. 2005, 94, 140–149. [Google Scholar] [CrossRef]
- Porras, G.; De Deurwaerdere, P.; Moison, D.; Spampinato, U. Conditional involvement of striatal serotonin3 receptors in the control of in vivo dopamine outflow in the rat striatum. Eur. J. Neurosci. 2003, 17, 771–781. [Google Scholar] [CrossRef]
- Kenna, G.A. Medications acting on the serotonergic system for the treatment of alcohol dependent patients. Curr. Pharm. Des. 2010, 16, 2126–2135. [Google Scholar] [CrossRef]
- Edwards, S.M.; Kenna, G.A.; Swift, R.M.; Leggio, L. Current and promising pharmacotherapies, and novel research target areas in the treatment of alcohol dependence: A review. Curr. Pharm. Des. 2011, 17, 1323–1332. [Google Scholar] [CrossRef]
- Addolorato, G.; Mirijello, A.; Leggio, L.; Ferrulli, A.; Landolfi, R. Management of alcohol dependence in patients with liver disease. CNS Drugs 2013, 27, 287–299. [Google Scholar] [CrossRef]
- Leggio, L.; Falk, D.E.; Ryan, M.L.; Fertig, J.; Litten, R.Z. Medication Development for Alcohol Use Disorder: A Focus on Clinical Studies. In Substance Use Disorders; Handbook of Experimental Pharmacology; Springer: Cham, Switzerland, 2020; Volume 258, pp. 443–462. [Google Scholar]
- Blevins, D.; Seneviratne, C.; Wang, X.Q.; Johnson, B.A.; Ait-Daoud, N. A randomized, double-blind, placebo-controlled trial of ondansetron for the treatment of cocaine use disorder with post hoc pharmacogenetic analysis. Drug Alcohol Depend. 2021, 228, 109074. [Google Scholar]
- Burnette, E.M.; Nieto, S.J.; Grodin, E.N.; Meredith, L.R.; Hurley, B.; Miotto, K.; Gillis, A.J.; Ray, L.A. Novel Agents for the Pharmacological Treatment of Alcohol Use Disorder. Drugs 2022, 82, 251–274. [Google Scholar] [CrossRef]
- Johnson, B.; Campling, G.; Griffiths, P.; Cowen, P. Attenuation of some alcohol-induced mood changes and the desire to drink by 5-HT3 receptor blockade: A preliminary study in healthy male volunteers. Psychopharmacology 1993, 112, 142–144. [Google Scholar] [CrossRef]
- Swift, R.M.; Davidson, D.; Whelihan, W.; Kuznetsov, O. Ondansetron alters human alcohol intoxication. Biol. Psychiatry 1996, 40, 514–521. [Google Scholar] [CrossRef]
- Ye, J.H.; Ponnudurai, R.; Schaefer, R. Ondansetron: A selective 5-HT3 receptor antagonist and its applications in CNS-related disorders. CNS Drug Rev. 2001, 7, 199–213. [Google Scholar] [CrossRef]
- Leppik, I.E. Zonisamide: Chemistry, mechanism of action, and pharmacokinetics. Seizure 2004, 13 (Suppl. S1), S5–S9, discussion S10. [Google Scholar] [CrossRef] [Green Version]
- Knapp, C.M.; Mercado, M.; Markley, T.L.; Crosby, S.; Ciraulo, D.A.; Kornetsky, C. Zonisamide decreases ethanol intake in rats and mice. Pharmacol. Biochem. Behav. 2007, 87, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Rubio, G.; Lopez-Munoz, F.; Ferre, F.; Martinez-Gras, I.; Ponce, G.; Pascual, J.M.; Jimenez-Arriero, M.A.; Alamo, C. Effects of zonisamide in the treatment of alcohol dependence. Clin. Neuropharmacol. 2010, 33, 250–253. [Google Scholar] [CrossRef]
- Sarid-Segal, O.; Knapp, C.M.; Burch, W.; Richardson, M.A.; Bahtia, S.; DeQuattro, K.; Afshar, M.; Richambault, C.; Sickels, L.; Devine, E.; et al. The anticonvulsant zonisamide reduces ethanol self-administration by risky drinkers. Am. J. Drug Alcohol Abus. 2009, 35, 316–319. [Google Scholar] [CrossRef]
- Holmes, A.; Spanagel, R.; Krystal, J.H. Glutamatergic targets for new alcohol medications. Psychopharmacology 2013, 229, 539–554. [Google Scholar] [CrossRef] [Green Version]
- Yamamura, S.; Ohoyama, K.; Nagase, H.; Okada, M. Zonisamide enhances delta receptor-associated neurotransmitter release in striato-pallidal pathway. Neuropharmacology 2009, 57, 322–331. [Google Scholar] [CrossRef]
- Litten, R.Z.; Wilford, B.B.; Falk, D.E.; Ryan, M.L.; Fertig, J.B. Potential medications for the treatment of alcohol use disorder: An evaluation of clinical efficacy and safety. Subst. Abus. 2016, 37, 286–298. [Google Scholar] [CrossRef]
- Cardé, N.A.Q.; Perez, E.E.; Feinn, R.; Kranzler, H.R.; De Biasi, M. Antagonism of GluK1-containing kainate receptors reduces ethanol consumption by modulating ethanol reward and withdrawal. Neuropharmacology 2021, 199, 108783. [Google Scholar] [CrossRef]
- Pietrzak, B.; Krupa-Burtnik, A.; Zwierzyńska, E. The Effect of Zonisamide and Ethanol on Various Types of Memory in Rats. Int. J. Environ. Res. Public Health 2023, 20, 1815. [Google Scholar] [CrossRef]
- Hanley, M.J.; Kenna, G.A. Quetiapine: Treatment for substance abuse and drug of abuse. Am. J. Health Syst. Pharm. 2008, 65, 611–618. [Google Scholar] [CrossRef]
- Richelson, E.; Souder, T. Binding of antipsychotic drugs to human brain receptors focus on newer generation compounds. Life Sci. 2000, 68, 29–39. [Google Scholar] [CrossRef]
- Monnelly, E.P.; Ciraulo, D.A.; Knapp, C.; LoCastro, J.; Sepulveda, I. Quetiapine for treatment of alcohol dependence. J. Clin. Psychopharmacol. 2004, 24, 532–535. [Google Scholar] [CrossRef]
- Swift, R. Medications acting on the dopaminergic system in the treatment of alcoholic patients. Curr. Pharm. Des. 2010, 16, 2136–2140. [Google Scholar] [CrossRef]
- Stephenson, C.; Bigliani, V.; Jones, H.; Mulligan, R.; Acton, P.; Visvikis, D.; Ell, P.; Kerwin, R.; Pilowsky, L. Striatal and extra-striatal D2/D3 dopamine receptor occupancy by quetiapine in vivo: [123I]-epidepride single photon emission tomography (SPET) study. Br. J. Psychiatry 2000, 177, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Sattar, S.P.; Bhatia, S.C.; Petty, F. Potential benefits of quetiapine in the treatment of substance dependence disorders. J. Psychiatry Neurosci. 2004, 29, 452–457. [Google Scholar]
- Cha, H.J.; Lee, H.A.; Ahn, J.I.; Jeon, S.H.; Kim, E.J.; Jeong, H.S. Dependence potential of quetiapine: Behavioral pharmacology in rodents. Biomol. Ther. 2013, 21, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Moallem, N.; Ray, L.A. Quetiapine improves response inhibition in alcohol dependent patients: A placebo-controlled pilot study. Pharmacol. Biochem. Behav. 2012, 100, 490–493. [Google Scholar] [CrossRef] [Green Version]
- Han, J.H.; Tian, H.Z.; Lian, Y.Y.; Yu, Y.; Lu, C.B.; Li, X.M.; Zhang, R.L.; Xu, H. Quetiapine mitigates the ethanol-induced oxidative stress in brain tissue, but not in the liver, of the rat. Neuropsychiatr. Dis. Treat. 2015, 11, 1473–1482. [Google Scholar] [PubMed] [Green Version]
- Han, J.; Wang, G.; Liu, M.; Chai, R.; Guo, J.; Zhang, F.; Lu, C.; Zhang, Y.; Wang, H.; Zhang, R. Effects of quetiapine on behavioral changes and expression of myelin proteins in a chronic alcohol dependence rat model. Behav. Brain Res. 2020, 385, 112561. [Google Scholar] [CrossRef]
- Wang, H.N.; Peng, Y.; Tan, Q.R.; Chen, Y.C.; Zhang, R.G.; Qiao, Y.T.; Wang, H.H.; Liu, L.; Kuang, F.; Wang, B.R.; et al. Quetiapine ameliorates anxiety-like behavior and cognitive impairments in stressed rats: Implications for the treatment of posttraumatic stress disorder. Physiol. Res. 2010, 59, 263–271. [Google Scholar] [CrossRef]
- Prieto, E.; Mico, J.A.; Meana, J.J.; Majadas, S. Neurobiological bases of quetiapine antidepresant effect in the bipolar disorder. Actas Esp. Psiquiatr. 2010, 38, 22–32. [Google Scholar]
- Snyder, G.L.; Vanover, K.E.; Zhu, H.; Miller, D.B.; O’Callaghan, J.P.; Tomesch, J.; Li, P.; Zhang, Q.; Krishnan, V.; Hendrick, J.P.; et al. Functional profile of a novel modulator of serotonin, dopamine, and glutamate neurotransmission. Psychopharmacology 2015, 232, 605–621. [Google Scholar] [CrossRef] [Green Version]
- Arif, T.; Dorjay, K.; Adil, M.; Sami, M. Dutasteride in Androgenetic Alopecia: An Update. Curr. Clin. Pharmacol. 2017, 12, 31–35. [Google Scholar] [CrossRef]
- Dimitropoulos, K.; Gravas, S. Fixed-dose combination therapy with dutasteride and tamsulosin in the management of benign prostatic hyperplasia. Ther. Adv. Urol. 2016, 8, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Pirozzi, L.; Sountoulides, P.; Castellan, P.; Presicce, F.; Lombardo, R.; Romero, M.; Nunzio, C.D.; Tubaro, A.; Schips, L.; Cindolo, L. Current pharmacological treatment for male LUTS due to BPH: Dutasteride or finasteride? Curr. Drug Targets 2015, 16, 1165–1171. [Google Scholar] [CrossRef]
- Liss, M.A.; Thompson, I.M. Prostate cancer prevention with 5-alpha reductase inhibitors: Concepts and controversies. Curr. Opin. Urol. 2018, 28, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Sourbeer, K.N.; Howard, L.E.; Andriole, G.L.; Moreira, D.M.; Castro-Santamaria, R.; Freedland, S.J.; Vidal, A.C. Metabolic syndrome-like components and prostate cancer risk: Results from the Reduction by Dutasteride of Prostate Cancer Events (REDUCE) study. BJU Int. 2015, 115, 736–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, J.P.; Gao, Y.Y.; Tang, J.J.; Chen, X.; Liu, Y.; Wu, D.L.; Li, Z.F.; Huang, S.S. Response of prostate cancer to addition of dutasteride after progression on abiraterone. Asian J. Androl. 2021, 23, 222–223. [Google Scholar] [PubMed]
- Andriole, G.L.; Bostwick, D.G.; Brawley, O.W.; Gomella, L.G.; Marberger, M.; Montorsi, F.; Pettaway, C.A.; Tammela, T.L.; Teloken, C.; Tindall, D.J.; et al. Effect of dutasteride on the risk of prostate cancer. N. Engl. J. Med. 2010, 362, 1192–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covault, J.; Pond, T.; Feinn, R.; Arias, A.J.; Oncken, C.; Kranzler, H.R. Dutasteride reduces alcohol’s sedative effects in men in a human laboratory setting and reduces drinking in the natural environment. Psychopharmacology 2014, 231, 3609–3618. [Google Scholar] [CrossRef]
- Chukwueke, C.C.; Le Foll, B. The Human Laboratory and Drug Development in Alcohol Use Disorder: Recent Updates. Methods Mol. Biol. 2019, 2011, 195–219. [Google Scholar]
- Zafarullah, M.; Li, W.Q.; Sylvester, J.; Ahmad, M. Molecular mechanisms of N-acetylcysteine actions. Cell. Mol. Life Sci. 2003, 60, 6–20. [Google Scholar] [CrossRef]
- Kelly, G.S. Clinical applications of N-acetylcysteine. Altern. Med. Rev. 1998, 3, 114–127. [Google Scholar]
- Asevedo, E.; Mendes, A.C.; Berk, M.; Brietzke, E. Systematic review of N-acetylcysteine in the treatment of addictions. Braz. J. Psychiatry 2014, 36, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Berk, M.; Malhi, G.S.; Gray, L.J.; Dean, O.M. The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol. Sci. 2013, 34, 167–177. [Google Scholar] [CrossRef]
- McClure, E.A.; Gipson, C.D.; Malcolm, R.J.; Kalivas, P.W.; Gray, K.M. Potential role of N-acetylcysteine in the management of substance use disorders. CNS Drugs 2014, 28, 95–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moussawi, K.; Pacchioni, A.; Moran, M.; Olive, M.F.; Gass, J.T.; Lavin, A.; Kalivas, P.W. N-Acetylcysteine reverses cocaine-induced metaplasticity. Nat. Neurosci. 2009, 12, 182–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morais-Silva, G.; Alves, G.C.; Marin, M.T. N-acetylcysteine treatment blocks the development of ethanol-induced behavioural sensitization and related DeltaFosB alterations. Neuropharmacology 2016, 110 Pt A, 135–142. [Google Scholar] [CrossRef]
- Lippai, D.; Bala, S.; Petrasek, J.; Csak, T.; Levin, I.; Kurt-Jones, E.A.; Szabo, G. Alcohol-induced IL-1β in the brain is mediated by NLRP3/ASC inflammasome activation that amplifies neuroinflammation. J. Leukoc. Biol. 2013, 94, 171–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orio, L.; Alen, F.; Pavon, F.J.; Serrano, A.; Garcia-Bueno, B. Oleoylethanolamide, Neuroinflammation, and Alcohol Abuse. Front. Mol. Neurosci. 2018, 11, 490. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, V.; Chopra, K. Protective effect of curcumin against chronic alcohol-induced cognitive deficits and neuroinflammation in the adult rat brain. Neuroscience 2013, 244, 147–158. [Google Scholar] [CrossRef]
- Lebourgeois, S.; Gonzalez-Marin, M.C.; Jeanblanc, J.; Naassila, M.; Vilpoux, C. Effect of N-acetylcysteine on motivation, seeking and relapse to ethanol self-administration. Addict. Biol. 2018, 23, 643–652. [Google Scholar] [CrossRef]
- Squeglia, L.M.; Baker, N.L.; McClure, E.A.; Tomko, R.L.; Adisetiyo, V.; Gray, K.M. Alcohol use during a trial of N-acetylcysteine for adolescent marijuana cessation. Addict. Behav. 2016, 63, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Laverde, C.F.; Morais-Silva, G.; Amaral, V.C.S.; Marin, M.T. Effects of N-acetylcysteine treatment on ethanol’s rewarding properties and dopaminergic alterations in mesocorticolimbic and nigrostriatal pathways. Behav. Pharmacol. 2021, 32, 239–250. [Google Scholar] [CrossRef]
Terms | Search Results | Entire Database |
---|---|---|
Synonyms | ||
Alcohol Dependence | 1293 studies | 1293 studies |
Alcoholism | 1276 studies | 1276 studies |
Alcohol addiction | 27 studies | 27 studies |
Alcohol dependency | 11 studies | 11 studies |
Alcohol problem drinking | 2 studies | 2 studies |
Chronic alcohol abuse | 1 study | 1 study |
Dependence | 488 studies | 2286 studies |
Dependency | 12 studies | 125 studies |
Alcohol | 1295 studies | 2609 studies |
Absolute ethanol | -- | 1 study |
Ethanol measurement | -- | 1 study |
Status | Number | Percentage |
---|---|---|
Recruiting | 230 | 17.76% |
Not yet recruiting | 62 | 4.78% |
Enrolling by invitation | 12 | 0.92% |
Completed | 766 | 59.15% |
Terminated | 55 | 4.24% |
Withdrawn | 38 | 2.93% |
Active, not recruiting | 39 | 3.01% |
Approved for market | 0 | 0% |
Suspended | 5 | 0.38% |
Unknown | 93 | 7.18% |
Number of patients Enrolled | Number | Percentage |
<1000 | 1224 | 94.51% |
1000–5000 | 57 | 4.40% |
>5000 | 14 | 1.08% |
Study type | Number | Percentage |
Interventional (Clinical Trial) | 1145 | 88.41% |
Observational | 150 | 11.58% |
Region | Number | Percentage |
World | 1295 | 100% |
Africa | 16 | 1.23% |
East Asia | 18 | 1.38% |
Europe | 252 | 19.45% |
North America | 876 | 67.64% |
Asia | 37 | 2.85% |
Pacifica | 14 | 1.08% |
South America | 7 | 0.54% |
Others | 75 | 5.79% |
Study Phase | Number | Percentage |
Early Phase 1 | 24 | 1.85% |
Phase 1 | 109 | 8.41% |
Phase 2 | 317 | 24.47% |
Phase 3 | 114 | 8.80% |
Phase 4 | 122 | 9.42% |
Not applicable (Describes trials without FDA-defined phases, including trials of devices or behavioral interventions). | 531 | 41% |
Drug Intervention Class | Name of Drugs | Number of Studies on Alcohol Dependence | Number of All Studies on Alcohol Related Conditions * |
---|---|---|---|
Analgesics | Naltrexone | 101 | 115 |
Anticonvulsant | Topiramate | 15 | 29 |
Alcohol Deterrents | Acamprosate | 12 | 26 |
Muscle relaxant | Baclofen | 9 | 21 |
Antiemetic | Ondansetron | 4 | 15 |
Channel blocker | Zonisamide | 4 | 11 |
Central nervous system depressant | Quetiapine Fumarate | 3 | 12 |
5-alpha reductase inhibitors | Dutasteride | 2 | 5 |
Amino acid | N-acetylcysteine | 1 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshehri, F.S. A Review of the Characteristics of Clinical Trials and Potential Medications for Alcohol Dependence: Data Analysis from ClinicalTrials.gov. Medicina 2023, 59, 1101. https://doi.org/10.3390/medicina59061101
Alshehri FS. A Review of the Characteristics of Clinical Trials and Potential Medications for Alcohol Dependence: Data Analysis from ClinicalTrials.gov. Medicina. 2023; 59(6):1101. https://doi.org/10.3390/medicina59061101
Chicago/Turabian StyleAlshehri, Fahad S. 2023. "A Review of the Characteristics of Clinical Trials and Potential Medications for Alcohol Dependence: Data Analysis from ClinicalTrials.gov" Medicina 59, no. 6: 1101. https://doi.org/10.3390/medicina59061101
APA StyleAlshehri, F. S. (2023). A Review of the Characteristics of Clinical Trials and Potential Medications for Alcohol Dependence: Data Analysis from ClinicalTrials.gov. Medicina, 59(6), 1101. https://doi.org/10.3390/medicina59061101