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Abstract: Background: HLA-DRBL is the most polymorphic gene in the human leukocyte antigen
(HLA) class II, and exon 2 is critical because it encodes antigen-binding sites. This study aimed
to detect functional or marker genetic variants of HLA-DRB1 exon 2 in renal transplant recipients
(acceptance and rejection) using Sanger sequencing. Methods: This hospital-based case-control study
collected samples from two hospitals over seven months. The 60 participants were equally divided
into three groups: rejection, acceptance, and control. The target regions were amplified and sequenced
by PCR and Sanger sequencing. Several bioinformatics tools have been used to assess the impact
of non-synonymous single-nucleotide variants (nsSNVs) on protein function and structure. The
sequences data that support the findings of this study with accession numbers (0Q747803-OQ747862)
are available in National Center for Biotechnology Information (GenBank database). Results: Seven

Copyright: © 2023 by the authors.

SNVs were identified, two of which were novel (chr6(GRCh38.p12): 32584356C>A (K41N) and
Licensee MDPI, Basel, Switzerland.

32584113C>A (R122R)). Three of the seven SNVs were non-synonymous and found in the rejection
group (chr6(GRCh38.p12): 32584356C>A (K41N), 32584304A>G (Y59H), and 32584152T>A (R109S)).
The nsSNVs had varying effects on protein function, structure, and physicochemical parameters and
could play a role in renal transplant rejection. The chr6(GRCh38.p12):32584152T>A variant showed
the greatest impact. This is because of its conserved nature, main domain location, and pathogenic

This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /

4.0/). effects on protein structure, function, and stability. Finally, no significant markers were identified in
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the acceptance samples. Conclusion: Pathogenic variants can affect intramolecular /intermolecular
interactions of amino acid residues, protein function/structure, and disease risk. HLA typing based
on functional SNVs could be a comprehensive, accurate, and low-cost method for covering all HLA
genes while shedding light on previously unknown causes in many graft rejection cases.

Keywords: graft rejection; HLA-DRBI gene; renal diseases; single nucleotide variants snvs; DNA
sequencing; HLA typing; health and wellbeing

1. Introduction

Over 800 million people worldwide (10% of the population) have chronic renal disease
(CRD) [1]. CRD is more common in older people, women, and people with diabetes and
high blood pressure [2]. Low- and middle-income countries face a significant burden of
CRD [3,4]. Chronic renal disease is one of the leading causes of death worldwide [1]. During
the period 1990-2017, CRD mortality increased by 41.5% globally [5]. Over one million
patients were predicted to have end-stage renal disease (ESRD) globally two decades
ago, with a 7% annual increase [6]. In Sudan, the prevalence of CRD ranges from 7.7 to
11%, with an estimated incidence of new cases of 70-140/million per year [7,8]. Further,
1000 new patients are diagnosed with ESRD each year, and the most common cause of
renal failure in Sudanese people (53.6%) is unknown [9,10]. In general, the number of
patients with ESRD (who require dialysis or renal transplant to survive) is increasing, and
it is becoming a major public health concern worldwide [11].

In 2007, there were over 1.6 million dialysis patients and half a million renal transplant
recipients worldwide [12]. Renal transplantation remains the most effective CRD/ESRD
treatment, accounting for 28% of total renal therapy in Sudan [12,13]. Transplant rejec-
tion can be hyperacute (minutes to hours), acute (days to weeks), or chronic (months to
years) [14]. The International Society of Nephrology analyzed data from 182 countries
and reported a rejection rate of 59% [15]. Another study conducted in Iran identified
the clinical causes of renal allograft nephrectomy, with chronic rejection (38%) being the
most common cause [16,17]. Furthermore, a study performed between November 2011
and 2015 at Sharg El-Neel Hospital in Khartoum, Sudan, discovered that the rate of acute
rejection was 10.4% [9]. Human leukocyte antigen (HLA) typing is an important step in
transplantation, and a well-matched donor is critical for successful transplantation [17].

HLA genes are located on chromosome 6p (short arm) in the distal portion of the
21.3 band, one of the most polymorphic and gene-dense regions [18,19]. HLA complex
genes and their protein products are divided into three classes based on their tissue dis-
tribution, structure, and function [20]. MHC class II antigens encoded by the HLA-DM,
-DO, -DP, -DQ, and -DR loci, and their products are included in the immunoglobulin
supergene family [21]. HLA-DR is a heterodimer comprising an alpha chain (DRA)
and a beta chain (DRB) [19]. According to the IPD-IMGT/HLA database, HLA-DRB1
is the most polymorphic in class II of this system, with 3298 alleles in September 2022
(https:/ /www.ebi.ac.uk/ipd/imgt/hla/about/statistics /) (accessed on 25 September 2022).
The HLA-DRBI1 gene is located in GRCh38.p12 (Genome Reference Consortium Human
Build 38.p12) coordinates 32,578,775 to 32,589,848, has five introns, and is encoded by
six exons [22]. Exon one encodes the leader peptide, exons two and three encode the
two extracellular domains, exon four encodes the transmembrane domain, and exon five
encodes the cytoplasmic tail (https://www.ncbi.nlm.nih.gov/gene/3123) (accessed on
25 September 2022 [23]. Many studies emphasized the importance of exon 2 as it encodes
antigen-binding sites, contains the most pathological single nucleotide variants (SNVs),
and is commonly included in high throughput HLA-typing commercial kits [24-27].

Several benefits are associated with HLA matching in organ transplants, such as
kidneys, including improved graft function, reduced the incidence of acute or chronic
rejection, extended graft survival, and the potential for reduced immunosuppression [28].
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It was reported that patient-donor matching of HLA determinants lowers the risks of
chronic and acute GVHD (graft-versus-host disease) [29]. Early studies indicated that
HLA-DRB1 mismatch is a particular risk factor for rejection and is critical in the first six
months after transplantation [24,27,30,31]. As a result of the realization that HLA plays
a significant role in transplantation, the use of HLA typing in transplantation has seen
numerous advancements [32,33]. Owing to this development, HLA typing has progressed
from identifying HLA proteins to identifying HLA gene variations [31]. The 1000 Genomes
Project provides an in-depth analysis of common genetic variations (single nucleotide
polymorphisms (SNPs) and Insertions—deletions (indels)) in humans and their association
with diseases [34]. HLA variants are strongly linked to various diseases and organ trans-
plantation [22,31,35,36]. SNPs are single nucleotide variants (SNVs) in DNA sequences
with a population allele frequency of 1% or higher [37,38]. SN'Vs can be found in both the
coding and non-coding regions of the human genome [39]. Non-synonymous SNVs are a
type of single variant that represent amino acid substitutions and protein variations [40].
Previous studies have indicated that nsSNPs account for approximately half of the mu-
tations involved in various genetic diseases [41]. Indels are another type of significant
genomic variant that are insertions or deletions of one or more DNA nucleotides [42]. The
current study aimed to identify functional or marker genetic variants within HLA-DRB1
exon 2 in patients with renal transplant status (acceptance and rejection).

2. Materials and Methods
2.1. Study Design and Samples Information

This hospital-based case-control study was conducted at Ahmed Gasim and Ibn
Sena Hospitals. Blood samples were collected from March to September 2021 using a
convenience sampling method. Samples were collected from individuals of any age and sex
who had received a renal transplant, regardless of whether they developed graft rejection
(acute, hyperacute, or chronic) or acceptance within the first six months. Participants who
had their renal transplants rejected because of medical errors or negligence were excluded.
The total sample size was 60, divided equally into three groups. The first group included
participants who had graft acceptance for more than the first six months. The second group
of participants had graft rejection in the first six months, and the third group was the control
group. The study was conducted in accordance with the guidelines of the Declaration of
Helsinki and approved by the Institutional Ethics Committee of the National University-
Sudan under approval No. NU170220219 (date of approval: 17 February 2021). Written
informed consent was obtained from the patient(s) for their anonymized information to be
published in this article.

2.2. DNA Isolation, Amplification, and Sequencing

Genomic DNA was extracted from the blood samples using QiaAmp blood extraction
kits according to the manufacturer’s instructions (Qiagen, Hilden, Germany). The extracted
DNA was tested for quality using a NanoDrop spectrophotometer (Implen, Miinchen,
Germany) and stored at —20 °C until molecular analysis.

The following primers were used to amplify the human HLA-DRBI1 gene (target
region): Forward primer: 5’GTG CTC TCA GAA CTG CTT GC 3/, and reverse primer:
5" CCT CAG GAA GAC GGA GGA TGA 3'. The PCR reaction mixture contained 1 pL
of the extracted DNA added to 4 pL. PCR master mix (Solis Biodyne, Tartu, Estonia)
containing 1 U DNA polymerase, 12.5 mM MgCl2, and 4 mM dNTPs. The PCR thermal
conditions were as follows: Initial denaturation at 94 °C for 5 min, followed by 35 cycles of
denaturation at 94 °C for 30 s, annealing at 57 °C for 30 s, extension at 72 °C for 30 s, and a
final extension step at 72 °C for 10 min. The thermal conditions were determined using a
2721 Thermocycler (Applied Biosystems, Thermo Fisher Scientific, Budapest, Hungary).
Following PCR, the amplicons were visualized using 2% gel electrophoresis (Major Sciences,
London, United Kingdom) by applying the PCR product to an electrical current adjusted to
100 V and 70 A for one h.
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The amplified PCR amplicons were sequenced in duplicate based on both directions’
primers by the Sanger dideoxynucleotide chain-termination sequencing method using a
3730XL DNA analyzer (Applied Biosystems, Waltham, MA, USA) by Macrogen (Macrogen
Inc., Amsterdam, The Netherlands).

2.3. Sequences and Variants Analysis Using Bioinformatics

DNA sequencing results of the 60 samples were obtained as ABI files. Initially, the
Chromatogram Explorer program (version 5.0.2.3) was used to assess the overall quality
of the sequences (read Phred quality score), trim low-quality ends, and convert AB1
to FASTA formats [43]. Subsequently, the Basic Local Alignment Search Tool (BLAST)
algorithm was used to check the specificity of these sequences by comparing them to
the Homo sapiens genome (GRCh38.p12) using the Ensembl genome browser (https://
www.ensembl.org/index.html) (accessed on 30 September 2022) [44]. Exon 2 regions were
manually extracted from the high-quality sequences for further analysis. All sequences,
including the reference (target region), were manually prepared and submitted for Multiple
Sequence Alignment (MSA) using CLC genomics workbench program version 21.0.5. CLC
is a Qiagen-bioinformatics commercial analysis and visualization product (https://www.
giagenbioinformatics.com/) (accessed on 5 October 2022). The gap cost parameters of the
alignment algorithm were as follows: Gap open 10.0, gap extension 1.0, and end gap cost.
To generate MSA, the CLC employs a progressive alignment algorithm [45]. Organizing
sequence data in MSAs can reveal conserved and variable sites (variants or mutations) [46].
Variants were manually extracted from MSA and prepared for further analysis.

The chromosomal location of the detected variants was initially submitted to the
Ensembl Variant Effect Predictor (VEP) [47]. VEP can annotate, analyze, and prioritize
genomic variants in both coding and non-coding regions. VEP was used to determine the
variants’ availability, frequency, and amino acid positions. Non-synonymous SNVs were
then submitted sequentially to SIFT [48], PolyPhen-2 [49], PredictSNP [50], PANTHER [51],
SNP&GO [52], SNAP2 [53], and PhD-SNP [54] tools to differentiate between functional
(deleterious) and non-functional nsSNVs. The I-mutant server was used to determine
whether nsSNVs affected protein stability [55]. The HOPE server was used to evaluate the
effects of nsSN'Vs on protein structure [56]. The location of the domain and high evolutionary
conservation were then determined using the InterPro and Consurf servers [57,58]. Moreover,
the ProtParam server was used to assess the impact of nsSNVs on protein physicochemical
parameters [59]. Finally, the STRING database (Version 11.5) was used to predict associa-
tions between HLA-DRB1 and most related proteins to construct a protein-protein network
based on physical interactions and functional associations [60]. The study methodology is
summarized in Figure 1.

The following are websites for the previous tools: VEP https://www.ensembl.org/
info/docs/tools/vep/index.html, (accessed on 7 October 2022), SIFT https:/ /sift.bii.a-
star.edu.sg/, (accessed on 7 October 2022). PolyPhen-2 http://genetics.bwh.harvard.
edu/pph2/, (accessed on 9 October 2022), PredictSNP tool https://loschmidt.chemi.
muni.cz/predictsnp/, (accessed on 12 October 2022), PANTHER http:/ /www.pantherdb.
org/tools/csnpScoreForm.jsp, (accessed on 15 October 2022), SNP&GO https:/ /snps.
biofold.org/snps-and-go/snps-and-go.html, (accessed on 20 October 2022), SNAP2 https:
/ /www.rostlab.org/services/snap/, (accessed on 23 October 2022), PhD-SNP https://
snps.biofold.org/phd-snp/phd-snp.html, (accessed on 27 October 2022), I-mutant v3.0
http:/ /gpcr2.biocomp.unibo.it/cgi/predictors /I-Mutant3.0/I-Mutant3.0.cgi, (accessed on
1 November 2022), HOPE https:/ /www3.cmbi.umcn.nl/hope/, (accessed on 5 November
2022), InterPro database https://www.ebi.ac.uk/interpro/, (accessed on 10 November
2022), Consurf https:/ /consurf.tau.ac.il/, (accessed on 13 November 2022) ProtParam
https:/ /web.expasy.org/protparam/, (accessed on 17 November 2022), STRING database
https:/ /string-db.org/ (accessed on 20 November 2022).
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Figure 1. Flowchart of the work methodology. The names that appear after the symbol “-” represent
prediction tools.

3. Results

This study used DNA from 40 samples (acceptance and rejection) and 20 controls to
target the HLA-DRB1 exon 2. BLAST revealed that all DNA quality-checked sequences
showed high similarity (>99%) and specificity for the HLA-DRBI target region. Multiple
sequence alignments revealed seven SNVs in ten samples and controls. The Ensembl
variant effect predictor was used to collect broad information on seven SNVs, two of which
were novel (Table 1).

Three of the seven detected SNVs were non-synonymous and were only located in
the rejected samples (R3, R9, and R16), whereas the remaining were synonymous (Table 1).
To identify the deleterious effects of nsSNVs at the functional level, seven different tools
(SIFT, PolyPhen, PredictSNP, PANTHER, SNP&GO, SNAP2, and PhD-SNP) with different
prediction algorithms were used. Two nsSNVs (K41N and R109S) were predicted to be
pathogenic by all seven tools, whereas the third (Y59H) was predicted by only four (Table 2).
Furthermore, the I-mutant server predicted that all nsSSNVs would affect the protein stability
(Table 2).
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Table 1. General information of detected SN'Vs.
Variants Allele Frequencies
Serial  SMPsCode  N.P Chr. . . Variants SNV AA ALL/African ClinVar
No. No. Exon 2 Location Type AVAIL. Change 1000 GnomAD NCBI
Genome Genomes ALFA

1. R3/C12 5 6:32584113 C/A SNV Novel R122R - - - -

2. R20 14 6:32,584,122 T/C SNV rs1,136,782  T119T  0.065/0.129 0.001/0.002 0.006/0.013 -

3. R16 44 6:32,584,152 T/A SNV 1s750,986,830 R109S - - - -

4. R9 196 6:32,584,304 A/G SNV rs11,554,462 Y59H  0.072/0.167 0.169/0.318 0.166/0.290 -

5. R3/C10 242 6:32,584,350 c/T SNV rs17,885,011 E43E  0.063/0.060 0.112/0.069 0.096/0.071 -

6. A7/R12 248 6:32,584,356 C/T SNV rs17,887,028 K41K - - 0.000/0.000 -

7. R3 248 6:32,584,356 C/A SNV Novel K41IN - - - -
SMPs code No.: The code number of samples containing genetic variant(s), which are as follows: Rejection (R),
acceptance (A), and control (C). N.P Exon 2: Position of a nucleotide in Exon 2. Chr. Location: Chromosomes
Location. SNV AVAIL.: SNV availability in the Single Nucleotide Polymorphism database (dbSNP). AA Change:
Type and location of amino acid changed. ClinVar: ClinVar database clinical significance records (https://www.
ncbi.nlm.nih.gov/clinvar/) (accessed on 1 December 2022). The symbol “-” refers to unavailable data.

Table 2. The functional effect and stability index of non-synonymous detected SN'Vs.
Variant snvip | AA SIFT  PolyPhen2 PredictSNP PANTHER SNP&GO SNAP2  PD- [ nfugant
Description Change SNP
chr6(GRCh38. . Probably . .
p12):32584152  rs750986830 R1095 ~ Deleterious 4. ocing  Deleterious dPOSS‘b.ly Disease  Effect ;oo Decrease
T>A (0.0) (0.999) amaging (0.908) (47) (—1.29)
chr6(GRCh38. Possibly .
p12):32584304  rsl1554462  YsoH ~ olerated 4o oeing  Neutral ~ Lrobably  Disease  Bffect ) Decrease
ASG (0.3) (0.833) damaging (0.551) (52) (—1.60)
chr6(GRCh38. Deleterious Probal?ly . Possibly Disease Effect . Decrease
p12):32584356 Novel K4IN damaging  Deleterious . Disease
CoA (0.01) (0.993) damaging (0.785) (44) (—0.34)

Variant Description: In variant call format (VCF). SNV ID: Accession number in dbSNP. AA Change: Type
and location of amino acid changed. The value of the predicted score is represented by the numbers between

the brackets.

At the structural level (using the HOPE server), the new residues differed in size,
charge, and hydrophobicity. The new residues also influenced hydrogen bond formation,
ionic interactions, multimer contacts or interactions, and the function of their region (Table 3

and Figure 2)

P

Figure 2. Structural alteration by HOPE server. The protein is shown in grey, the wild-type residue in
green, and the variant residue in red. The structures from left to right represent R109S, Y59H, and

K41N variants.
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Table 3. Structural effects of nsSNVs in a protein sequence using the HOPE server.
Distinctions 15750986830 rs11554462 Novel
R109S Y59H K41N
and
Characteristics Arginine Serine Tyrosine Histidine Lysine Asparagine
H N ANH OH N NH,
OH N HoN
Schematic " L’(OH ) r\?H Qﬁ’
structures O b2 I o S oH e Ll o
(o] o} S o
Size large Small large Small large Small
Charge Positive Neutral - - Positive Neutral
Hydrophobicity- Less More More Less ) )
value hydrophobic hydrophobic hydrophobic hydrophobic
The mutant-type The wild-type The mutant
The wild-type has an impact forms a type affects
. L, The wild-type = The mutant-type hydrogen bond, hydrogen bond
residue forms  on the original’s . . . S L
. residue forms a has an impact a salt bridge formation, ionic
eight hydrogen  hydrogen bond N . . .
Contacts . hydrogenbond  on the original’s with one interaction,
bonds and one formation, . . . .
. . TR with eight hydrogenbond  residue, and is and the
salt bridge with binding site, . - . .
. O residues. formation. involved in development of
other residues. and ionic . .
. . multimer multimer
interactions. . .
contacts. interactions.
Structure The mutation is located within a stretch of residues annotated in UniProt as a special region: Beta-1. The
differences in amino acid properties can disturb this region and disturb its function.
UniProt: Universal database of protein (https:/ /www.uniprot.org/) (accessed on 10 December 2022). The symbol
“-” refers to unavailable data.

The Consurf server and InterPro database were used to predict the locations of variants
in evolutionarily conserved and domain regions. The three nsSNVs K41N, Y59H, and R109S
received scores of 5, 1, and 6, respectively, indicating that they were average, variable, and
conserved, respectively (Figure 3).

Additionally, two of the three nsSNVs (Y59H and R109S) were discovered in the MHC
II b N domain (MHC class II, beta chain, N-terminal) with the accession number IPR000353.
All nsSNVs demonstrated changes in the overall protein physicochemical parameters. The
properties altered by all three nsSNVs were the molecular weight, theoretical isoelectric
point (pI), atomic composition, instability index, and GRAVY (Table 4).

Table 4. The effect of nsSNVs on HLA-DRB1’ protein physicochemical parameters.
Reference Molecular Theoretical Atomic Total Total  Extinction Instability Aliphatic
& . e . . GRAVY
. Weight pI Composition —ve  +ve Coefficients Index Index
Variants
Reference 29966.14 7.64 C1342H2068N3680389512 25 26 41285 48.92 77.93 —0.207
R109S 29897.03 7.00 C1339H2061N3650390S12 25 25 41285 48.20 77.93 —0.193
Y59H 29940.10 7.66 Ci330H2066N3700388512 25 26 39795 49.54 7793 —0.214
K41N 29952.07 7.00 C1300H2060N3680300S12 25 25 41285 47.70 7793  —0.205

The accession number for the reference sequence is P01911 (https://www.uniprot.org/) (accessed on 15 December
2022). Total —ve: Total negatively charged residues. Total +ve: Total positively charged residues. GRAVY:
Grand average of hydropathicity index. The parameters that have been changed compared to the reference are
highlighted in bold.
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Figure 3. Evolutionary conservancy of HLA-DRB1 produced by Consurf server.

HLA-DRBI interacts with HLA-DRA, HLA-DMA, CD74, HLA-DMB, HLA-DPAL1,
CD4, BTNL2, and CD86, in that order, according to the protein-protein interaction network
(Figure 4). Finally, no significant variants that had an impact on or worked as markers for
transplant acceptance samples were found (Table 1).

PTPN22

HLA-DPA1

AN

HLA-DMB

Figure 4. Protein-protein interaction network of HLA-DRBI predicted by the STRING database.
The current illustration depicts the ten proteins with the highest total probability score. The red,
green, blue, purple, yellow, light blue, and black lines indicate the presence of fusion, neighborhood,
co-occurrence, experimental, text mining, database, and co-expression evidence, respectively.
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4. Discussion

Chronic renal diseases in general and end-stage renal disease in particular are major
health concerns in Sudan and around the world [1,6-9]. The growing number of ESRD
patients places strain on both individuals (costs of dialysis or transplantation) and govern-
ments (increasing the financial burden of health care) [61]. Renal transplantation remains
the most effective ESRD treatment, and HLA typing is the most important test in this
process [13,17]. The HLA region is extremely diverse, and HLA-DRBI1 is the most poly-
morphic in class II of this system [19,62]. HLA-DRBI protein is significantly associated
with graft survival, particularly in the first six months after transplantation [27,28]. HLA-
DRBI1 exon 2 is important because it encodes antigen-binding sites and contains the most
pathological single nucleotide variants (SNVs) [24-27]. The present study aimed to identify
functional or marker genetic variants in HLA-DRB1 exon 2 in renal transplant recipients
(acceptance and rejection) using sequencing technology.

This study included 60 DNA samples (from various families) divided into three equal
groups: Control, renal transplant rejection, and acceptance. The alignment algorithm
identified seven SNVs at six locations, three of which were non-synonymous and could
have functional consequences. Two of the three nsSNVs were found in the public domain
archive of simple genetic polymorphisms (https:/ /www.ncbi.nlm.nih.gov/snp/), (accessed
on 20 December 2022), whereas the third was not found. Several algorithms and methods
have been used to assess the impact of these three nsSNVs on protein function and stability
indices. They discovered that two were high-impact, indicating deleterious effects by
all tools, and the third had a lower impact. Previous (the preceding three decades) and
recent studies have shown a close relationship between HLA mismatch and transplantation
graft rejection [63,64]. Previous findings have indicated that R109S and K41N variants
may have a greater impact on protein function than the Y59H variant. None of the three
detected variants corresponded to an in silico study conducted in 2014 by Hassan et al., who
identified the most deleterious nsSNVs in the human HLA-DRB1 gene [25]. The nsSNVs
discovered in this study were submitted to dbSNP after Hassan et al.’s study, resulting
in incompatibility. https://www.ncbi.nlm.nih.gov/snp/rs750986830#submissions, https:
/ /www.ncbinlm.nih.gov/snp/rs11554462#submissions (accessed on 5 April 2023).

At the structural level, all the variant amino acids showed differences in physical
properties, bond formation, and a variety of interactions. The HOPE server predicted
that the three nsSNVs are situated in a unique region called Beta-1. According to the
Universal Protein Resource, the beta-1 region is a structural part of the peptide-binding
cleft of HLA-DRBI, consisting of 94 amino acids. Additionally, beta-1 interacts with the
T-cell receptors CDR2 and CDR3 (complementarity-determining regions 2 and 3) alpha
domains through hydrogen bonds. https://www.uniprot.org/uniprotkb/P01911/entry
(accessed on 15 December 2022). Differences in amino acid properties can disrupt this
region (beta-1) and its function. According to evolutionary conservation, the K41N, Y59H,
and R109S variants were average, variable, and conserved, respectively. Two of these (Y59H
and R109S) were found in the MHC II b N domain. Compared to other variants, the R109S
variant may have the greatest impact. This is because of its conserved nature, main domain
location, and pathogenic impact on protein structure, function, and stability.

In terms of physicochemical properties, the HOPE tool, as previously mentioned,
revealed differences in the residue levels, whereas ProtParam indicated that the variants
caused changes in the entire protein. All the nsSNVs detected agreed to alter the molecular
weight, theoretical pi (isoelectric point), atomic composition, and GRAVY of the protein.
The extinction coefficients and total positive charge were altered in a few variants, but the
aliphatic index and total negative charge remained the same. In general, all the nsSNVs
had nearly equal effects on the overall physicochemical properties of the protein. Most
proteins function consecutively with other proteins in living organisms, and protein-protein
interaction studies provide crucial information for understanding the complicated bio-
logical processes that occur in live cells [65,66]. Thus, to gain a better understanding, a
network of protein-protein interactions (PPIs) was constructed using the STRING database.


https://www.ncbi.nlm.nih.gov/snp/
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Deleterious variants in the HLA-DRBI protein could disrupt its interaction with confidence
interaction proteins. Only one synonymous SNV (K41K) was found in the transplant
acceptance samples in the current study. The K41K variant could not be identified as an
acceptance marker because it appeared in both acceptance and rejection cases.
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