Pre-Hospital Management of Patients with COVID-19 and the Impact on Hospitalization
Abstract
:1. Introduction
2. Material and Methods
2.1. Ethical and Regulatory Aspects
2.2. Course of the Study and Data Collection
2.3. Processing of Data and Variables Studied
2.4. Sample Size
2.5. Statistical Analysis
3. Results
3.1. Data Quality and Sample Representativity
3.2. Descriptive Analysis of Pre-Hospital Management
3.3. Univariate Analysis
3.4. Multivariate Analysis
4. Discussion
Strengths and Weaknesses
- The role of pre-hospital management must be to avoid hospitalization, thus limiting hospital overcrowding and its consequences on overall care;
- An organized PHP, which reduces the time between OS and primary care; early assessment of disease prognosis based on scores; and community monitoring of prognosis-associated variables such as oxygen saturation and D-dimer levels by general practitioners can help guide hospitalization and relieve the hospital system while improving patient outcomes;
- Such pre-hospital care through specific outpatient treatment, ad hoc home visits, a screening and primary care structure, or specialized medical centers for general practitioners should be discussed in preparation for a new pandemic.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Plagiat
English Editing
References
- Gautret, P.; Million, M.; Jarrot, P.-A.; Camoin-Jau, L.; Colson, P.; Fenollar, F.; Leone, M.; La Scola, B.; Devaux, C.; Gaubert, J.Y.; et al. Natural History of COVID-19 and Therapeutic Options. Expert Rev. Clin. Immunol. 2020, 16, 1159–1184. [Google Scholar] [CrossRef]
- Brouqui, P.; Amrane, S.; Million, M.; Cortaredona, S.; Parola, P.; Lagier, J.-C.; Raoult, D. Asymptomatic Hypoxia in COVID-19 Is Associated with Poor Outcome. Int. J. Infect. Dis. 2020, 102, 233–238. [Google Scholar] [CrossRef]
- Dillon, K.; Hook, C.; Coupland, Z.; Avery, P.; Taylor, H.; Lockyer, A. Pre-Hospital Lowest Recorded Oxygen Saturation Independently Predicts Death in Patients with COVID-19. Br. Paramed. J. 2020, 5, 59–65. [Google Scholar] [CrossRef]
- Blair, P.W.; Brown, D.M.; Jang, M.; Antar, A.A.R.; Keruly, J.C.; Bachu, V.S.; Townsend, J.L.; Tornheim, J.A.; Keller, S.C.; Sauer, L.; et al. The Clinical Course of COVID-19 in the Outpatient Setting: A Prospective Cohort Study. Open Forum Infect. Dis. 2021, 8, ofab007. [Google Scholar] [CrossRef]
- Bompard, F.; Monnier, H.; Saab, I.; Tordjman, M.; Abdoul, H.; Fournier, L.; Sanchez, O.; Lorut, C.; Chassagnon, G.; Revel, M.-P. Pulmonary Embolism in Patients with COVID-19 Pneumonia. Eur. Respir. J. 2020, 56, 2001365. [Google Scholar] [CrossRef]
- Lippi, G.; Favaloro, E.J. D-Dimer Is Associated with Severity of Coronavirus Disease 2019: A Pooled Analysis. Thromb. Haemost. 2020, 120, 876–878. [Google Scholar] [CrossRef] [Green Version]
- Poor, H.D. Pulmonary Thrombosis and Thromboembolism in COVID-19. Chest 2021, 160, 1471–1480. [Google Scholar] [CrossRef]
- Kyriakoulis, K.G.; Kollias, A.; Kyriakoulis, I.G.; Kyprianou, I.A.; Papachrysostomou, C.; Makaronis, P.; Kotronias, R.A.; Terentes-Printzios, D.; Toskas, I.; Mikhailidis, D.P. Thromboprophylaxis in Patients with COVID-19: Systematic Review of National and International Clinical Guidance Reports. Curr. Vasc. Pharmacol. 2022, 20, 96–110. [Google Scholar] [CrossRef]
- Martín-Rodríguez, F.; López-Izquierdo, R.; Del Pozo Vegas, C.; Sánchez-Soberón, I.; Delgado-Benito, J.F.; Martín-Conty, J.L.; Castro-Villamor, M.A. Can the Prehospital National Early Warning Score 2 Identify Patients at Risk of In-Hospital Early Mortality? A Prospective, Multicenter Cohort Study. Heart Lung 2020, 49, 585–591. [Google Scholar] [CrossRef]
- Petrilli, C.M.; Jones, S.A.; Yang, J.; Rajagopalan, H.; O’Donnell, L.; Chernyak, Y.; Tobin, K.A.; Cerfolio, R.J.; Francois, F.; Horwitz, L.I. Factors Associated with Hospital Admission and Critical Illness among 5279 People with Coronavirus Disease 2019 in New York City: Prospective Cohort Study. BMJ 2020, 369, m1966. [Google Scholar] [CrossRef]
- Million, M.; Lagier, J.-C.; Tissot-Dupont, H.; Ravaux, I.; Dhiver, C.; Tomei, C.; Cassir, N.; Delorme, L.; Cortaredona, S.; Amrane, S.; et al. Early Combination Therapy with Hydroxychloroquine and Azithromycin Reduces Mortality in 10,429 COVID-19 Outpatients. Rev. Cardiovasc. Med. 2021, 22, 1063–1072. [Google Scholar] [CrossRef]
- Simpson, E.H. The Interpretation of Interaction in Contingency Tables. J. R. Stat. Soc. Ser. B 1951, 13, 238–241. [Google Scholar] [CrossRef]
- Gautret, P.; Hoang, V.T.; Jimeno, M.T.; Lagier, J.-C.; Rossi, P.; Fournier, P.E.; Colson, P.; Raoult, D. The Severity of the First 207 Infections with the SARS-CoV-2 Omicron BA.2 Variant, in Marseille, France, December 2021-February 2022. J. Med. Virol. 2022, 94, 3494–3497. [Google Scholar] [CrossRef]
- Insight Start Study Group; Lundgren, J.D.; Babiker, A.G.; Gordin, F.; Emery, S.; Grund, B.; Sharma, S.; Avihingsanon, A.; Cooper, D.A.; Fätkenheuer, G.; et al. Initiation of Antiretroviral Therapy in Early Asymptomatic HIV Infection. N. Engl. J. Med. 2015, 373, 795–807. [Google Scholar] [CrossRef] [Green Version]
- Peltan, I.D.; Brown, S.M.; Bledsoe, J.R.; Sorensen, J.; Samore, M.H.; Allen, T.L.; Hough, C.L. ED Door-to-Antibiotic Time and Long-Term Mortality in Sepsis. Chest 2019, 155, 938–946. [Google Scholar] [CrossRef]
- Cone, E.B.; Marchese, M.; Paciotti, M.; Nguyen, D.-D.; Nabi, J.; Cole, A.P.; Molina, G.; Molina, R.L.; Minami, C.A.; Mucci, L.A.; et al. Assessment of Time-to-Treatment Initiation and Survival in a Cohort of Patients With Common Cancers. JAMA Netw. Open 2020, 3, e2030072. [Google Scholar] [CrossRef]
- He, X.-L.; Zhou, Y.-Y.; Fu, W.; Xue, Y.-E.; Liang, M.-Y.; Yang, B.-H.; Ma, W.-L.; Zhou, Q.; Chen, L.; Zhang, J.-C.; et al. Prolonged SARS-CoV-2 Viral Shedding in Patients with COVID-19 Was Associated with Delayed Initiation of Arbidol Treatment and Consulting Doctor Later: A Retrospective Cohort Study. Curr. Med. Sci. 2021, 41, 1096–1104. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, W.; Liu, K.; Fang, Y.-Y.; Shang, J.; Zhou, L.; Wang, K.; Leng, F.; Wei, S.; Chen, L.; et al. Clinical Characteristics of Fatal and Recovered Cases of Coronavirus Disease 2019 in Wuhan, China: A Retrospective Study. Chin. Med. J. 2020, 133, 1261–1267. [Google Scholar] [CrossRef]
- Crotty, B.H.; Dong, Y.; Laud, P.; Hanson, R.J.; Gershkowitz, B.; Penlesky, A.C.; Shah, N.; Anderes, M.; Green, E.; Fickel, K.; et al. Hospitalization Outcomes Among Patients With COVID-19 Undergoing Remote Monitoring. JAMA Netw. Open 2022, 5, e2221050. [Google Scholar] [CrossRef]
- Clarke, J.; Flott, K.; Fernandez Crespo, R.; Ashrafian, H.; Fontana, G.; Benger, J.; Darzi, A.; Elkin, S. Assessing the Safety of Home Oximetry for COVID-19: A Multisite Retrospective Observational Study. BMJ Open 2021, 11, e049235. [Google Scholar] [CrossRef]
- Haddad, T.C.; Coffey, J.D.; Deng, Y.; Glasgow, A.E.; Christopherson, L.A.; Sangaralingham, L.R.; Bell, S.J.; Shah, V.P.; Pritchett, J.C.; Orenstein, R.; et al. Impact of a High-Risk, Ambulatory COVID-19 Remote Patient Monitoring Program on Utilization, Cost, and Mortality. Mayo Clin. Proc. 2022, 97, 2215–2225. [Google Scholar] [CrossRef]
- Majoor, K.; Vorselaars, A.D.M. Home Monitoring of Coronavirus Disease 2019 Patients in Different Phases of Disease. Curr Opin. Pulm. Med. 2023, 29, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, T.; Knight, M.; Inda-Kim, M.; Fulop, N.J.; Leach, J.; Vindrola-Padros, C. Remote Management of COVID-19 Using Home Pulse Oximetry and Virtual Ward Support. BMJ 2021, 372, n677. [Google Scholar] [CrossRef] [PubMed]
- Chua, F.; Vancheeswaran, R.; Draper, A.; Vaghela, T.; Knight, M.; Mogal, R.; Singh, J.; Spencer, L.G.; Thwaite, E.; Mitchell, H.; et al. Early Prognostication of COVID-19 to Guide Hospitalisation versus Outpatient Monitoring Using a Point-of-Test Risk Prediction Score. Thorax 2021, 76, 696–703. [Google Scholar] [CrossRef]
- Greenhalgh, T.; Thompson, P.; Weiringa, S.; Neves, A.L.; Husain, L.; Dunlop, M.; Rushforth, A.; Nunan, D.; de Lusignan, S.; Delaney, B. What Items Should Be Included in an Early Warning Score for Remote Assessment of Suspected COVID-19? Qualitative and Delphi Study. BMJ Open 2020, 10, e042626. [Google Scholar] [CrossRef]
- Shi, L.; Wang, Y.; Wang, Y.-D.; Duan, G.-C.; Yang, H.-Y. D-Dimer Is Associated with the Risk of Mortality in Coronavirus Disease 2019 Patients. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 8576–8579. [Google Scholar] [CrossRef] [PubMed]
- Bikdeli, B.; Madhavan, M.V.; Jimenez, D.; Chuich, T.; Dreyfus, I.; Driggin, E.; Nigoghossian, C.D.; Ageno, W.; Madjid, M.; Guo, Y.; et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 2950–2973. [Google Scholar] [CrossRef]
- Hippchen, T.; Kräusslich, H.-G.; Merle, U. Coronataxi Brings Outpatient Care to COVID-19 Patients. Ann. Emerg. Med. 2020, 76, 811–812. [Google Scholar] [CrossRef]
PHP3 No. = 362 | PHP2 No. = 43 | PHP1 No. = 129 | Total | p-Value | |
---|---|---|---|---|---|
Time between OS and any Consultation | 4..62 +/− 4.12 (0–37) | 4.79 +/− 4.42 (−1–20) | 0.41 +/− 4.8 (−26–11) | 3.64 +/− 4.6 (−26–37) | <0.001 |
** | 0.801 | <0.001 | |||
Time between OS and hospital care * | 4.62 +/− 4.12 (0–37) | 9.23 +/− 5.39 (0–24) | 6.24 +/− 4.82 (0–27) | 5.40 +/− 4.57 (0–37) | <0.001 |
** | <0.001 | <0.001 |
GP Prescriptions (172) | Out-Hospital Department Prescriptions (545) | p-Value * | |
---|---|---|---|
(Yes/no) % | (yes/no) % | ||
Paracetamol | (65/107) 37.8% | (0/545) 0.0% | <0.001 |
Azithromycin | (68/104) 39.5% | (437/108) 80.2% | <0.001 |
Other antibiotics | (33/139) 19.2% | (18/527) 3.3% | <0.001 |
Zinc | (56/116) 32.6% | (450/95) 82.6% | <0.001 |
Ivermectin | (11/161) 6.4% | (180/365) 33.0% | <0.001 |
Corticosteroids | (30/142) 17.4% | (13/532) 2.4% | <0.001 |
Hydroxychloroquine | (3/169) 1.7% | (338/207) 62.0% | <0.001 |
Anticoagulant | (10/162) 5.8% | (325/220) 59.6% | <0.001 |
Vitamin | (36/136) 20.9% | (0/545) 0.0% | <0.001 |
Suspected Risk Factors | Outcome | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|---|
No Hospitalization, n = 499 | Hospitalization, n = 46 | p-Value | Odds Ratio and 95% CI | p-Value | Odds Ratio and 95% CI | |
Gender * | ||||||
Male | 221 (88.8) | 28 (11.2) | 0.023 | 1.95 (1.05–3.63) | p = 0.04 | 2.21 (1.01–4.84) |
Female | 278 (93.9) | 18 (6.1) | ||||
Age * | ||||||
Med (range); Mean +/− SD | 63 (18–92); 60.59 +/− 14.5 | 72 (33–89); 69.74 +/− 11.87 | <0.001 | 1.06 (1.03–1.08) | NS | |
Score_News * | ||||||
Med (range); Mean +/− SD | 3 (0–9); 2.43 +/− 1.95 | 6 (1–11); 5.61 +/− 2.05 | <0.001 | 2.09 (1.73–2.52) | <0.001 | 2.04 (1.65–2.51) |
Obesity * | ||||||
Obesity | 106 (86.2) | 17 (13.8) | 0.015 | 2.17 (1.15–4.10) | 0.005 | 3.45 (1.46–8.09) |
No obesity | 393 (93.1) | 29 (6.9) | ||||
Comorbidity | ||||||
Comorbidity | 380 (91.1) | 37 (8.9) | 0.326 | 1.28 (0.60–2.75) | NA | |
No comorbidity | 119 (93) | 9 (7) | ||||
D-dimer levels | ||||||
D-dimer > 0.5 | 183 (83.6) | 36 (16.4) | <0.001 | 6.15 (2.9–12.7) | p = 0.005 | 3.45 (1.47–8.12) |
D-dimer < 0.5 | 313 (96.9) | 10 (3.1) | ||||
Time between OS and admission to hospital care? (PHP duration) * | ||||||
Med (range); Mean +/− SD | 4 (0–37); 5.10 +/− 4.28 | 7 (0–25); 8.72 +/− 6.13 | <0.001 | 1.12 (1.7–1.18) | 0.03 | 1.07 (1.01–1.14) |
Time between OS and any consultation | ||||||
Med (range); Mean +/− SD | 3 (–26–37); 3.5 +/− 4.5 | 4.5 (−5–20); 5.15 +/− 5.4 | 0.02 | 1.07 (1.01–1.13) | NA | |
Time between OS and GP consultation | ||||||
Time > 3 days | 22 (62.9) | 13 (37.1) | 0.02 | 5.63 (2.93–13.76) | NA | |
Time < 3 days | 124 (90.5) | 13 (9.4) | ||||
Monitoring by GP | ||||||
Monitoring by GP | 31 (72.1) | 12 (27.9) | <0.001 | 5.33 (2.51–11.30) | NA | |
No monitoring by GP | 468 (93.2) | 34 (6.8) | ||||
COVID treatment by GP * | ||||||
COVID treatment by GP | 116 (85.9) | 19 (14.1) | 0.007 | 2.32 (1.23–4.33) | NS | |
No COVID treatment by GP | 383 (93.4) | 27 (6.6) | ||||
Pre-hospital pathways * | <0.001 | 0.02 | ||||
PHP1 | 115 (89.1) | 14 (10.9) | 0.036 | 2.15 (1.05–4.39) | 0.10 | 2.13 (0.86–5.27) |
PHP2 | 31 (72.1) | 12 (27.9) | <0.001 | 6.83 (3.06–15.27) | 0.007 | 4.3 (1.48–12.55) |
PHP3 | 353 (94.6) | 20 (5.4) | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grannec, F.; Meddeb, L.; Tissot-Dupont, H.; Gentile, S.; Brouqui, P. Pre-Hospital Management of Patients with COVID-19 and the Impact on Hospitalization. Medicina 2023, 59, 1440. https://doi.org/10.3390/medicina59081440
Grannec F, Meddeb L, Tissot-Dupont H, Gentile S, Brouqui P. Pre-Hospital Management of Patients with COVID-19 and the Impact on Hospitalization. Medicina. 2023; 59(8):1440. https://doi.org/10.3390/medicina59081440
Chicago/Turabian StyleGrannec, Floann, Line Meddeb, Herve Tissot-Dupont, Stephanie Gentile, and Philippe Brouqui. 2023. "Pre-Hospital Management of Patients with COVID-19 and the Impact on Hospitalization" Medicina 59, no. 8: 1440. https://doi.org/10.3390/medicina59081440
APA StyleGrannec, F., Meddeb, L., Tissot-Dupont, H., Gentile, S., & Brouqui, P. (2023). Pre-Hospital Management of Patients with COVID-19 and the Impact on Hospitalization. Medicina, 59(8), 1440. https://doi.org/10.3390/medicina59081440