Automated Quantification of Simple and Complex Aortic Flow Using 2D Phase Contrast MRI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Patient and Public Involvement
2.3. Ethics Approval and Consent to Participate
2.4. Cardiac Magnetic Resonance and Protocol
2.5. Aortic Root Image Analysis
2.6. Statistical Analysis
3. Results
3.1. Correlation and Repeatability
3.2. Bland–Altman Test Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guglielmo, M.; Rovera, C.; Rabbat, M.G.; Pontone, G. The role of cardiac magnetic resonance in aortic stenosis and regurgitation. J. Cardiovasc. Dev. Disease 2022, 9, 108. [Google Scholar] [CrossRef]
- Sigovan, M.; Dyverfeldt, P.; Wrenn, J.; Tseng, E.E.; Saloner, D.; Hope, M.D. Extended 3D approach for quantification of abnormal ascending aortic flow. Magn. Reson. Imaging 2015, 33, 695–700. [Google Scholar] [CrossRef]
- Kauhanen, S.P.; Hedman, M.; Kariniemi, E.; Jaakkola, P.; Vanninen, R.; Saari, P.; Liimatainen, T. Aortic dilatation associates with flow displacement and increased circumferential wall shear stress in patients without aortic stenosis: A prospective clinical study. J. Magn. Reson. Imaging 2019, 50, 136–145. [Google Scholar] [CrossRef]
- Borger, M.A.; Fedak, P.W.M.; Stephens, E.H.; Gleason, T.G.; Girdauskas, E.; Ikonomidis, J.S.; Khoynezhad, A.; Siu, S.C.; Verma, S.; Hope, M.D.; et al. The American Association for Thoracic Surgery consensus guidelines on bicuspid aortic valve-related aortopathy: Full online-only version. J. Thorac. Cardiovasc. Surg. 2018, 156, e41–e74. [Google Scholar] [CrossRef]
- Garg, P.; Markl, M.; Sathananthan, J.; Sellers, S.L.; Meduri, C.; Cavalcante, J. Restoration of flow in the aorta: A novel therapeutic target in aortic valve intervention. Nat. Rev. Cardiol. 2024, 21, 264–273. [Google Scholar] [CrossRef]
- Bai, W.; Sinclair, M.; Tarroni, G.; Oktay, O.; Rajchl, M.; Vaillant, G.; Lee, A.M.; Aung, N.; Lukaschuk, E.; Sanghvi, M.M.; et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J. Cardiovasc. Magn. Reson. 2018, 20, 65. [Google Scholar] [CrossRef]
- Fadil, H.; Totman, J.J.; Hausenloy, D.J.; Ho, H.H.; Joseph, P.; Low, A.F.H.; Richards, A.M.; Chan, M.Y.; Marchesseau, S. A deep learning pipeline for automatic analysis of multi-scan cardiovascular magnetic resonance. J. Cardiovasc. Magn. Resonance 2021, 23, 47. [Google Scholar] [CrossRef]
- Suinesiaputra, A.; Mauger, C.A.; Ambale-Venkatesh, B.; Bluemke, D.A.; Dam Gade, J.; Gilbert, K.; Janse, M.H.; Hald, L.S.; Werkhoven, C.; Wu, C.O.; et al. Deep learning analysis of cardiac MRI in legacy datasets: Multi-ethnic study of atherosclerosis. Front. Cardiovasc. Med. 2022, 8, 807728. [Google Scholar] [CrossRef]
- Mariscal-Harana, J.; Asher, C.; Vergani, V.; Rizvi, M.; Keehn, L.; Kim, R.J.; Judd, R.M.; Petersen, S.E.; Razavi, R.; King, A.P.; et al. An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases. Eur. Heart J.-Digit. Health 2023, 4, 370–383. [Google Scholar] [CrossRef]
- Davies, R.H.; Augusto, J.B.; Bhuva, A.; Xue, H.; Treibel, T.A.; Ye, Y.; Hughes, R.K.; Bai, W.; Lau, C.; Shiwani, H.; et al. Precision measurement of cardiac structure and function in cardiovascular magnetic resonance using machine learning. J. Cardiovasc. Magn. Reson. 2022, 24, 16. [Google Scholar] [CrossRef]
- Goel, A.; McColl, R.; King, K.S.; Whittemore, A.; Peshock, R.M. Fully automated tool to identify the aorta and compute flow using phase-contrast MRI: Validation and application in a large population based study. J. Magn. Reson. Imaging 2014, 40, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Bratt, A.; Kim, J.; Pollie, M.; Beecy, A.N.; Tehrani, N.H.; Codella, N.; Perez-Johnston, R.; Palumbo, M.C.; Alakbarli, J.; Colizza, W.; et al. Machine learning derived segmentation of phase velocity encoded cardiovascular magnetic resonance for fully automated aortic flow quantification. J. Cardiovasc. Magn. Reson. 2019, 21, 1. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.K.; Jarvis, K.; Maroun, A.; Malaisrie, S.C.; Mehta, C.K.; McCarthy, P.M.; Bonow, R.O.; Avery, R.J.; Allen, B.D.; Carr, J.C.; et al. Systolic reverse flow derived from 4D flow cardiovascular magnetic resonance in bicuspid aortic valve is associated with aortic dilation and aortic valve stenosis: A cross sectional study in 655 subjects. J. Cardiovasc. Magn. Reson. 2023, 25, 3. [Google Scholar] [CrossRef] [PubMed]
- Vellinga, A.; Cormican, M.; Hanahoe, B.; Bennett, K.; Murphy, A.W. Opt-out as an acceptable method of obtaining consent in medical research: A short report. BMC Med. Res. Methodol. 2011, 11, 40. [Google Scholar] [CrossRef]
- Cardillo, L.; Cahill, F.; Wylie, H.; Williams, A.; Zylstra, J.; Davies, A.; Fullwood, L.; Van Hemelrijck, M. Patients’ perspectives on opt-out consent for observational research: Systematic review and focus group. Br. J. Nurs. 2018, 27, 1321–1329. [Google Scholar] [CrossRef]
- Sun, X.; Cheng, L.H.; Plein, S.; Garg, P.; Moghari, M.H.; van der Geest, R.J. Deep learning-based prediction of intra-cardiac blood flow in long-axis cine magnetic resonance imaging. Int. J. Cardiovasc. Imaging 2023, 39, 1045–1053. [Google Scholar] [CrossRef]
- Sigovan, M.; Hope, M.D.; Dyverfeldt, P.; Saloner, D. Comparison of four-dimensional flow parameters for quantification of flow eccentricity in the ascending aorta. J. Magn. Reson. Imaging 2011, 34, 1226–1230. [Google Scholar] [CrossRef]
- Assadi, H.; Alabed, S.; Li, R.; Matthews, G.; Karunasaagarar, K.; Kasmai, B.; Nair, S.; Mehmood, Z.; Grafton-Clarke, C.; Swoboda, P.P.; et al. Development and validation of AI-derived segmentation of four-chamber cine cardiac magnetic resonance. Eur. Radiol. Exp. 2024, 8, 77. [Google Scholar] [CrossRef]
- Shahzad, R.; Tao, Q.; Dzyubachyk, O.; Staring, M.; Lelieveldt, B.P.F.; van der Geest, R.J. Fully-automatic left ventricular segmentation from long-axis cardiac cine MR scans. Med. Image Analysis 2017, 39, 44–55. [Google Scholar] [CrossRef]
- Gonzales, R.A.; Seemann, F.; Lamy, J.; Arvidsson, P.M.; Heiberg, E.; Murray, V.; Peters, D.C. Automated left atrial time-resolved segmentation in MRI long-axis cine images using active contours. BMC Med. Imaging 2021, 21, 101. [Google Scholar] [CrossRef]
- Ruijsink, B.; Puyol-Antón, E.; Oksuz, I.; Sinclair, M.; Bai, W.; Schnabel, J.A.; Razavi, R.; King, A.P. Fully automated, quality-controlled cardiac analysis from CMR: Validation and large-scale application to characterize cardiac function. JACC Cardiovasc. Imaging 2020, 13, 684–695. [Google Scholar]
- Alabed, S.; Maiter, A.; Mahmood, A.; Daniel, S.; Salehi, M.; Jenkins, S.; Sharkey, M.; Dwivedi, K.; Mamalakis, M.; Assadi, H.; et al. Quality of reporting of artificial intelligence studies: Lessons learnt from a systematic review of the literature. Clin. Radiol. 2022, 77, e21. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Aznaouridis, K.; O’Rourke, M.F.; Safar, M.E.; Baou, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: A systematic review and meta-analysis. Eur. Heart J. 2010, 31, 1865–1871. [Google Scholar] [CrossRef] [PubMed]
- Raghav, V.; Barker, A.J.; Mangiameli, D.; Mirabella, L.; Markl, M.; Yoganathan, A.P. Valve mediated hemodynamics and their association with distal ascending aortic diameter in bicuspid aortic valve subjects. J. Magn. Reson. Imaging 2018, 47, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Burris, N.S.; Sigovan, M.; Knauer, H.A.; Tseng, E.E.; Saloner, D.; Hope, M.D. Systolic flow displacement correlates with future ascending aortic growth in patients with bicuspid aortic valves undergoing magnetic resonance surveillance. Invest Radiol. 2014, 49, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Korpela, T.; Kauhanen, S.P.; Kariniemi, E.; Saari, P.; Liimatainen, T.; Jaakkola, P.; Vanninen, R.; Hedman, M. Flow displacement and decreased wall shear stress might be associated with the growth rate of an ascending aortic dilatation. Eur. J. Cardio-Thorac. Surg. 2022, 61, 395–402. [Google Scholar] [CrossRef]
- Zhao, X.; Garg, P.; Assadi, H.; Tan, R.S.; Chai, P.; Yeo, T.J.; Matthews, G.; Mehmood, Z.; Leng, S.; Bryant, J.A.; et al. Aortic flow is associated with aging and exercise capacity. Eur. Heart J. Open 2023, 3, oead079. [Google Scholar] [CrossRef]
Flow Indices | Description |
---|---|
Simple flow indices | |
AO forward flow (mL) | Aortic forward flow |
AO backward flow (mL) | Aortic backward flow |
SFF (mL) | Systolic forward flow |
SRF (mL) | Systolic retrograde flow |
Vsavg (cm/s) | Average velocity during systole |
Vspeak (cm/s) | Peak velocity during systole |
Complex flow indices | |
AO max area (mm2) | Aortic maximum area |
sFRR (%) | Systolic flow reversal ratio |
FDsavg (%) | Flow displacement systolic average |
FDlsavg (%) | Flow displacement late systolic average |
ΔRA (°) | Flow displacement rotational angle change between the end-systolic point and the point the flow angle stabilized after peak systole |
n = 125 | |
---|---|
Male, n (%) | 78 (62.4%) |
Age (years) | 56 ± 17.4 |
Height (cm) | 172 ± 9.8 |
Weight (kg) | 82 ± 17.7 |
Body surface area (m2) | 1.95 ± 0.21 |
Diabetes mellitus (n) | 16 |
Hypertension (n) | 38 |
Myocardial infarction (n) | 19 |
Atrial fibrillation (n) | 18 |
Smoker (n) | 46 |
Ischaemic heart disease (n) | 32 |
Manual | AI | Correlation | ICC (CI) | p | |
---|---|---|---|---|---|
Simple flow indices | |||||
AO forward flow (mL) | 83.83 ± 22.42 | 83.72 ± 22.64 | 0.996 | 0.997 (0.996–0.998) | <0.001 |
AO backward flow (mL) | 2.98 ± 3.50 | 3.08 ± 3.55 | 0.984 | 0.992 (0.989–0.994) | <0.001 |
SFF (mL) | 88.80 ± 22.94 | 88.03 ± 24.14 | 0.918 | 0.957 (0.940–0.970) | <0.001 |
SRF (mL) | 8.82 ± 6.45 | 9.12 ± 6.58 | 0.969 | 0.984 (0.977–0.989) | <0.001 |
Vsavg (cm/s) | 212.81 ± 58.77 | 215.62 ± 55.84 | 0.856 | 0.916 (0.881–0.941) | <0.001 |
Vspeak (cm/s) | 403.74 ± 98.39 | 405.90 ± 93.13 | 0.947 | 0.973 (0.962–0.981) | <0.001 |
Complex flow indices | |||||
AO max area (mm2) | 8.11 ± 1.90 | 8.10 ± 1.86 | 0.964 | 0.982 (0.974–0.987) | <0.001 |
sFRR (%) | 9.84 ± 6.30 | 10.12 ± 6.26 | 0.968 | 0.984 (0.976–0.988) | <0.001 |
FDSavg (%) | 20.26 ± 9.96 | 19.23 ± 6.95 | 0.687 | 0.785 (0.694–0.849) | <0.001 |
FDlSavg (%) | 23.97 ± 11.37 | 23.21 ± 9.33 | 0.783 | 0.869 (0.814–0.908) | <0.001 |
ΔRA (°) | 15.64 ± 29.45 | 8.81 ± 28.08 | 0.790 | 0.882 (0.832–0.917) | <0.001 |
Lower Limit (CI) | Upper Limit (CI) | Bias | |
---|---|---|---|
Simple flow indices | |||
AO forward flow (mL) | −3.85 (−4.46 to −3.23) | 4.07 (3.46 to 4.68) | 0.11 |
AO backward flow (mL) | −1.34 (−1.53 to −1.15) | 1.14 (0.94 to 1.33) | −0.10 |
SFF (mL) | −5.68 (−6.54 to −4.81) | 5.52 (4.66 to 6.39) | −0.08 |
SRF (mL) | −3.48 (−3.98 to −2.99) | 2.88 (2.39 to 3.38) | −0.30 |
Vsavg (cm/s) | −29.48 (−34.07 to −24.89) | 29.80 (25.21 to 34.39) | 0.16 |
Vspeak (cm/s) | −17.27 (−19.98 to −14.56) | 17.76 (15.05 to 20.47) | 0.25 |
Complex flow indices | |||
AO max area (mm2) | −0.97 (−1.13 to −0.82) | 1.02 (0.87 to 1.17) | 0.02 |
sFRR (%) | −3.38 (−3.86 to −2.90) | 2.82 (2.35 to 3.31) | −0.28 |
FDsavg (%) | −13.16 (−15.36 to −10.97) | 15.21 (13.02 to 17.41) | 1.00 |
FDlsavg (%) | −13.12 (−15.27 to −10.97) | 14.65 (12.50 to 16.79) | 0.76 |
ΔRA (°) | −29.78 (−35.44 to −24.11) | 43.44 (37.78 to 49.11) | 6.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Assadi, H.S.; Zhao, X.; Matthews, G.; Mehmood, Z.; Grafton-Clarke, C.; Limbachia, V.; Hall, R.; Kasmai, B.; Hughes, M.; et al. Automated Quantification of Simple and Complex Aortic Flow Using 2D Phase Contrast MRI. Medicina 2024, 60, 1618. https://doi.org/10.3390/medicina60101618
Li R, Assadi HS, Zhao X, Matthews G, Mehmood Z, Grafton-Clarke C, Limbachia V, Hall R, Kasmai B, Hughes M, et al. Automated Quantification of Simple and Complex Aortic Flow Using 2D Phase Contrast MRI. Medicina. 2024; 60(10):1618. https://doi.org/10.3390/medicina60101618
Chicago/Turabian StyleLi, Rui, Hosamadin S. Assadi, Xiaodan Zhao, Gareth Matthews, Zia Mehmood, Ciaran Grafton-Clarke, Vaishali Limbachia, Rimma Hall, Bahman Kasmai, Marina Hughes, and et al. 2024. "Automated Quantification of Simple and Complex Aortic Flow Using 2D Phase Contrast MRI" Medicina 60, no. 10: 1618. https://doi.org/10.3390/medicina60101618
APA StyleLi, R., Assadi, H. S., Zhao, X., Matthews, G., Mehmood, Z., Grafton-Clarke, C., Limbachia, V., Hall, R., Kasmai, B., Hughes, M., Thampi, K., Hewson, D., Stamatelatou, M., Swoboda, P. P., Swift, A. J., Alabed, S., Nair, S., Spohr, H., Curtin, J., ... Garg, P. (2024). Automated Quantification of Simple and Complex Aortic Flow Using 2D Phase Contrast MRI. Medicina, 60(10), 1618. https://doi.org/10.3390/medicina60101618