
Citation: Radaschin, D.S.; Tatu, A.;

Iancu, A.V.; Beiu, C.; Popa, L.G.

The Contribution of the Skin

Microbiome to Psoriasis Pathogenesis

and Its Implications for Therapeutic

Strategies. Medicina 2024, 60, 1619.

https://doi.org/10.3390/

medicina60101619

Academic Editors: Manuel Sánchez-

Díaz and Salvador Arias-Santiago

Received: 17 September 2024

Revised: 26 September 2024

Accepted: 30 September 2024

Published: 3 October 2024

Copyright: © 2024 by the authors.

Published by MDPI on behalf of

the Lithuanian University of Health

Sciences. Licensee MDPI, Basel,

Switzerland. This article is an open

access article distributed under the

terms and conditions of the Creative

Commons Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

medicina

Review

The Contribution of the Skin Microbiome to Psoriasis
Pathogenesis and Its Implications for Therapeutic Strategies
Diana Sabina Radaschin 1, Alin Tatu 1,* , Alina Viorica Iancu 2,† , Cristina Beiu 3,* and Liliana Gabriela Popa 3

1 Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Saint Parascheva” Infectious Disease
Clinical Hospital, Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR),
“Dunarea de Jos” University of Galati, 800008 Galati, Romania

2 Department of Morphological and Functional Sciences, “Dunarea de Jos” University of Galati,
800008 Galati, Romania

3 Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of
Medicine and Pharmacy, 020021 Bucharest, Romania

* Correspondence: alin.tatu@ugal.ro (A.T.); cristina.beiu@umfcd.ro (C.B.)
† These authors contributed equally to this work.

Abstract: Psoriasis is a common chronic inflammatory skin disease, associated with significant mor-
bidity and a considerable negative impact on the patients’ quality of life. The complex pathogenesis of
psoriasis is still incompletely understood. Genetic predisposition, environmental factors like smoking,
alcohol consumption, psychological stress, consumption of certain drugs, and mechanical trauma,
as well as specific immune dysfunctions, contribute to the onset of the disease. Mounting evidence
indicate that skin dysbiosis plays a significant role in the development and exacerbation of psoriasis
through loss of immune tolerance to commensal skin flora, an altered balance between Tregs and
effector cells, and an excessive Th1 and Th17 polarization. While the implications of skin dysbiosis in
psoriasis pathogenesis are only starting to be revealed, the progress in the characterization of the skin
microbiome changes in psoriasis patients has opened a whole new avenue of research focusing on the
modulation of the skin microbiome as an adjuvant treatment for psoriasis and as part of a long-term
plan to prevent disease flares. The skin microbiome may also represent a valuable predictive marker
of treatment response and may aid in the selection of the optimal personalized treatment. We present
the current knowledge on the skin microbiome changes in psoriasis and the results of the studies that
investigated the efficacy of the different skin microbiome modulation strategies in the management
of psoriasis, and discuss the complex interaction between the host and skin commensal flora.

Keywords: skin microbiome; psoriasis; chronic inflammatory skin disease; probiotics; prebiotics

1. Introduction

Psoriasis is a common chronic inflammatory skin disease, with an estimated world-
wide prevalence of 2–3% [1]. The geographic distribution of psoriasis varies greatly. While
it is seldom encountered in countries near the Equator, in Northern European countries, its
prevalence is as high as 8–11% [2]. Psoriasis equally affects both genders [3]. It can occur at
any age, but it is very uncommon in children, with a prevalence of 0–1.4% in the pediatric
population [4]. In most cases, psoriasis onset takes place either in the 30–39 years or in the
50–69 years age groups [3]. It is more frequent in Caucasians compared to Afro-Americans
and Asians [3,5].

Psoriasis represents much more than a simple inaesthetic skin disease, the spectrum
of clinical manifestations of psoriasis comprising not only cutaneous lesions, but also
mucosal lesions, nail alterations, psoriatic arthritis, and a series of frequently associated
comorbidities, such as obesity, diabetes, dyslipidemia, arterial hypertension, metabolic
syndrome, cardiovascular diseases, inflammatory bowel disease, nonalcoholic fatty liver
disease, anxiety, and depression [6–8]. These associations are explained by common genetic
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susceptibility, common risk factors, or shared immune and inflammatory pathogenic
pathways [8].

The clinical hallmark of psoriasis is the typical well-demarcated, erythematous plaque
covered by fine, silvery scales especially distributed on the extensor aspects of the limbs, the
scalp, umbilical, and lumbosacral areas [9]. Nevertheless, apart from chronic plaque psoria-
sis, the disease can present in many clinical forms, including guttate psoriasis, characterized
by eruptive small, usually infracentrimetric skin lesions, inverse psoriasis, which affects
flexural areas, and pustular psoriasis, in which the erythematous plaques are covered by
initially sterile pustules, erythrodermic psoriasis, or nail psoriasis [9]. Psoriatic arthritis
accompanies the skin lesions in 10–30% of patients [9].

Genetic predisposition, environmental factors like smoking, alcohol consumption,
psychological stress, consumption of certain drugs, and mechanical trauma, as well as
specific immune dysfunctions, contribute to the onset of the disease [9]. Psoriasis may
be triggered by environmental exposures, especially infectious agents or by unmasked
autoantigens, such as keratins 17 and 13 or neuropeptides like substance P, heterogenous
nuclear ribonucleoproteins, cathelicidin, LL-37, A disintegrin and metalloprotease domain
containing thrombospondin type 1 motif-like 5 (ADAMTSL5), phospholipase A2 group
IVD, and pso p27 [10,11]. Damage-associated molecular patterns are recognized by pattern
recognition receptors (PRRs) expressed by dendritic cells, inducing their activation and
maturation and the subsequent Th1 and Th17 polarization of the immune response. At-
tracted to the skin, Th1 and Th17 cells release large amounts of tumor necrosis factor (TNF)
α, interleukin (IL) 1, IL-2, interferon (IFN) γ and IL-17 A/F, IL-21, and IL-22, respectively,
leading to massive local and systemic inflammation, and keratinocyte proliferation [12].
Keratinocytes and cells of the innate immune system, like γδ T cells, natural killer (NK)
cells, NK-T cells, innate lymphoid cells, macrophages, and neutrophils, also actively con-
tribute to the inflammatory state by the release of cytokines and chemokines [12]. Thus,
psoriasis vulgaris is a model of Th1/Th17-mediated immune disease.

The pathogenesis of pustular psoriasis, on the other hand, is principally mediated
by autoinflammatory and innate immune responses [13]. The dominant effector cytokine
in this particular form of psoriasis is IL-36, a member of the IL-1 family [13]. IL-36 exerts
autocrine effects on keratinocytes, increasing IL-36 production and the secretion of other
proinflammatory cytokines, antimicrobial peptides (AMPs), and neutrophil chemoattrac-
tants [14]. IL-36 also activates DCs and promotes their maturation and the production
of proinflammatory cytokines like IL-1, IL-6, TNF-α, and IL-23 [15,16]. IL-36 acts on
CD4+ T cells, inducing their proliferation and stimulating the release of IFN-γ, IL-4, and
IL-17 [15,17].

Although tremendous progress has been made in the understanding of psoriasis
pathogenesis during the last decades, there are still numerous unsolved issues, and psoriasis
continues to represent a hot topic of research. Novel biologic and small-molecule treatments
are remarkably effective in psoriasis. Nevertheless, the course of the disease is highly
unpredictable, and the majority of patients experience recurrences even after long periods
of complete clinical remission. As no curative treatment currently exists for this very
common disease, it continues to represent a public health issue, being associated with
significant morbidity, a major impact on the patients’ quality of life, and considerable
economic costs [18]. Therefore, the identification and correction of risk factors for psoriasis,
the uncovering of new therapeutic targets, and implementation of innovative treatment
strategies still represent major research objectives. Recent studies shed light on the pivotal
role of the skin microbiome in the maintenance of skin homeostasis and the implication of
cutaneous dysbiosis in the development of numerous dermatoses, including psoriasis [19].
Although it is easily apprehensible that loss of immune tolerance to skin commensal flora
leads to inflammation and aggravates oxidative stress [20–25], both favoring psoriatic
disease, the influence of dysbiosis on psoriasis pathogenic mechanisms is far more complex
and is just starting to be unveiled. This review offers a synthesis of the current state of
knowledge on this topic, discusses the research limitations and gaps in this field, and
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presents the future perspectives in the prevention and adjuvant treatment of psoriasis by
skin microbiome modulation.

2. The Composition and Function of the Skin Microbiome

Compared to the colon, which, given its richness in nutrients, harbors the highest
density and diversity of microorganisms, being colonized by approximately 1014 bacterial
cells [26] comprising circa 3000 species [27,28], the skin’s commensal flora is less abun-
dant, but remarkably diverse, counting over 100 phylotypes [29]. It comprises not only
skin-resident aerobic and anaerobic Gram-positive bacteria (mainly Corynebacterium spp.,
Cutibacterium spp., Streptococcus spp., Staphylococcus spp., Actinobacteria spp., and Firmicutes
spp.) and Gram-negative facultative or obligate anaerobic bacteria (primarily Proteobacteria
spp. and Bacteroidetes spp.), but also bacterial species characteristic to the gut microbiome,
such as Escherichia spp., Enterobacter spp., and Enterococcus spp. [29–32]. The distribution of
the commensal flora varies depending on the local conditions, being greatly influenced by
the skin’s humidity, temperature, lipid content, and light exposure (Figure 1) [24]. While
Corynebacterium spp. and β-Proteobacteria spp. colonize both moist and dry skin areas,
Staphylococcus spp. preferentially colonizes moist and sebum-rich regions, Flavobacterium
spp. is predominately isolated from dry regions and Cutibacterium spp. is present in higher
numbers in areas rich in sebaceous glands [33,34]. Fungi are also an important part of the
skin microbiome. Malassezia spp. abounds in sebum-rich areas [35], whereas the skin of
the feet is populated by a variety of fungi, such as Malassezia spp., Aspergillus spp., Crypto-
coccus spp., Rhodotorula spp., and Epicoccum spp., given the favorable local conditions [35].
Pilosebaceous units are also colonized by Demodex spp., a commensal arthropod generally
detected on the face and scalp [36–38]. Viruses such as human papilloma virus (HPV),
particularly Papillomaviridae β, Polyomaviridae, and Circoviridae, are a less prominent
part of the skin microbiome [33,39].
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The human microbiome begins to build up in utero [40] and progressively diversifies
and matures after birth into organ-specific microbiomes [41], playing a pivotal role in
the infant’s normal growth and development [42]. The composition of the skin micro-
biome substantially changes during infancy due to gradual exposure to environmental
factors [43–45] and during puberty as a result of the marked androgen-dependent increase
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in the activity of sebaceous glands, which promotes the growth of lipophilic bacteria and
Malassezia spp. [33–35,46]. It tends to remain stable during adulthood [33] in the absence
of major external or internal influences, such as altered nutrition, deficient or excessive
hygiene, antimicrobial topical or systemic treatments, significant climate changes, and
comorbidities [34,47–50].

A balanced skin microbiome is essential for maintaining an efficient skin barrier, as it in-
tervenes in a plethora of physical, chemical, and immunological processes (Figure 2) [51,52].
Metabolites of the commensal bacteria activate the aryl hydrocarbon receptor (AHR) ex-
pressed by keratinocytes, which is essential for epithelial differentiation and restauration
of the integrity of the skin barrier after injury [53]. Commensal bacteria also secrete en-
zymes with important roles in the maintenance of the barrier function. Staphylococcus
epidermidis secretes sphingomyelinase, which generates ceramides, an important part of
the stratum corneum lipid bilayer and at the same time releases nutrients that sustain
the microbiome [54]. Lipophilic bacteria like Cutibacterium acnes and Corynebacterium spp.
produce lipases that act on triglycerides present in the sebum, the resultant free fatty acids
contributing to the skin’s acidity, an important antimicrobial factor [55,56]. Moreover, the
microbiome blocks the colonization of the skin by pathogenic microorganisms, acting as
a physical barricade, as a competitor for nutrients, and a major producer of AMPs and
proteases that hinder biofilm formation and impede skin colonization [57].

Medicina 2024, 60, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 2. The role of skin microbiome in skin homeostasis. 

Recent studies have shed light on the bidirectional relation between the skin 
microbiome and the microbiome of other organs, particularly the intestinal microbiome, 
leading to the concept of the gut–skin axis [67]. Skin exposure to environmental factors 
was proven to influence the intestinal microbiome. Photoexposure increases the diversity 
of the gut microbiome and promotes proliferation of Lachnospiraceae spp., Lachnopsira spp., 
and Fusicatenibacter spp., at least partly through the increase in serum 25-hydroxyvitamin 
D levels [68]. Exposure of the skin to household dust increases the likelihood of food 
allergies given the immunoglobulin (Ig) E-induced mast cell proliferation in the digestive 
tract [69]. Cutaneous chronic wounds are characterized by hyaluronan catabolism, which 
perturbs the function of intestinal fibroblasts and alters the gut microbiome, leading to 
intestinal inflammation [70]. On the other hand, the intestinal microbiome protects the 
skin homeostasis by acting as a barrier for invading bacteria that could otherwise enter 
the bloodstream by releasing anti-inflammatory and immune-modulating metabolites, 
such as retinoic acid, polysaccharide A, and short-chain fatty acids (SCFAs) [57,71]. 

Considering the delicate equilibrium between the host and the skin microbiome and 
the importance of the latter in maintaining skin homeostasis, it is not surprising that even 
subtle disturbances of the microbiome may trigger the onset or exacerbation of local or 
systemic inflammatory and autoimmune diseases, such as psoriasis, atopic dermatitis, 
acne vulgaris, hidradenitis suppurativa, seborrheic dermatitis, and alopecia areata [19]. 
The underlying mechanisms are only starting to be unveiled. They include loss of immune 
tolerance to commensal skin flora, disrupted balance between Tregs and effector cells, and 
excessive Th17 polarization [19,24]. 

  

Figure 2. The role of skin microbiome in skin homeostasis.

Apart from the complex intra- and interspecies communication, there is an intense,
yet poorly understood, cross-talk between the microbiome and the host which results in a
continuous modulation of the composition and virulence of the microbiome by the host
and vice versa, the modification of the host’s gene expression by the microbiome-released
molecules [58]. This symbiotic relationship is reciprocally advantageous and ensures the
stability of the microbiome [57,59]. Disruption of this balance may lead to infections,
inflammation, and autoimmunity [57].

Another major function of the microbiome is the stimulation and modulation of innate
immune responses against pathogens by promoting the secretion of cytokines, especially
IL-1α, receptors for complement components (C5a receptor), and AMPs, such as LL-37,
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β-defensin, and perforin-2 upon binding of microbiome-secreted molecules to Toll-like
receptors (TLRs) and other PRRs [57,60].

The microbiome also influences the adaptive immune responses. Whereas the presence
of the commensal flora does not trigger immune reactions as it hardly exerts any cytotoxicity,
it serves as a permanent stimulating factor for T regulatory cells (Tregs) responses [61].
The skin microbiome promotes the cutaneous accumulation and activity of CD4+ Tregs,
although to a lesser extent compared with the gut microbiome [62,63]. This ensures immune
tolerance to commensal microorganisms [63].

Corynebacterium accolens induces the proliferation of cutaneous IL-17-producing γδ T
cells [64], protective against Staphylococcus epidermidis and Candida albicans. This highlights
the role of the skin microbiome in psoriasis onset or exacerbation as it has been demon-
strated that γδ T cells are capable of secreting IL-17A in the absence of IL-23 stimulation [65].
Commensal bacteria can also activate IL-17A-producing cytotoxic (TC17) and helper (Th17)
T cells that become tissue-resident memory cells and participate in the defense against
pathogens and tissue repair [66].

Recent studies have shed light on the bidirectional relation between the skin micro-
biome and the microbiome of other organs, particularly the intestinal microbiome, leading
to the concept of the gut–skin axis [67]. Skin exposure to environmental factors was
proven to influence the intestinal microbiome. Photoexposure increases the diversity of
the gut microbiome and promotes proliferation of Lachnospiraceae spp., Lachnopsira spp.,
and Fusicatenibacter spp., at least partly through the increase in serum 25-hydroxyvitamin
D levels [68]. Exposure of the skin to household dust increases the likelihood of food
allergies given the immunoglobulin (Ig) E-induced mast cell proliferation in the digestive
tract [69]. Cutaneous chronic wounds are characterized by hyaluronan catabolism, which
perturbs the function of intestinal fibroblasts and alters the gut microbiome, leading to
intestinal inflammation [70]. On the other hand, the intestinal microbiome protects the
skin homeostasis by acting as a barrier for invading bacteria that could otherwise enter the
bloodstream by releasing anti-inflammatory and immune-modulating metabolites, such as
retinoic acid, polysaccharide A, and short-chain fatty acids (SCFAs) [57,71].

Considering the delicate equilibrium between the host and the skin microbiome and
the importance of the latter in maintaining skin homeostasis, it is not surprising that even
subtle disturbances of the microbiome may trigger the onset or exacerbation of local or
systemic inflammatory and autoimmune diseases, such as psoriasis, atopic dermatitis, acne
vulgaris, hidradenitis suppurativa, seborrheic dermatitis, and alopecia areata [19]. The
underlying mechanisms are only starting to be unveiled. They include loss of immune
tolerance to commensal skin flora, disrupted balance between Tregs and effector cells, and
excessive Th17 polarization [19,24].

3. The Changes in the Skin Microbiome in Psoriasis and Its Role in
Psoriasis Pathogenesis

Infectious agents have been long acknowledged as potential triggers for psoriasis in
genetically predisposed individuals. In children and young adults, the main eliciting factors
for guttate psoriasis are pharyngeal infections with group A beta-hemolytic streptococci or
perianal streptococcal infections [72]. Due to molecular mimicry between the M protein
present on the surface of Streptococcus pyogenes and type I keratin, autoreactive T cells are
activated and an intense Th1 immune response ensues [72]. In addition, a series of other
bacteria (Staphylococcus aureus), viruses (HPV and endogenous retroviruses), and fungi
(Malassezia spp. and Candida albicans) have been shown to trigger psoriasis through Th17
polarization and proinflammatory effects and to influence its course [73,74].

Complexes formed by LL-37 cathelicidins and DNA of apoptotic epithelial cells are
recognized by TLR-9 on plasmacytoid dendritic cells (pDCs), which secrete large quantities
of IFN-α, leading to the activation and maturation of myeloid dendritic cells (mDCs) [75].
Additionally, LL-37–RNA complexes also activate pDCs through TLR-7 and mDCs through
TLR-8, prompting the release of TNF-α, IL-12, IL-23, and inducible nitric oxide synthase
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(iNOS) [75]. Activated mDCs migrate to the regional lymph nodes and induce the dif-
ferentiation of naive T cells into Th1 and Th 17 cells, the major mediators of psoriasis
pathogenesis [76]. In support of the importance of skin commensal bacteria in the patho-
genesis of psoriasis are the results of the study conducted by Kolbinger et al., who showed
that serum and cutaneous β defensin levels correlate with those of IL-17 and disease
severity and decrease following treatment with anti-IL-17 monoclonal antibodies [77].

Studies carried out so far yielded contradicting results regarding the changes in the
skin microbiome in psoriasis patients due to different technologies employed to assess the
microbiome composition and lack of control for cofounder factors. Results may also vary
depending on the sampling techniques used in determining the qualitative and quanti-
tative changes in the cutaneous microbiome. Culture-based sampling methods present
lower detection rates than culture-independent sampling methods. The cutaneous tissue is
influenced by external factors such as ambient temperature, urban or rural environments,
geographical localization, or hygienic habits prone to multiple variables. Depending on the
external factors or interindividual variations, results may be contradictory [78,79]. Another
important variable that could lead to contradictory results is represented by the method
used in collecting the skin samples. Important differences were observed between swab
sampling and cutaneous punch biopsies concerning the richness of the skin microbiome
in favor of the swab sampling method [79]. Depending on the depth of the sampling
method, the assessment of the skin microbiome may vary [34]. Adhesive tape sampling
and skin biopsies could approach cutaneous microorganisms such as bacteria or fungi
from deeper layers of the skin, including pores and sebaceous glands [80]. However, a few
conclusions may be drawn. The concentrations and distribution of commensal microor-
ganisms in psoriasis lesions and nonlesional skin of psoriasis patients show considerable
differences compared to healthy subjects [80–82]. Psoriasis is associated with a more het-
erogeneous and unstable skin microbiome [80–82]. Streptococcus spp. and Firmicutes spp.
are particularly prevalent on the skin of psoriasis patients [80–84]. While Coprobacillus spp.,
Ruminococcus spp. [83,84], Corynebacterium spp. [81,85–87] and Proteobacteria spp. [82,88]
have been isolated in higher concentrations from the lesional and nonlesional skin of psoria-
sis patients than healthy individuals, Actinobacteria spp., Bacteroides spp., and Cutibacterium
spp. are encountered less frequently (Figure 3) [82–85]. Colonization of psoriasis lesions
and nonlesional skin of psoriasis patients with Staphylococcus spp. has also been reported
by several research teams [80,81,89–91], but contradicted by others [82].

The increased diversity of the skin microbiome observed in psoriasis patients is
not limited to bacteria, but also involves fungi [92]. Controversy persists regarding the
changes in Malassezia spp. density on the skin of psoriasis patients. Some authors reported
reduced counts of Malassezia spp. in psoriasis lesions [92], while others detected increased
numbers of Malassezia spp. during disease exacerbations, particularly Malassezia restricta
and Malassezia globosa [93,94]. Malassezia spp. may play a role in the pathogenesis of
psoriasis given its effect on keratinocytes. It promotes the release of transforming growth
factor (TGF)-β1, integrins, and heat shock protein (HSP) 70, thus stimulating immune
cell migration and sustaining the proliferation of keratinocytes [95]. Moreover, Malassezia
spp. produces neutrophil chemoattractants that are sometimes present in large numbers in
psoriasis lesions, creating Munro’s microabscesses [25,76]. Candida albicans has also been
isolated from psoriasis lesions, being abundant in inverse psoriasis lesions (Figure 3) [96].
Candida-sensitized αβ T cells produce IL-17, contributing to the persistence of the disease
and to psoriasis flares [76,97–99]. Candida spp. may also be involved in the development and
persistence of pustular psoriasis as it secretes β-glucan, which is subsequently recognized
by PRRs on mDCs and stimulates the production of IL-36α [100]. As previously mentioned,
IL-36 produced during the innate immune response to commensal flora is an important
player in the pathogenesis of pustular psoriasis [101].
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Some viruses have also been studied as potential exacerbating factors for psoriasis.
Infection with human immunodeficiency virus (HIV) and HPV are associated with more
severe forms of psoriasis, probably by stimulating the release of substance P, a well-known
inducer of keratinocyte proliferation [24,76].

4. The Influence of Psoriasis Treatments on the Skin Microbiome

In addition, psoriasis treatments modulate the skin microbiome. Apart from its
immunosuppressive effects, narrow-band ultraviolet B therapy (nb-UVB) beneficially in-
fluences skin microbiome by improving the oxidative stress [102,103]. The DNA damage
caused by ultraviolet radiation activates a series of intracellular signaling pathways that
stimulate melanogenesis. The antioxidant properties of melanin are well known [104].
Certain bacteria, such as Streptomyces glaucescens [105] and fungi, such as Malassezia spp.,
Cladosporium spp. [106], Sporothrix Schenckii [107], and Cryptococcus neoformans [108], also
produce melanin as a mechanism of protection from ultraviolet radiation, further reducing
oxidative stress. Nb-UVB stimulates the synthesis of vitamin D, which exerts modulatory ef-
fects on the gut and skin microbiome through incompletely elucidated mechanisms [68,109].
Several recent studies have demonstrated that topical calcipotriol triggers the release of
cathelicidin, an AMP that inhibits Malassezia growth [110,111].

Balneotherapy impacts the composition of skin microbiome. Martin et al. showed
that it increases the number of Xanthomonadaceae spp. of the genus Proteobacteria [112].
Manara et al. also studied the effects of balneotherapy on the skin microbiome of psoriasis
lesions and observed a marked tendency to restoration of the normal-skin microbiome.
Thermal treatment lead to a considerable reduction in bacteria previously isolated from
psoriasis lesions but not from normal skin, such as Ornithinimicrobium, Mesorhizobium, and
Thermus, as well as an increase in bacteria that were found in low numbers in psoriasis
lesions before treatment, such as Delftia, Gordonia, and Cloacibacterium. These changes
were associated with clinical improvement supporting the hypothesis that psoriasis severity
depends, among other factors, on the skin microbiome composition [113].
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Antibiotics required for the management of superinfected psoriasis lesions lead to
clinical improvement [114,115], but their use to correct dysbiosis is not justified given their
undesirable effects on normal cutaneous and intestinal flora [85].

The effect of biologic therapies used for the treatment of psoriasis on the skin mi-
crobiome has been investigated in a small number of studies. These therapies influence
the composition of the skin microbiome, especially the Actinobacteria spp./Firmicutes spp.
ratio [116]. While anti-TNF α agents are associated with the highest risk of severe cuta-
neous infections [117], mucosal candidiasis is most commonly encountered in patients
receiving anti-IL-17 therapies [118]. The anti-IL-17 monoclonal antibody secukinumab
also seems to have the most pronounced effect on cutaneous commensal bacteria, increas-
ing the concentration of Proteobacteria spp., Enterobacteriacea spp., and Pseudomonadaceae
spp. and decreasing that of Firmicutes spp. and Bacteroidetes spp. [119]. In a study con-
ducted by Aksoy et al., the results outlined that the population of Demodex spp. increases
in patients treated with biological therapy [115] Moreover, the intestinal microbiome in
psoriasis patients who respond to secukinumab considerably differs from that of nonre-
sponders, indicating gut microbiome as a potential biomarker for secukinumab efficacy in
psoriasis [119].

Treatment with ustekinumab, an anti-IL-12/23 monoclonal antibody, is associated
with a significant reduction in fungal diversity and a decrease in Malassezia spp. counts,
as well as an increase in the numbers of Agrobacterium spp., Caulobacteraceae spp., and
Pseudomonas spp. and a decrease in Staphylococcus epidermidis in moist skin regions like the
antecubital fossa and axilla, but does not influence the microbiome in sebum-rich areas
or mucosal surfaces [120,121]. It has been hypothesized that anti-IL-12/23 and anti-IL-23
antibodies inhibit the release of AMPs, allowing microbial variance [122].

5. Modulation of the Skin Microbiome as an Adjuvant Treatment in Psoriasis Patients

Considering their immunomodulatory and anti-inflammatory potential and their
beneficial effect on skin barrier integrity demonstrated by numerous studies [114,123], the
benefit of administering pro- and prebiotics in psoriasis patients and their ability to maintain
the homeostasis of the skin microbiome has been investigated [124,125]. Although evidence
stems from very few studies, the results are promising [126–128]. In the study conducted
by Navarro–López et al., the administration of mixed probiotics (Bifidobacterium longum,
Bifidobacterium lactis, and Lactobacillus rhammosus) was associated with enhanced response to
treatment, clinical improvement of psoriasis lesions, and fewer recurrences [129]. Groeger
et al. studied the effect of the oral administration of Bifidobacterium infantis for 6–8 weeks
in psoriasis patients and reported a considerable decrease in the levels of inflammatory
biomarkers, TNF-α and IL-6 [130]. Likewise, supplementation of psoriasis patients’ diet
with Lactobacillus strains for 8 weeks decreased the levels of inflammatory biomarkers, IL-6,
and malondialdehyde and increased the total antioxidant capacity [131]. A case of severe
refractory pustular psoriasis significantly improved after only 2 weeks of Lactobacillus
sporogenes orally administered thrice daily [132]. A reduction in cytokine levels (TNF-α,
IL-6, IL-23, IL-17, and IL-22) and improvement in psoriasis lesions was also achieved in
animal studies with oral administration of Lactobacillus pentosus GMNL-77 and Lactobacillus
sakei proBio-65 [133,134]. Psoriasis patients also benefit from the administration of Prevotela
histicola formulation EDP1815, as proven by the results of a phase 2 clinical trial [135]. In
the study of Ahmed et al., carried out on psoriasis patients with Helicobacter pylori infection,
treatment administrated for Helicobacter pylori lead to decreasing values for psoriasis area
severity index (PASI) [136].

Prebiotics also seem to have beneficial effects in psoriasis [24]. Buhas et al. evaluated
the effect of a 12-week diet supplementation with a spore-based probiotic combined with a
prebiotic mixture as an adjuvant treatment in psoriasis patients and reported improvement
of psoriasis severity scores and a decrease in serum uric acid levels [137].

The utility of postbiotics in the treatment of psoriasis has also been studied. Postbiotic
butyrate is a particularly interesting adjuvant treatment option as it has been shown
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to inhibit proinflammatory cytokines and stimulate the proliferation of Tregs and the
differentiation of naïve CD4+ T cells into Tregs, thus preventing excessive inflammatory
responses to the cutaneous commensal flora [138]. The number and function of Tregs are
altered in psoriasis. Schwarz et al. and Krejner et al. demonstrated that topical sodium
butyrate normalizes Tregs’ suppressive function, lowers the expression of IL-17 and IL-6,
and increases the expression of IL-10 and IL-18 [139,140].

Taking into account the constant mutual influence between the gut and skin micro-
biomes, the frequent association of psoriasis with inflammatory bowel disease, and the
impact of gut dysbiosis on the course of psoriasis, the use of fecal microbiota transplanta-
tion (FMT) in psoriasis patients has been contemplated. Yin et al. successfully applied FMT
in a patient suffering from both psoriasis and irritable bowel syndrome [141].

6. Conclusions

Mounting compelling evidence indicate that skin dysbiosis plays a significant role in
the development and exacerbation of psoriasis. The mechanisms underlying this association
include the loss of immune tolerance to commensal skin flora that leads to inflammation
and aggravates oxidative stress, the altered balance between Tregs and effector cells, and
the excessive Th1 and Th17 polarization. The progress in the characterization of the skin
microbiome in psoriasis patients has opened a whole new avenue of research focusing on
the modulation of the skin microbiome as an adjuvant treatment for psoriasis and as part
of a long-term plan to prevent disease flares. In addition, in individuals with a significant
predisposing genetic background, the changes in the skin microbiome may help predict
disease onset. The skin microbiome may also represent a valuable predictive marker of
treatment response and may aid in the selection of the optimal personalized treatment.
Further studies are needed in order to clarify the implication of the skin microbiome in
psoriasis pathogenesis and to assess the efficacy of the different skin microbiome modula-
tion strategies as part of the therapeutic approach of psoriasis patients. Although the oral
and topical use of pre-, pro-, and postbiotics has proven beneficial in psoriasis, multiple
impediments need to be surpassed. Future directions of research include strategies to avoid
potential complications such as hypersensitivity reactions and dyspepsia triggered by pre-
or postbiotics, infections, and exaggerated immune responses caused by probiotics. The
most efficient formulations and route of administration of these agents for the prevention
and adjuvant treatment of psoriasis are yet to be determined. Other appealing therapeutic
approaches that are currently being explored encompass skin microbiota transplantation,
skin bacteriotherapy, and therapeutic textiles, all of which have the potential to correct
skin dysbiosis and reduce oxidative stress and inflammation. Future research should
also explore the optimal individualized therapeutic regimen combining specific psoriasis
treatments and microbiome modulators.
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