Assessment of Paraoxonase 1 and Arylesterase Activities and Lipid Profile in Bodybuilders: A Comparative Study of Physical Activity and Anthropometry on Atherosclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Assessments
2.3. Assessment of Physical Activity
2.4. Biochemical Analyses
2.5. Statistical Analyses
3. Results
3.1. Demographic and Baseline Characteristics
3.2. Atherosclerosis Biomarkers
3.3. Correlation Analysis
4. Discussion
4.1. Limitations
4.2. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, G.; Gao, Y.; Qian, J.; Lai, Y.; Lin, H.; Liu, C.; Chen, F.; Liu, X. Comprehensive analysis of atherosclerotic plaques reveals crucial genes and molecular mechanisms associated with plaque progression and rupture. Front. Cardiovasc. Med. 2023, 10, 951242. [Google Scholar] [CrossRef] [PubMed]
- Soppert, J.; Lehrke, M.; Marx, N.; Jankowski, J.; Noels, H. Lipoproteins and lipids in cardiovascular disease: From mechanistic insights to therapeutic targeting. Adv. Drug Deliv. Rev. 2020, 159, 4–33. [Google Scholar] [CrossRef] [PubMed]
- Acay, A.; Ulu, M.S.; Ahsen, A.; Ozkececi, G.; Demir, K.; Ozuguz, U.; Yuksel, S.; Acarturk, G. Atherogenic index as a predictor of atherosclerosis in subjects with familial Mediterranean fever. Medicina 2014, 50, 329–333. [Google Scholar] [CrossRef]
- Singh, R.B.; Mengi, S.A.; Xu, Y.J.; Arneja, A.S.; Dhalla, N.S. Pathogenesis of atherosclerosis: A multifactorial process. Exp Clin Cardiol 2002, 7, 40. [Google Scholar] [CrossRef]
- Vekic, J.; Stromsnes, K.; Mazzalai, S.; Zeljkovic, A.; Rizzo, M.; Gambini, J. Oxidative Stress, Atherogenic Dyslipidemia, and Cardiovascular Risk. Biomedicines 2023, 11, 2897. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Cheng, Q.; Liu, Y.; Cheng, X.; Wang, S.; He, Y.; Wang, X.; Huang, M.; Li, Y.; Xue, X.; et al. Low-/high-density lipoprotein cholesterol ratio and carotid plaques in patients with coronary heart disease: A Chinese cohort study. Lipids Health Dis. 2021, 20, 144. [Google Scholar] [CrossRef]
- Khatana, C.; Saini, N.K.; Chakrabarti, S.; Saini, V.; Sharma, A.; Saini, R.V.; Saini, A.K. Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. Oxid. Med. Cell. Longev. 2020, 2020, 5245308. [Google Scholar] [CrossRef]
- Zuin, M.; Trentini, A.; Marsillach, J.; D’amuri, A.; Bosi, C.; Roncon, L.; Passaro, A.; Zuliani, G.; Mackness, M.; Cervellati, C. Paraoxonase-1 (PON-1) Arylesterase Activity Levels in Patients with Coronary Artery Disease: A Meta-Analysis. Dis. Markers 2022, 2022, 4264314. [Google Scholar] [CrossRef]
- Erre, G.L.; Bassu, S.; Giordo, R.; Mangoni, A.A.; Carru, C.; Pintus, G.; Zinellu, A. Association between Paraoxonase/Arylesterase Activity of Serum PON-1 Enzyme and Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Antioxidants 2022, 11, 2317. [Google Scholar] [CrossRef]
- Otocka-Kmiecik, A.; Orłowska-Majdak, M.; Stawski, R.; Szkudlarek, U.; Padula, G.; Gałczyński, S.; Nowak, D. Effect of Exercise Repetitions on Arylesterase Activity of PON1 in Plasma of Average-Trained Men—The Dissociation between Activity and Concentration. Antioxidants 2023, 12, 1296. [Google Scholar] [CrossRef]
- Alves, R.C.; Prestes, J.; Enes, A.; de Moraes, W.M.A.; Trindade, T.B.; de Salles, B.F.; Aragon, A.A.; Souza-Junior, T.P. Training Programs Designed for Muscle Hypertrophy in Bodybuilders: A Narrative Review. Sports 2020, 8, 149. [Google Scholar] [CrossRef] [PubMed]
- Ikenna, U.C.; Ngozichi, O.G.; Ijeoma, I.; Ijeoma, N.; Ifeanyichukwu, N.; Martin, O.C. Effect of Circuit Training on the Cardiovascular Endurance and Quality of Life: Findings from an Apparently Healthy Female Adult Population. J. Appl. Life Sci. Int. 2020, 23, 1–8. [Google Scholar] [CrossRef]
- Souza, D.; Barbalho, M.; Gentil, P. The impact of resistance training volume on muscle size and lean body mass: To infinity and beyond? Hum. Mov. 2020, 21, 18–29. [Google Scholar] [CrossRef]
- Coker, R.H.; Hays, N.P.; Williams, R.H.; Brown, A.D.; Freeling, S.A.; Kortebein, P.M.; Sullivan, D.H.; Starling, R.D.; Evans, W.J. Exercise-induced changes in insulin action and glycogen metabolism in elderly adults. Med. Sci. Sports Exerc. 2006, 38, 433–438. [Google Scholar] [CrossRef]
- Santos, L.d.R.; de Araujo, S.S.; Vieira, E.F.d.S.; Estevam, C.d.S.; dos Santos, J.L.; Wichi, R.B.; Lima, F.B.; Carvalho, C.R.O.; Aidar, F.J.; Marçal, A.C. Effects of 12 weeks of resistance training on cardiovascular risk factors in school adolescents. Medicina 2020, 56, 220. [Google Scholar] [CrossRef]
- Peake, J.M.; Tan, S.J.; Markworth, J.F.; Broadbent, J.A.; Skinner, T.L.; Cameron-Smith, D. Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. Ame J Physiol. Endocrinol Metab. 2014, 307, E539–E552. [Google Scholar] [CrossRef]
- Lavie, C.J.; Ozemek, C.; Carbone, S.; Katzmarzyk, P.T.; Blair, S.N. Sedentary Behavior, Exercise, and Cardiovascular Health. Circ. Res. 2019, 124, 799–815. [Google Scholar] [CrossRef]
- Gutiérrez-López, L.; Olivares-Corichi, I.M.; Martínez-Arellanes, L.Y.; Mejía-Muñoz, E.; Polanco-Fierro, J.A.; García-Sánchez, J.R. A moderate intensity exercise program improves physical function and oxidative damage in older women with and without sarcopenic obesity. Exp. Gerontol. 2021, 150, 111360. [Google Scholar] [CrossRef]
- Bai, X.; Soh, K.G.; Dev, R.D.O.; Talib, O.; Xiao, W.; Cai, H. Effect of Brisk Walking on Health-Related Physical Fitness Balance and Life Satisfaction Among the Elderly: A Systematic Review. Front. Public Health 2022, 9, 829367. [Google Scholar] [CrossRef]
- Stanton, K.M.; Kienzle, V.; Dinnes, D.L.M.; Kotchetkov, I.; Jessup, W.; Kritharides, L.; Celermajer, D.S.; Rye, K. Moderate- and High-Intensity Exercise Improves Lipoprotein Profile and Cholesterol Efflux Capacity in Healthy Young Men. J. Am. Heart Assoc. 2022, 11, e023386. [Google Scholar] [CrossRef]
- TaheriChadorneshin, H.; Abtahi-Eivary, S.-H.; Cheragh-Birjandi, S.; Yaghoubi, A.; Ajam-Zibad, M. The effect of exercise training type on paraoxonase-1 and lipid profile in rats. Shiraz E-Medical J. 2017, 18, e46131. [Google Scholar] [CrossRef]
- Reichert, C.O.; Levy, D.; Bydlowski, S.P. Paraoxonase role in human neurodegenerative diseases. Antioxidants 2021, 10, 11. [Google Scholar] [CrossRef]
- Shokri, Y.; Variji, A.; Nosrati, M.; Khonakdar-Tarsi, A.; Kianmehr, A.; Kashi, Z.; Bahar, A.; Bagheri, A.; Mahrooz, A. Importance of paraoxonase 1 (PON1) as an antioxidant and antiatherogenic enzyme in the cardiovascular complications of type 2 diabetes: Genotypic and phenotypic evaluation. Diabetes Res. Clin. Pract. 2020, 161, 108067. [Google Scholar] [CrossRef]
- Castañé, H.; Jiménez-Franco, A.; Martínez-Navidad, C.; Placed-Gallego, C.; Cambra-Cortés, V.; Perta, A.-M.; París, M.; del Castillo, D.; Arenas, M.; Camps, J.; et al. Serum Arylesterase, Paraoxonase, and Lactonase Activities and Paraoxonase-1 Concentrations in Morbidly Obese Patients and Their Relationship with Non-Alcoholic Steatohepatitis. Antioxidants 2023, 12, 2038. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, J.; Kotani, K.; Gugliucci, A. Paraoxonase 1 and Chronic Kidney Disease: A Meta-Analysis. J. Clin. Med. 2023, 12, 1199. [Google Scholar] [CrossRef] [PubMed]
- Chrostowska, M.; Szyndler, A.; Hoffmann, M.; Narkiewicz, K. Impact of obesity on cardiovascular health. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 147–156. [Google Scholar] [CrossRef]
- Rhee, E.-J. The Influence of Obesity and Metabolic Health on Vascular Health. Endocrinol. Metab. 2022, 37, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Farello, G.; Iapadre, G.; Lizzi, M.; Gentile, C.; Altobelli, E.; Ciocca, F.; Verrotti, A. Carotid intima media-thickness is increased in obese children metabolically healthy, metabolically unhealthy, and with metabolic syndrome, compared to the non-obese controls. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 241–249. [Google Scholar] [CrossRef]
- Singh, M.; Benencia, F. Inflammatory processes in obesity: Focus on endothelial dysfunction and the role of adipokines as inflammatory mediators. Int. Rev. Immunol. 2019, 38, 157–171. [Google Scholar] [CrossRef]
- Allison, M.A.; Jensky, N.E.; Marshall, S.J.; Bertoni, A.G.; Cushman, M. Sedentary behavior and adiposity-associated inflammation: The multi-ethnic study of atherosclerosis. Am. J. Prev. Med. 2012, 42, 8–13. [Google Scholar] [CrossRef]
- Verbraecken, J.; Van de Heyning, P.; De Backer, W.; Van Gaal, L. Body surface area in normal-weight, overweight, and obese adults. A comparison study. Metabolism 2006, 55, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Merchant, R.A.; Seetharaman, S.; Au, L.; Wong, M.W.K.; Wong, B.L.L.; Tan, L.F.; Chen, M.Z.; Ng, S.E.; Soong, J.T.Y.; Hui, R.J.Y.; et al. Relationship of Fat Mass Index and Fat Free Mass Index With Body Mass Index and Association With Function, Cognition and Sarcopenia in Pre-Frail Older Adults. Front. Endocrinol. 2021, 12, 765415. [Google Scholar] [CrossRef] [PubMed]
- Brugnara, L.; Murillo, S.; Novials, A.; Rojo-Martínez, G.; Soriguer, F.; Goday, A.; Calle-Pascual, A.; Castaño, L.; Gaztambide, S.; Valdés, S.; et al. Low physical activity and its association with diabetes and other cardiovascular risk factors: A nationwide, population-based study. PLoS ONE 2016, 11, e0160959. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.W.; Kim, S.H.; Kang, S.H.; Kim, H.J.; Yoon, C.-H.; Youn, T.J.; Chae, I.-H. Mortality reduction with physical activity in patients with and without cardiovascular disease. Eur. Heart J. 2019, 40, 3547–3555. [Google Scholar] [CrossRef]
- Camuzcuoglu, H.; Arioz, D.T.; Toy, H.; Kurt, S.; Celik, H.; Erel, O. Serum paraoxonase and arylesterase activities in patients with epithelial ovarian cancer. Gynecol. Oncol. 2009, 112, 481–485. [Google Scholar] [CrossRef]
- Liang, B.; Li, Y.H.; Kong, H. Serum paraoxonase, arylesterase activities and oxidative status in patients with insomnia. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 2517–2522. [Google Scholar]
- Martins, C.E.C.; De Sousa Lima, V.B.; Ribeiro, H.Q.T.; Tirapegui, J. Resistance training alone or combined with leucine supplementation improves the serum lipid profile of diabetic rats, whereas leucine alone does not. Endocr. Regul. 2018, 52, 146–151. [Google Scholar] [CrossRef]
- Tyler, J.; Thanos, P. Raising the Bar for Public Health: Resistance Training and Health Benefits. Int. J. Strength Cond. 2023, 3, 1–8. [Google Scholar] [CrossRef]
- de Moraes, W.M.A.M.; de Moura, F.C.; da Costa Moraes, T.C.; de Sousa, L.G.O.; Dos Santos Rosa, T.; Schoenfeld, B.J.; Maia, F.M.M.; Prestes, J. Oxidative stress, inflammation, psychological status, and severity of respiratory infections are negatively affected during the pre-contest period in amateur bodybuilders. Appl. Physiol. Nutr. Metab. 2019, 44, 468–476. [Google Scholar] [CrossRef]
- Asghari, M.; Shokouhi, G.; Mesgari, M.; Ghorbanihaghjo, A. Effect of regular exercise on serum paraoxonase and arylesterase related to age increment in the male rat. Neurosurg. Q. 2009, 19, 156–159. [Google Scholar] [CrossRef]
- Marini, M.; Lapalombella, R.; Margonato, V.; Ronchi, R.; Samaja, M.; Scapin, C.; Gorza, L.; Maraldi, T.; Carinci, P.; Ventura, C.; et al. Mild exercise training, cardioprotection and stress genes profile. Eur. J. Appl. Physiol. 2007, 99, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Lyden, K.; Keadle, S.K.; Staudenmayer, J.; Braun, B.; Freedson, P.S. Discrete features of sedentary behavior impact cardiometabolic risk factors. Med. Sci. Sports Exerc. 2015, 47, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Rosengren, A. Obesity and cardiovascular health: The size of the problem. Eur. Heart J. 2021, 42, 3404–3406. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.K.; Blaha, M.J.; Loprinzi, P.D. Influence of sedentary behavior, physical activity, and cardiorespiratory fitness on the atherogenic index of plasma. J. Clin. Lipidol. 2017, 11, 119–125. [Google Scholar] [CrossRef]
- Ahmad, S.; Scott, J.E. Estradiol enhances cell-associated paraoxonase 1 (PON1) activity in vitro without altering PON1 expression. Biochem. Biophys. Res. Commun. 2010, 397, 441–446. [Google Scholar] [CrossRef]
VIBBE (n = 31) | NWS (n = 29) | OOS (n = 30) | MIAE (n = 32) | F, H, t, and p Values | |
---|---|---|---|---|---|
Age (years) # | 28.55 ± 4.83 | 27.10 ± 5.98 | 28.67 ± 5.49 | 26.63 ± 5.52 | F (3, 118) = 1.089, p = 0.357 |
Smoking | 11 | 7 | 9 | 9 | p = 0.809 |
Alcohol | 3 | 5 | 2 | 7 | p = 0.291 |
Systolic Blood Pressure (SBP, mmHg) # | 120.65 ± 16.76 | 123.64 ± 13.16 | 125.73 ± 15.28 | 118.65 ± 12.16 | F (3, 118) = 1.448, p = 0.233 |
Diastolic Blood Pressure (DBP, mmHg) # | 66.74 ± 14.55 a,b | 76.25 ± 9.89 | 75.90 ± 12.70 | 69.19 ± 11.32 | F (3, 117) = 4.575, p = 0.005 |
Lipid Profile | |||||
Total Cholesterol (TC, mg/mL) α | 176 [45] | 166 [64] d | 196 [58] f | 170 [25] | H (3) = 17.795, p < 0.001 |
Low Density Lipoprotein Cholesterol (LDL-C, mg/mL) α | 118 [44.2] b,c | 110 [45.5] d | 133 [42.7] f | 104 [26.4] | H (3) = 22.895, p < 0.001 |
High Density Lipoprotein Cholesterol (HDL-C, mg/dL) # | 41,1 ± 6.40 | 39.9 ± 5.85 | 37.9 ± 6.38 f | 42.5 ± 6.58 | F (3, 118) = 2.880, p = 0.039 |
Triglyceride (TG, mg/dL) # | 110 ± 45.5 b | 124 ± 59.3 | 150 ± 53.3 | 119 ± 45.3 | F (3, 118) = 3.458, p = 0.019 |
Body Composition and Anthropometry | |||||
Height (cm) # | 176.45 ± 6.63 | 177.21 ± 5.28 | 178.00 ± 5.90 | 179.38 ± 5.68 | F (3, 118) = 1.408, p = 0.244 |
Weight (kg) # | 87.62 ± 7.17 a,c | 71.34 ± 7.40 d | 91.22 ± 8.34 f | 72.62 ± 6.11 | F (3, 118) = 59.322, p < 0.001 |
Body Surface Area (BSA, m2) # | 2.07 ± 0.12 a,c | 1.87 ± 0.12 d | 2.12 ± 0.21 f | 1.90 ± 0.10 | F (3, 118) = 34.257, p < 0.001 |
Body Mass Index (BMI, kg/m2) # | 28.11 ± 0.99 a,c | 22.70 ± 1.97 d | 28.75 ± 1.64 f | 22.56 ± 1.43 | F (3, 118) = 144.647, p < 0.001 |
Waist-to-Hip Ratio (WHR) # | 0.93 ± 0.03 a,c | 0.88 ± 0.04 d | 0.95 ± 0.02 f | 0.87 ± 0.03 | F (3, 118) = 45.236, p < 0.001 |
Waist-to-Height ratio (WHtR) α | 0.51 [0.05] a,b,c | 0.47 [0.06] d | 0.57 [0.04] f | 0.45 [0.03] | H (3) = 86.265, p < 0.001 |
Abdominal Skinfold Thickness (AST, mm) # | 23.31 ± 8.84 b | 26.79 ± 9.07 d,e | 41.81 ± 5.41 f | 18.74 ± 4.93 | F (3, 118) = 57.575, p < 0.001 |
Triceps Skinfold Thickness (TST, mm) α | 8.10 [5.60] a,b | 11.00 [7.50] d | 18.50 [15.13] f | 9.25 [4.00] | H (3) = 36.577, p < 0.001 |
Supra Iliac Skinfold Thickness (SIST, mm) α | 9.00 [15.00] b | 16.00 [10.75] d | 24.50 [11.00] f | 10.50 [12.38] | H (3) = 33.916, p < 0.001 |
Skeletal Muscle Mass (SMM, kg) α | 42.66 ± 4.54 a,b,c | 33.22 ± 2.72 d,e | 37.35 ± 4.18 | 36.53 ± 3.50 | F (3, 118) = 31.928, p < 0.001 |
Body Fat Percentage (BFP, Kg) α | 15.40 [6.50] b | 17.20 [8.45] d,e | 28.85 [7.25] f | 12.10 [5.52] | H (3) = 73.887, p < 0.001 |
Obesity Degree (OD, %) α | 124.00 [14.00] a,c | 105.00 [16.00] d | 133.00 [17.50] f | 102.00 [10.50] | H (3) = 89.054, p < 0.001 |
Fat-Free Mass Index (FFMI) # | 23.96 ± 1.34 a,b,c | 18.66 ± 1.00 d,e | 20.51 ± 1.65 | 19.89 ± 1.33 | F (3, 118) = 85.827, p < 0.001 |
Fat Mass Index (FMI) # | 4.14 ± 1.40 b,c | 4.04 ± 1.46 d,e | 8.23 ± 1.54 f | 2.67 ± 0.89 | F (3, 118) = 97.759, p < 0.001 |
Basal Metabolic Rate (BMR, kCal/day) # | 1965 ± 162 a,b,c | 1633 ± 100 d,e | 1797 ± 155 | 1711 ± 121 | F (3, 118) = 29.987, p < 0.001 |
Physical Activity | |||||
History (year) # | 6.45 ± 5.08 | 5.93 ± 3.10 | t (61) = 0.486, p = 0.961 | ||
Frequency (day/week) # | 4.81 ± 0.98 | 3.50 ± 0.95 | t (61) = 5.371, p < 0.001 | ||
Duration (min) # | 81.29 ± 13.84 | 74.06 ± 15.21 | t (61) = 1.971, p = 0.054 | ||
Fitness Score (FS) # | 92.90 ± 7.26 | 83.13 ± 5.50 | t (61) = 6.037, p < 0.001 | ||
MET-min/week # | 2934 ± 850 | 1091 ± 293 | t (61) = 11.581, p < 0.001 |
VIBBE (n = 31) | NWS (n = 29) | OOS (n = 30) | MIAE (n = 32) | F, H, and p Values | |
---|---|---|---|---|---|
Paraoxonase 1 (PON1) Activity(U/L) α | 90.0 [69.0] c | 64.0 [76.0] e | 81.0 [65.0] f | 116 [58.5] | H (3) = 12.019, p = 0.007 |
Arylesterase (ARE) Activity (U/L) α | 5803 [2045] c | 6101 [1253] e | 6495 [1700] f | 7082 [1688] | H (3) = 12.572, p = 0.006 |
Oxidised Low Density Lipoprotein (oxLDL, pg/mL) α | 1577 [440] | 1488 [581] | 1618 [224] | 1528 [247] | H (3) = 2.411, p = 0.492 |
log(TG/HDL-C) # | 0.39 ± 0.20 b | 0.45 ± 0.24 | 0.57 ± 0.19 f | 0.42 ± 0.19 | F (3, 118) = 4.351, p = 0.006 |
BMI | BSA | WHR | WHtR | SMM | BFP | FFMI | FMI | OD | FS | MET-min/Week | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PON1 | rho | −0.265 | −0.173 | −0.213 | −0.268 | −0.122 | −0.188 | −0.173 | −0.220 | −0.260 | −0.053 | −0.230 |
p | 0.003 | 0.056 | 0.019 | 0.003 | 0.182 | 0.038 | 0.057 | 0.015 | 0.004 | 0.560 | 0.070 | |
ARE | rho | −0.243 | −0.160 | −0.144 | −0.187 | −0.192 | −0.020 | −0.233 | −0.076 | −0.192 | −0.146 | −0.298 |
p | 0.007 | 0.079 | 0.114 | 0.039 | 0.034 | 0.824 | 0.010 | 0.404 | 0.034 | 0.110 | 0.018 | |
oxLDL | rho | 0.410 | 0.407 | 0.546 | 0.096 | 0.158 | 0.454 | 0.133 | 0.477 | 0.475 | −0.137 | 0.106 |
p | <0.001 | <0.001 | <0.001 | 0.291 | 0.081 | <0.001 | 0.145 | <0.001 | <0.001 | 0.133 | 0.410 | |
log(TG/HDL-C) | rho | 0.133 | 0.190 | 0.281 | 0.266 | 0.007 | 0.355 | −0.090 | 0.333 | 0.217 | −0.243 | −0.012 |
p | 0.144 | 0.036 | 0.002 | 0.003 | 0.943 | <0.001 | 0.326 | <0.001 | 0.017 | 0.007 | 0.925 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celik, H.; Tuysuz, M.Z.; Aktas, Y.; Eren, M.A.; Demirbag, R. Assessment of Paraoxonase 1 and Arylesterase Activities and Lipid Profile in Bodybuilders: A Comparative Study of Physical Activity and Anthropometry on Atherosclerosis. Medicina 2024, 60, 1717. https://doi.org/10.3390/medicina60101717
Celik H, Tuysuz MZ, Aktas Y, Eren MA, Demirbag R. Assessment of Paraoxonase 1 and Arylesterase Activities and Lipid Profile in Bodybuilders: A Comparative Study of Physical Activity and Anthropometry on Atherosclerosis. Medicina. 2024; 60(10):1717. https://doi.org/10.3390/medicina60101717
Chicago/Turabian StyleCelik, Hakim, Mehmed Zahid Tuysuz, Yakup Aktas, Mehmet Ali Eren, and Recep Demirbag. 2024. "Assessment of Paraoxonase 1 and Arylesterase Activities and Lipid Profile in Bodybuilders: A Comparative Study of Physical Activity and Anthropometry on Atherosclerosis" Medicina 60, no. 10: 1717. https://doi.org/10.3390/medicina60101717
APA StyleCelik, H., Tuysuz, M. Z., Aktas, Y., Eren, M. A., & Demirbag, R. (2024). Assessment of Paraoxonase 1 and Arylesterase Activities and Lipid Profile in Bodybuilders: A Comparative Study of Physical Activity and Anthropometry on Atherosclerosis. Medicina, 60(10), 1717. https://doi.org/10.3390/medicina60101717