The Role of 5-Phosphodiesterase Inhibitors (PDE-5I) in Current Benign Prostatic Hyperplasia Treatment: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lokeshwar, S.D.; Harper, B.T.; Webb, E.; Jordan, A.; Dykes, T.A.; Neal, D.E., Jr.; Terris, M.K.; Klaassen, Z. Epidemiology and treatment modalities for the management of benign prostatic hyperplasia. Transl. Androl. Urol. 2019, 8, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Stamatiou, K. Management of benign prostatic hypertrophy-related urinary retention: Current trends and perspectives. Urol. J. 2009, 6, 237–244. [Google Scholar] [PubMed]
- Cellek, S.; Cameron, N.E.; Cotter, M.A.; Fry, C.H.; Ilo, D. Microvascular dysfunction and efficacy of PDE5 inhibitors in BPH–LUTS. Nat. Rev. Urol. 2014, 11, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Ventura, S.; Oliver, V.; White, C.; Xie, J.; Haynes, J.; Exintaris, B. Novel drug targets for the pharmacotherapy of benign prostatic hyperplasia (BPH). Br. J. Pharmacol. 2011, 163, 891–907. [Google Scholar] [CrossRef]
- Tarter, T.H.; Vaughan, E.D., Jr. Inhibitors of 5alpha-reductase in the treatment of benign prostatic hyperplasia. Curr. Pharm. Des. 2006, 12, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Yamanishi, T.; Kaga, K.; Fuse, M.; Shibata, C.; Kamai, T.; Uchiyama, T. The role of muscarinic receptor subtypes on carbachol-induced contraction of normal human detrusor and overactive detrusor associated with benign prostatic hyperplasia. J. Pharmacol. Sci. 2015, 128, 65–70. [Google Scholar] [CrossRef]
- Witte, L.P.; Chapple, C.R.; de la Rosette, J.J.; Michel, M.C. Cholinergic innervation and muscarinic receptors in the human prostate. Eur. Urol. 2008, 54, 326–334. [Google Scholar] [CrossRef]
- Igawa, Y.; Aizawa, N.; Michel, M.C. β3 -Adrenoceptors in the normal and diseased urinary bladder- What are the open questions? Br. J. Pharmacol. 2019, 176, 2525–2538. [Google Scholar] [CrossRef] [PubMed]
- Bechara, A.; Romano, S.; Casabé, A.; Haime, S.; Dedola, P.; Hernández, C.; Rey, H. Comparative efficacy assessment of tamsulosin vs. tamsulosin plus tadalafil in the treatment of LUTS/BPH. Pilot study. J. Sex. Med. 2008, 5, 2170–2178. [Google Scholar] [CrossRef]
- Gacci, M.; Vittori, G.; Tosi, N.; Siena, G.; Rossetti, M.A.; Lapini, A.; Vignozzi, L.; Serni, S.; Maggi, M.; Carini, M. A randomized, placebo-controlled study to assess safety and efficacy of vardenafil 10 mg and tamsulosin 0.4 mg vs. tamsulosin 0.4 mg alone in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia. J. Sex. Med. 2012, 9, 1624–1633. [Google Scholar] [CrossRef]
- Regadas, R.P.; Reges, R.; Cerqueira, J.B.; Sucupira, D.G.; Josino, I.R.; Nogueira, E.A.; Jamacaru, F.V.F.; de Moraes, M.O.; Gongaza Silva, L.F. Urodynamic effects of the combination of tamsulosin and daily tadalafil in men with lower urinary tract symptoms secondary to benign prostatic hyperplasia: A randomized, placebo-controlled clinical trial. Int. Urol. Nephrol. 2013, 45, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Tuncel, A.; Nalcacioglu, V.; Ener, K.; Aslan, Y.; Aydin, O.; Atan, A. Sildenafil citrate and tamsulosin combination is not superior to monotherapy in treating lower urinary tract symptoms and erectile dysfunction. World J. Urol. 2010, 28, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Agenosov, M.P.; Kagan, O.F.; Kheyfets, V.K. Clinical effectiveness of combination treatment with α1 adrenoblokator and type 5 phosphodiesterase inhibitor for patients of advanced and senile age suffering from lower urinary tract symptoms. Adv. Gerontol. 2020, 33, 927–933. [Google Scholar]
- Ye, X.T.; Huang, H.; Huang, W.P.; Zhang, F.Y. Therapeutic effect of tadalafil on lower urinary tract symptoms with erectile dysfunction. Zhonghua Nan Ke Xue 2019, 25, 514–521. [Google Scholar]
- Singh, D.V.; Mete, U.K.; Mandal, A.K.; Singh, S.K. A comparative randomized prospective study to evaluate efficacy and safety of combination of tamsulosin and tadalafil vs. tamsulosin or tadalafil alone in patients with lower urinary tract symptoms due to benign prostatic hyperplasia. J. Sex. Med. 2014, 11, 187–196. [Google Scholar] [PubMed]
- AbdelRazek, M.; Abolyosr, A.; Mhammed, O.; Fathi, A.; Talaat, M.; Hassan, A. Prospective comparison of tadalafil 5 mg alone, silodosin 8 mg alone, and the combination of both in treatment of lower urinary tract symptoms related to benign prostatic hyperplasia. World J. Urol. 2022, 40, 2063–2070. [Google Scholar] [CrossRef]
- Tawfik, A.; Abo-Elenen, M.; Gaber, M.; El-Abd, A.; Zoeir, A.; Saad, S.; Sultan, I.; Ghoneim, A. Tadalafil versus tamsulosin as combination therapy with 5-alpha reductase inhibitors in benign prostatic hyperplasia, urinary and sexual outcomes. World J. Urol. 2024, 42, 70. [Google Scholar] [CrossRef]
- Casabé, A.; Roehrborn, C.G.; Da Pozzo, L.F.; Zepeda, S.; Henderson, R.J.; Sorsaburu, S.; Henneges, C.; Wong, D.G.; Viktrup, L. Efficacy and safety of the coadministration of tadalafil once daily with finasteride for 6 months in men with lower urinary tract symptoms and prostatic enlargement secondary to benign prostatic hyperplasia. J. Urol. 2014, 191, 727–733. [Google Scholar] [CrossRef]
- Kosilov, K.; Kuzina, I.; Kuznetsov, V.; Barabash, O.; Fedorishcheva, E. Efficacy of a combination of dutasteride, tadalafil, and solifenacin in the treatment of previously unsuccessful patients. Asian J. Urol. 2022, 9, 42–50. [Google Scholar] [CrossRef]
- Gotoh, D.; Torimoto, K.; Morizawa, Y.; Hori, S.; Nakai, Y.; Miyake, M.; Fujimoto, K. Efficacy and safety of dutasteride with tadalafil add-on therapy in patients with lower urinary tract symptoms secondary to benign prostatic hyperplasia. BMC Res. Notes 2022, 15, 288. [Google Scholar] [CrossRef]
- Yamanishi, T.; Kaga, K.; Sakata, K.; Yokoyama, T.; Kageyama, S.; Fuse, M.; Tokunaga, S. A randomized controlled study of the efficacy of tadalafil monotherapy versus combination of tadalafil and mirabegron for the treatment of persistent overactive bladder symptoms in men presenting with lower urinary tract symptoms (CONTACT Study). Neurourol. Urodyn. 2020, 39, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Pattanaik, S.; Mavuduru, R.S.; Panda, A.; Agarwal, M.M.; Mathew, J.L.; Hwang, E.C.; Singh, S.K.; Mandal, A.K. Phosphodiesterase inhibitors for lower urinary tract symptoms consistent with benign prostatic hyperplasia. Cochrane Database Syst. Rev. 2018, 11, CD010060. [Google Scholar] [CrossRef]
- Bruskewitz, R.C. Quality of life and sexual function in patients with benign prostatic hyperplasia. Rev Urol. 2003, 5, 72–80. [Google Scholar]
- Atan, A.; Polat, F.; Yesil, S.; Unsal, A.; Bulut, E.C.; Tokucoglu, H.; Dojan, A.E. The efficacy of Tadalafil 5mg in the treatment of lower urinary tract symptoms in patients where alpha blocker treatments have failed in terms of lower urinary tract symptoms. Arch. Esp. Urol. 2019, 72, 670–676. [Google Scholar]
- Ineichen, G.B.; Burkhard, F.C. Metabolic syndrome and male lower urinary tract symptoms. Panminerva Med. 2022, 64, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Rosen, R.C.; Giuliano, F.; Carson, C.C. Sexual dysfunction and lower urinary tract symptoms (LUTS) associated with benign prostatic hyperplasia (BPH). Eur. Urol. 2005, 47, 824–837. [Google Scholar] [CrossRef]
- Uckert, S.; Oelke, M.; Stief, C.G.; Andersson, K.E.; Jonas, U.; Hedlund, P. Immunohistochemical distribution of cAMP- and cGMP-phosphodiesterase (PDE) isoenzymes in the human prostate. Eur. Urol. 2006, 49, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Werkström, V.; Svensson, A.; Andersson, K.E.; Hedlund, P. Phosphodiesterase 5 in the female pig and human urethra: Morphological and functional aspects. BJU Int. 2006, 98, 414–423. [Google Scholar] [CrossRef]
- Hedlund, P. Nitric oxide/cGMP-mediated eVects in the out-Xow region of the lower urinary tract—Is there a basis for pharmacological targeting of cGMP? World J. Urol. 2005, 23, 362–367. [Google Scholar] [CrossRef]
- Köhler, T.S.; McVary, K.T. The relationship between erectile dysfunction and lower urinary tract symptoms and the role of phosphodiesterase type 5 inhibitors. Eur. Urol. 2009, 55, 38–48. [Google Scholar] [CrossRef]
- Persson, K.; Igawa, Y.; Mattiasson, A.; Andersson, K.E. Effects of inhibition of the L-arginine/nitric oxide pathway in the rat lower urinary tract in vivo and in vitro. Br. J. Pharmacol. 1992, 107, 178–184. [Google Scholar] [CrossRef]
- Persson, K.; Pandita, R.K.; Aszòdi, A.; Ahmad, M.; Pfeifer, A.; Fässler, R.; Andersson, K.-E.; Karakus, S.; Anele, U.A.; Silva, F.H.; et al. Functional characteristics of urinary tract smooth muscles in mice lacking cGMP protein kinase type I. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R1112–R1120. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, J.I.; Markerink-van Ittersum, M.; de Vente, J. cGMP generating cells in the bladder wall: Identification of distinct networks of interstitial cells. BJU Int. 2004, 94, 1114–1124. [Google Scholar] [CrossRef] [PubMed]
- Andersson, K.E.; Persson, K. Nitric oxide synthase and the lower urinary tract: Possible implications for physiology and pathophysiology. Scand. J. Urol. Nephrol. 1995, 175, 43–53. [Google Scholar]
- Smet, P.; Jonavicius, J.; Marshall, V.; De Vente, J. Distribution of nitric oxide synthase-immunoreactive nerves and identification of the cellular targets of nitric oxide in guinea-pig and human urinary bladder by cGMP immunohistochemistry. Neuroscience 1996, 71, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Burnett, A.L.; Calvin, D.C.; Chamness, S.L.; Liu, J.-X.; Nelson, R.J.; Klein, S.L.; Dawson, V.L.; Dawson, T.M.; Snyder, S.H. Urinary bladder-urethral sphincter dysfunction in mice with targeted disruption of neuronal nitric oxide synthase models idiopathic voiding disorders in humans. Nat. Med. 1997, 3, 571–574. [Google Scholar] [CrossRef]
- Mouli, S.; McVary, K.T. PDE5 inhibitors for LUTS. Prostate Cancer Prostatic Dis. 2009, 12, 316–324. [Google Scholar] [CrossRef]
- Shapiro, E.; Becich, M.J.; Hartanto, V.; Lepor, H. The relative proportion of stromal and epithelial hyperplasia is related to the development of symptomatic benign prostate hyperplasia. J. Urol. 1992, 147, 1293–1297. [Google Scholar] [CrossRef]
- Tinel, H.; Stelte-Ludwig, B.; Hütter, J.; Sandner, P. Pre-clinical evidence for the use of phosphodiesterase-5 inhibitors for treating benign prostatic hyperplasia and lower urinary tract symptoms. BJU Int. 2006, 98, 1259–1263. [Google Scholar] [CrossRef]
- Bloch, W.; Klotz, T.; Loch, C.; Schmidt, G.; Engelmann, U.; Addicks, K. Distribution of nitric oxide synthase implies regulation of circulation, smooth muscle tone, and secretory function in the human prostate by nitric oxide. Prostate 1997, 33, 1–8. [Google Scholar] [CrossRef]
- Luo, J.; Dunn, T.; Ewing, C.; Sauvageot, J.; Chen, Y.; Trent, J.; Isaacs, W. Gene expression signature of benign prostatic hyperplasia revealed by cDNA microarray analysis. Prostate 2002, 51, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Mirone, V.; Sessa, A.; Giuliano, F.; Berges, R.; Kirby, M.; Moncada, I. Current benign prostatic hyperplasia treatment: Impact on sexual function and management of related sexual adverse events. Int. J. Clin. Pract. 2011, 65, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- McVary, K.T. Unexpected insights into pelvic function following phosphodiesterase manipulation—what’s next for urology? Eur. Urol. 2006, 50, 1153–1156. [Google Scholar] [CrossRef] [PubMed]
- Hatzimouratidis, K. A review of the use of tadalafil in the treatment of benign prostatic hyperplasia in men with and without erectile dysfunction. Ther. Adv. Urol. 2014, 6, 135–147. [Google Scholar] [CrossRef]
- Brock, G.B.; McVary, K.T.; Roehrborn, C.G.; Watts, S.; Ni, X.; Viktrup, L.; Wong, D.G.; Donatucci, C. Direct effects of tadalafil on lower urinary tract symptoms versus indirect effects mediated through erectile dysfunction symptom improvement: Integrated data analyses from 4 placebo-controlled clinical studies. J. Urol. 2014, 191, 405–411. [Google Scholar] [CrossRef]
Autor. | #Ν | Tools | Comparison | Results |
---|---|---|---|---|
Bechara et al. [9] | 30 | IPSS, IPSS-QoL, Qmax, PVR, GAQ, IIEF-EF, | TMS vs. TMS + TDF | No significant differences in Qmax and PVR. IIEF improvement with TMS + TDF. |
Gacci et al. [10] | 60 | IPSS, IIEF-5, OAB-q, Qmax, Qave, RPV | TMS vs. TMS + VRF vs. placebo | Qmax, Qave, irritative-IPSS, and IIEF better with VRF vs. placebo. |
Regadas et al. [11] | 40 | Pdet-Qmax Qmax, IPSS | TMS + TDF vs. TMS + placebo | TMS + TDF reduces Pdet-Qmax without changing the maximum flow rate during micturition. |
Tuncel et al. [12] | 60 | IPSS, Qmax, PRV, | SLF vs. TMS vs. TMS+ SLF | TMS + SLF is not superior to TMS in enhancing voiding symptoms. |
Agenosov et al. [13] | 60 | IPSS, QoL | TMS vs. TMS + TDF vs. TDF | Significant increase in QoL with TMS + TDF. |
Ye et al. [14] | 126 | IPSS, IIEF-5 | TMS + TDF vs. TMS vs. placebo | Both TMS + TDF and TMS alone had similar improvement in IPSS storage symptoms and IIEF-5. |
Singh et al. [15] | 133 | IPSS, IPSS- QoL index, Qmax, and PVR, IIEF-5 | TMS vs. TMS + TDF vs. TDF | Monotherapy with either TMS or TDF showed similar results in efficacy endpoints with TMS + TDF. |
Abdelrazek et al. [16] | 308 | Qmax, IPSS, PVR, IIEF | TDF vs. SDS vs. TDF + SDS | Qmax, IPSS, PVR, and IIEF scores improved significantly more with the combination than with either drug alone. |
Tawfik et al. [17] | 258 | IPSS, IPSS- QoL index, Qmax, Qave, IIEF | TMS + FNS vs. TDF + FNS | Both groups had significant IPSS changes. TMS + FNS had better Qave. Qmax was comparable in both groups at the 12th week. All IIEF domains were significantly lowered in the TMS + FNS group. TDF + FNS showed a significant increase in IIEF-erectile function scores. |
Casabé et al. [18] | 695 | IPSS, IIEF-5 | FNS +placebo vs TDF + FNS | TDF + FNS coadministration improves IPSS, and IIEF-5 in men who have comorbid erectile dysfunction. |
Kosilov et al. [19] | 285 | IPSS, OABq, IIEF, MSHQ-EjD | DTS + SDS + TDL 0.5 + 2.5 + 2.5 vs. 0.5 + 5 + 5 vs. 0.5 + 10 + 20 | The 0.5 + 10 + 20 Group had significant improvement in OABq after the fourth week of the study. |
Gotoh et al. [20] | 44 | IPSS, QoL, NTUF, NTMVVOABSS, SHIM | TDF as add-on to DTS | IPSS, QoL, NTUF, NTMVV improved significantly at 4 weeks OABSS, SHIM improved at 12 weeks Qmax, PVR showed no improvement. |
Yamanishi et al. [21] | 24 | OABSS, NTUF, NIH-CPSI, MC | TDF + MGB vs. TDF | Changes from baseline in OABSS, NTUF, NIH-CPSI, MC were significantly reduced in combination therapy. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamatiou, K.; Perletti, G.; Magri, V.; Trinchieri, A. The Role of 5-Phosphodiesterase Inhibitors (PDE-5I) in Current Benign Prostatic Hyperplasia Treatment: A Narrative Review. Medicina 2024, 60, 1736. https://doi.org/10.3390/medicina60111736
Stamatiou K, Perletti G, Magri V, Trinchieri A. The Role of 5-Phosphodiesterase Inhibitors (PDE-5I) in Current Benign Prostatic Hyperplasia Treatment: A Narrative Review. Medicina. 2024; 60(11):1736. https://doi.org/10.3390/medicina60111736
Chicago/Turabian StyleStamatiou, Konstantinos, Gianpaolo Perletti, Vittorio Magri, and Alberto Trinchieri. 2024. "The Role of 5-Phosphodiesterase Inhibitors (PDE-5I) in Current Benign Prostatic Hyperplasia Treatment: A Narrative Review" Medicina 60, no. 11: 1736. https://doi.org/10.3390/medicina60111736
APA StyleStamatiou, K., Perletti, G., Magri, V., & Trinchieri, A. (2024). The Role of 5-Phosphodiesterase Inhibitors (PDE-5I) in Current Benign Prostatic Hyperplasia Treatment: A Narrative Review. Medicina, 60(11), 1736. https://doi.org/10.3390/medicina60111736