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Abstract: Background and Objectives: Axillary lymph node (ALN) staging is crucial for the management
of invasive breast cancer (BC). Although various radiological investigations are available, ultrasound
(US) is the preferred tool for evaluating ALNs. Despite its immediacy, widespread use, and good
predictive value, US is limited by intra- and inter-operator variability. This study aims to evaluate
US and Elastosonography Shear Wave (SW-ES) parameters for ALN staging to develop a predictive
model, named the Cassandra score (CS), to improve the interpretation of findings and standardize
staging. Materials and Methods: Sixty-three women diagnosed with BC and treated at two Italian
hospitals were enrolled in the study. A total of 529 lymph nodes were surgically removed, underwent
intraoperative US examination, and were individually sent for a final histological analysis. The
study aimed to establish a direct correlation between eight US-SWES features (margins, vascularity,
roundness index (RI), loss of hilum fat, cortical thickness, shear-wave elastography hardness (SWEH),
peripheral infiltration (PI), and hypoechoic appearance) and the histological outcome (benign vs.
malignant). Results: Several statistical models were compared. PI was strongly correlated with
malignant ALNs. An ROC analysis for Model A revealed an impressive AUC of 0.978 (S.E. = 0.007,
p < 0.001), while in Model B, the cut-offs of SWEH and RI were modified to minimize the risk of
false negatives (AUC of 0.973, S.E. = 0.009, p < 0.001). Model C used the same cut-offs as Model
B, but excluded SWEH from the formula, to make the Cassandra model usable even if the US
machine does not have SW-ES capability (AUC of 0.940, S.E. = 0.015, p < 0.001). A two-tiered model
was finally set up, leveraging the strong predictive capabilities of SWEH and RI. In the first tier,
only SWES and RI were evaluated: a positive result was predicted if both hardness and roundness
were present (SWES > 137 kPa and RI < 1.55), and conversely, a negative result was predicted if
both were absent (SWES < 137 kPa and RI > 1.55). In the second tier, if there was a mix of the
results (SWES > 137 kPa and RI > 1.55 or SWES < 137 kPa and RI < 1.55), the algorithm in Model B
was applied. The model demonstrated an overall prediction accuracy of 90.2% in the training set,
87.5% in the validation set, and 88.9% across the entire dataset. The NPV was notably high at
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99.2% in the validation set. This model was named the Cassandra score (CS) and is proposed for
the clinical management of BC patients. Conclusion: CS is a simple, non-invasive, fast, and reliable
method that showed a PPV of 99.1% in the malignancy prediction of ALNs, potentially being also
well suited for young sonographers.

Keywords: axillary staging; breast cancer; axillary ultrasound; axillary surgery; ultrasound score

1. Introduction

Axillary lymph node (ALN) staging plays a crucial role in the management of invasive
breast cancer (BC), influencing the choice between surgery and neoadjuvant treatments.
Besides imaging, disease evaluation currently involves the pathological examination of
the primary tumor and cytology or histology of the axillary nodes when involvement
is suspected [1].

Conversely, axillary lymph node dissection (ALND) was the predominantly recom-
mended procedure for BC staging, but it was associated with significant comorbidities
such as arm lymphedema, also demonstrating inconsistent benefits for BC survival. Sen-
tinel lymph node biopsy (SLNB) has replaced ALND for axillary staging, proving to be
less invasive but equally accurate. Numerous randomized studies have confirmed the
feasibility and safety of SLNB, demonstrating encouraging results in reducing surgical
complications. Currently, SLNB is strongly recommended by major guidelines when ALNs
are not suspicious [2–9].

In this context, clinical and radiological assessment of ALN at the time of the diagnosis
is crucial. Radiological false positives may preclude SLNB, leading to overtreatment and
potentially surgical complications. Conversely, false negatives may result in unnecessary
SLNB, exposing patients to radioactive trackers. Clinical examination, with a sensitivity
value of up to 30%, is not considered a reliable tool. Radiological investigations, including
mammography, which is the gold standard for BC screening, have limitations in evaluating
the axilla. Magnetic Resonance Imaging (MRI), with its higher resolution power, is a
second-level tool. However, it has drawbacks such as pulsation artifacts and incomplete
axillary visualization. Computed Tomography (CT) is not commonly performed, indicated
only in suspected advanced BC, with moderate sensitivity and low specificity for axillary
staging [10–13]. Ultrasound (US) is the preferred imaging modality for evaluating axillary
lymph nodes due to its low cost and easy availability. It more effectively defines lymph
node morphology and identifies cortical morphologic changes better than MRI. US has a
specificity of 88–98%, while sensitivity varies between 26 and 76%. Influential US features
for ALN staging have been established. The guidelines of the European Federation of
Societies for Ultrasound in Medicine and Biology (EFSUMB) suggest that elastosonography
(ES) of superficial lymph nodes is a promising tool for axillary staging, verifying the
increase in stiffness in malignant lymph nodes. Furthermore, the shear wave (SW) ES also
has the characteristic of providing an objective measure of the stiffness of the lesions with
evaluation in Pascal [14–16].

US and ES features have been investigated to improve axillary preoperative staging,
but the evaluation of lymph node suspicion remains operator-dependent, affecting reli-
ability. Therefore, a new scoring system can enhance objective predictability, reducing
individual judgment and guiding less experienced operators.

The study aimed to design and validate an innovative differentiation model of benign
and malignant ALNs, which we will call the Cassandra score (CS), by analyzing eight
ultrasound–SW elastosonography (US-ES) features. The ultimate purpose of the study
was to develop a simple algorithm for clinical decision making to improve the sensitivity
and specificity of the diagnostic model and reduce the rate of unnecessary SLNB or more
invasive treatments [17–20].
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2. Materials and Methods
2.1. Study Design

This study is reported according to the STROBE statement for cohort studies [21]. A
retrospective multicentric study was conducted to analyze the correlation between the
innovative US-ES predictive models, the CS, and the presence of metastatic ALNs in BC
patients. It was conducted according to the ethical principles stated in the Declaration of
Helsinki. Written informed consent was obtained from all patients.

2.2. Study Setting and Study Population

Between January 2022 and January 2023, all the patients referred to the Surgical and
Oncological Unit of Campania University “Vanvitelli” (Naples, Italy) and the Breast Surgery
Unit of “Cobellis” Hospital (Salerno, Italy) for breast cancer (BC) were included in the
study. Candidates were identified based on multidisciplinary indications for axillary lymph
node dissection (ALND), specifically having at least one axillary lymph node suspected at
preoperative ultrasound (US) and confirmed through core biopsy. The participants had
refused or had contraindications to neoadjuvant therapy.

The inclusion criteria were as follows:

(1) BC confirmed through core biopsy.
(2) US examination conducted within 30 days before surgery.
(3) Indication for ALND.
(4) Single BC measuring less than 5 cm (cm).

Exclusion criteria were defined as

(1) Prior neoadjuvant treatment.
(2) Presence of multiple BCs.

A preoperative US-ES had been performed, and suspicion of axillary lymph node
involvement was confirmed with a core biopsy. Patients diagnosed with breast cancer (BC)
and candidates for axillary lymph node dissection (ALND), based on the multidisciplinary
oncologic committee, were considered for enrolment. All the patients had undergone a
routine preoperative clinical and instrumental diagnostic assessment, including anamnes-
tic data collection, blood exams, ECG, cardiologic and anesthesiologic evaluations, and
thoracic X-rays.

After the referral for surgery, patients received a detailed explanation of the procedure
and provided informed consent. All operations were performed by experienced surgeons
with over 250 oncological breast procedures. Clinical data were collected in an electronic
database and retrospectively analyzed.

2.3. Study Protocol

All patients received preoperatively a detailed US-ES, as mentioned below. During
surgery, each patient undergoing ALND received an intraoperative detailed US-ES of each
resected lymph node according to the 8 US-ES features analyzed. Subsequently, each lymph
node was labeled and individually analyzed by a pathologist.

2.4. Preoperative and Intraoperative Ultrasound Protocol
2.4.1. Preoperative US-ES

BC patients underwent US-ES scanning within 30 days before axillary surgery to
assess the lymph node stage. High-quality US-ES images were acquired using Aixplorer®

Mach 30 (Supersonic Imagine) with a linear probe, L18-5 (centered at 10 MHz). Each patient
was positioned supine with the arm raised above the head, and the entire axillary region
was scanned. The examination was conducted by a sonographer with almost 10 years of
experience in breast US.
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2.4.2. Intraoperative US-ES

ALND was carried out after the breast surgery, to remove all visible axillary lymph
nodes (ALNs) in I and II Berg’s levels. US-ES scanning was performed immediately after
the excision of lymph nodes and before the pathological evaluation. The dissected axillary
specimens were cut into smaller pieces based on the palpation of nodes. If more than one
node was observed within a piece of tissue, the piece was further subdivided with a scalpel
so that only one node was visible per piece.

In the current study, 8 US-ES features were selected based on the BI-RADS lexicon and
previous research.

1. Margins:

- Definition: Well-demarcated and smooth margins are associated with normal
lymph nodes, while an undefined margin (UM) predicts malignancy.

- Scoring: Definite margins were assigned a value of 0, and UM was assigned a
value of 1 [22].

2. Roundness Index (RI):

- Definition: The RI is calculated as the longitudinal-to-transverse diameter ratio on
the largest US section. It has been reported that RI > 1.5 is associated with benign
diagnoses, while RI < 1.5 is associated with secondary lymphadenopathy [19].

- Scoring: Thresholds for interpreting the RI will be empirically determined based
on data obtained during the study. RI will then be classified as 1 or 0, depending
on these cut-offs.

3. Cortical Thickness (CT):

- Definition: The maximum CT on the largest US section was measured and
recorded. A thickness >3 mm is considered for secondary malignancy, while
<3 mm is considered for benign nodes [16].

- Scoring: Thresholds for interpreting the RI will be empirically determined based
on data obtained during the study. RI will then be classified as 1 or 0, depending
on these cut-offs.

4. Echo Pattern:

- Definition: Benign lymph nodes are slightly hypoechoic, while metastatic nodes
appear markedly hypoechoic. This qualitative feature compares the US gray tone
of the node to that of axillary fat.

- Scoring: The marked hypoechogenic pattern (Hy) was classified as 1, and others
as 0 [16].

5. Peripheral Vascularization:

- Definition: Normal lymph nodes show hilar vascularization visible in Echo-
color Doppler scans. The presence of cortical or capsular vessels is associated
with malignancies.

- Scoring: The presence of hilar vascularization was classified as 0, while the
absence of vascularization or the visualization of more spots or peripheric vascu-
larization (PV) received the value 1 [19].

6. SWE Hardness (SWEH):

- Definition: ShearWave™ PL.U.S imaging measures non-invasive tissue stiffness
in real time, expressed in kPa. Many studies identified the cut-off value of
150 kPa, suggesting that SWES > 150 kPa can be associated with secondary
malignancy [23].

- Scoring: Thresholds for interpreting the RI will be empirically determined based
on data obtained during the study. RI will then be classified as 1 or 0, depending
on these cut-offs.

7. Loss of fatty hilum (LFH):
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- Definition: Normal lymph nodes show as hilar hyperechogenic, correlated with
the presence of the fatty hilum. The loss of contrast between the hypoechoic cortex
and hyperechoic hilum, caused by hypertrophy of the former at the expense of
the latter, is associated with a risk of metastasis [24].

- Scoring: Marked LFH was classified as 1, and others as 0.

8. Peripheral infiltration (PI):

- Definition: The presence of extracapsular infiltration or confluence tendencies is
associated with an increased risk of metastasis [25].

- Scoring: Marked PI was classified as 1, and others as 0.

These features were assessed during preoperative US evaluations using Aixplorer®

Mach 30 (Supersonic Imagine) with a linear probe, L18-5 (centered at 10 MHz). Each
examination was conducted by a sonographer with nearly ten years of experience in
breast US.

The 8 US-ES features were recorded. After the US-ES analysis, the specimens were
placed into a saline solution in a plastic tray, labeled with an alphabetic character, and sent
to the pathologist for histologic examination.

2.5. Statistical Analyses

The participants were divided into two groups, 50% were included in the training set
and the remaining 50% in the validation cohort, to develop and test our algorithms. There
were no significant differences in the characteristics of clinical and imaging data between the
2 groups. We reported the results for both cohorts and the whole sample. We employed an
ROC curve analysis to measure the agreement between observed outcomes and predicted
probabilities in both training and validation cohorts. This analysis also helped identify
the optimal cut-off points for converting continuous variables into dichotomous variables
and selecting the best predictors. The ROC curves allowed us to compute the AUC, which
indicates the predictive performance of the algorithms, and create a clinical decision model
based on a simple linear combination.

Our goal was to develop a simple clinical algorithm that can help clinicians in the
decisional process of patients with BC and metastatic ALNs. To compare the quality of our
algorithm, a machine learning technique was also applied, using two common classifiers:
Naïve Bayes and a linear discriminant analysis (LDA). Naïve Bayes is a classification
algorithm based on Bayes’ Theorem, with the assumption that predictors are independent.
LDA is also a technique used for classification and dimensionality reduction. It aims to
maximize the separability among known categories by projecting features into a lower-
dimensional space. LDA is effective in settings where classes are linearly separable. We used
malignancy as the outcome variable, continuous variables as covariates, and dichotomous
variables as factors. For Naïve Bayes, the classifier selected the best predictors for inclusion
based on the training set, which comprised half of the sample. For LDA, prior probabilities
were estimated based on group sizes, and a pooled covariance matrix was utilized. We
used leave-one-out cross-validation to assess the reliability of the results.

We used the risk factors that we identified to build a clinical algorithm. We split the
sample into a training cohort (50%) and a validation cohort (50%) to develop and test our
algorithms. We reported the results for both cohorts and the whole sample. We employed an
ROC curve analysis to measure the agreement between observed outcomes and predicted
probabilities in both training and validation cohorts. This analysis also helped identify
the optimal cut-off points for converting continuous variables into dichotomous variables
and selecting the best predictors. The ROC curves allowed us to compute the AUC, which
indicates the predictive performance of the algorithms, and create a clinical decision model
based on a simple linear combination.

We also carefully evaluated the performance of different models by calculating sen-
sitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and
overall correct classification. We developed a first model, Algorithm A, that maximizes
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the AUC. A second model, Algorithm B, combines a decision tree and aims to minimize
the false negative rate. Therefore, we used a sensitivity threshold of at least 95% when
converting continuous variables into dichotomous variables, instead of only optimizing
the overall performance.

Moreover, we developed Algorithm C, an alternative model that does not rely on
Ultrasound Elastography, taking into account varying resource availability. This approach
ensured that surgeons who do not have this technology can still use our findings.

For each model, we ran an LDA classifier based on selected variables and a cut-off for
that model to have a direct comparison for the clinical model.

We coded categorical data as binary values (0 for absent, 1 for present). We used
Bonferroni correction for multiple comparisons to test statistical significance and considered
p-values < 0.006 as significant. Of the eight variables, five were dichotomous, and two
of the three continuous variables did not satisfy the assumptions of parametric tests (as
shown by Levene’s test). Therefore, we used the non-parametric Mann–Whitney U Test
to compare the differences between the malignant and benign groups. We also computed
non-parametric Spearman rank correlations among features to explore their relationships
and guide model selection and development. We performed all data analyses using IBM
(IBM Corp., Armonk, NY, USA, software version 29.0.1) (Figure 1).
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Figure 1. Workflow of study.

2.6. Study Outcomes

The primary outcome was the construction of an innovative differentiation model
of benign and malignant ALNs, which we will call the Cassandra score (CS), feasible for
axillary US staging in patients with BC. The secondary outcome was the creation of a
further predictive model also widely available in US machines without ES.

3. Results
3.1. Study Population

From 1 January 2017 to 1 January 2023, 2429 patients were referred to the Surgery and
Oncological Unit of Campania University “Vanvitelli” (Naples, Italy) and the Breast Surgery
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Unit of “Cobellis” Hospital (Salerno, Italy) for breast disease. Of these, 1205 were diagnosed
with BC. Each case was reviewed by a multidisciplinary oncological group. Ninety-nine
women with BC were initially considered for ALND, and 69 met the inclusion criteria and
were included in the study. The average age of the participants was 55.3 ± 5.3 years, with
a mean BMI of 26.8 ± 3.7 kg/m2.

A total of 529 lymph nodes were resected and examined using US-ES. Among these,
236 (44.6%) exhibited indefinite margins, 278 (55.5%) displayed a marked hypoechoic
pattern, 183 (35.6%) showed hilar vascularization, 207 (39.1%) had loss of the fatty hilum,
and only 23 (4.3%) nodes infiltrated the peripheral tissue. The average cortical thickness
was 3.6 ± 0.3 mm, and the shear wave (SW) value was 141.12 ± 21.7. The average roundness
index was 1.7 ± 0.5. Out of these lymph nodes, 209 (39.5%) were confirmed to be metastatic.

3.2. Study Outcomes

Our comprehensive analysis identified statistically significant differences between
benign and malignant lymph nodes (p ≤ 0.002) across all examined features. However, there
was an overlap in these features, except for peripheral infiltration, which was exclusively
present in malignant samples (as indicated in Table 1). Notably, significant differences were
observed in features including the SWE Hardness (SWEH), roundness index (RI), loss of
the fatty hilum (LFH), indefinite margins (IM), Hypoechogenicity (Hy), cortical thickness
(CT), peripheral infiltration (PI), and Peripheral Vascularization (PV).

Table 1. Descriptive Statistics of Initially Selected Variables.

Variable Malignity Cases Mean SD Median Range Mann-Whitney U Test

SWE Hardness 0 320 131.00 11.89 130.00 110–160 -
1 209 161.73 14.08 160.00 110–198 z = 17.21, p < 0.001

Negative Roundness Index 0 320 −2.02 0.43 −1.90 −2.9–−1.1 -
1 209 −1.35 0.34 −1.30 −2.8–−1.0 z = 15.81, p < 0.001

Loss of Fatty Hilum 0 320 0.15 0.36 0 0–1 -
1 209 0.76 0.43 1 0–1 z = 13.88, p < 0.001

Indefinite Margins 0 320 0.25 0.43 0 0–1 -
1 209 0.75 0.43 1 0–1 z = 11.40, p < 0.001

Hypoechogenicity 0 320 0.33 0.47 0 0–1 -
1 209 0.82 0.38 1 0–1 z = 11.13, p < 0.001

Cortical Thickness 0 320 3.20 1.37 3.00 1–7 -
1 209 4.41 1.17 5.00 1–7 z = 9.76, p < 0.001

Peripheral Infiltration 0 320 0 0 0 0–1 -
1 209 0.11 0.31 0 0–1 z = 6.06, p < 0.001

Peripheral Vascularization 0 320 0.30 0.46 0 0–1 -
1 209 0.43 0.50 0 0–1 z = 3.04, p = 0.002

A further analysis using Spearman correlations among features and their associations
with malignity status confirmed the ranking observed in the Mann–Whitney U Test, with all
correlations being statistically significant (p < 0.01). The correlation coefficients (rs) ranged
from 0.789 for SWE Hardness to 0.132 for PV. We observed medium-to-low correlations
among various features, with rs ranging from 0.583 (between SWEH and Negative RI)
to zero. The sole negative correlation (rs = −0.170) was identified between Hy and PV.
Additionally, partial correlations controlled for malignancy (equivalent to the pooled
within-groups matrix of the linear discriminant analysis) revealed minimal-to-negligible
associations among variables, ranging from 0.258 (between SWEH and RI) to zero. Notably,
the only significant negative correlation (rs = −0.270) persisted between Hy and PV (as
presented in Table 2).
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Table 2. Pooled Within-Groups Correlation Matrix.

Features SWE
Hardness

Negative
Roundness

Index

Loss of
Fatty

Hilum

Indefinite
Margins

Hypoecho-
genicity

Cortical
Thickness

Peripheric
Infiltration

Peripherical
Vasculariza-

tion

SWE Hardness 1.000 0.108 * 0.258 ** 0.042 0.108 * 0.179 ** 0.071 0.191 **
Negative
Roundness Index 0.108 * 1.000 0.174 ** 0.061 0.123 * 0.101 * 0.004 0.032

Loss of Fatty Hilum 0.258 ** 0.174 ** 1.000 −0.031 0.166 ** 0.135 ** 0.015 −0.081
Indefinite Margins 0.042 0.061 −0.031 1.000 −0.011 0.106 * 0.061 0.108 *
Hypoechogenicity 0.108 * 0.123 ** 0.166 ** −0.011 1.000 −0.037 0.024 −0.270 **
Cortical Thickness 0.179 ** 0.101 * 0.135 ** 0.106* −0.037 1.000 −0.018 0.130 **
Peripheral Infiltration 0.071 0.004 0.015 0.061 0.024 −0.018 1.000 0.126 **
Peripheral
Vascularization 0.191 ** −32 −0.081 0.108* −0.270 ** 0.130 ** 0.126 ** 1.000

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

3.2.1. Classifiers

In the evaluation of the Naïve Bayes classifier, lymph nodes were evenly split into a
training and a validation group, each comprising half of the total. The classifier achieved
an overall prediction accuracy of 94.4% for the training group and 94.6% for the validation
group. When applied to the entire dataset, the classifier maintained a high accuracy rate
of 94.9%.

For the LDA conducted on the original group, the overall accuracy was 93.4%. Cross-
validation slightly reduced the accuracy to 93.0%. Detailed metrics such as sensitivity,
specificity, positive predictive value (PPV), and negative predictive value (NPV) are pre-
sented in Table 3. The analysis revealed a canonical correlation of 0.841 for the canonical
function, with standardized canonical discriminant function coefficients ranging from
0.604 for SWEH to −0.029 for PV. These standardized coefficients are detailed in Table 4.

Table 3. Model Accuracy.

Model Set Sensitivity Specificity PPV NPV Accuracy

Naive Bayes Training 0.911 0.965 0.939 0.948 0.944
Validation 0.898 0.980 0.970 0.931 0.946
Whole Sample 0.923 0.966 0.946 0.951 0.949

LDA Original 0.914 0.947 0.918 0.944 0.934
Cross-Validated 0.914 0.941 0.910 0.944 0.930

Model A Training 0.952 0.901 0.891 0.967 0.921
Validation 0.933 0.849 0.803 0.951 0.883
Whole Sample 0.943 0.875 0.831 0.959 0.902

LDA: model A Original 0.890 0.934 0.899 0.929 0.919
Cross-Validated 0.885 0.928 0.889 0.925 0.911

Model B Training 0.981 0.883 0.843 0.986 0.921
Validation 0.991 0.818 0.782 0.992 0.886
Whole Sample 0.986 0.850 0.811 0.989 0.904

LDA model B Original 0.914 0.903 0.860 0.941 0.907
Cross-Validated 0.904 0.863 0.811 0.932 0.879

Model C Training 0.904 0.913 0.870 0.936 0.909
Validation 0.914 0.881 0.940 0.894 0.894
Whole Sample 0.909 0.897 0.852 0.938 0.902

LDA model C Original 0.833 0.906 0.853 0.892 0.877
Cross-Validated 0.833 0.906 0.853 0.892 0.877

Two-tier Training 0.981 0.851 0.810 0.986 0.902
Validation 0.991 0.799 0.765 0.992 0.875
Whole Sample 0.986 0.825 0.786 0.989 0.889
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Table 4. Feature Weights for Different Models.

Features

LDA Training Set ROC Analysis
Standardized

Canonical
Discriminant Function

Coefficients

AUC S.E. Gini
Index

Max
K-S Cut-off Model

Quality **

SWE Hardness 0.604 0.939 * 0.018 0.879 0.808 142.00 0.90
Negative Roundness Index 0.373 0.892 * 0.023 0.784 0.705 −1.55 0.85
Loss of Fatty Hilum 0.226 0.796 * 0.030 0.591 0.591 0.50 0.74
Indefinite Margins 0.315 0.748 * 0.032 0.495 0.495 0.50 0.69
Hypoechogenicity 0.204 0.760 * 0.030 0.520 0.520 0.50 0.70
Cortical Thickness 0.097 0.759 * 0.030 0.518 0.465 3.50 0.70
Peripheral Infiltration 0.110 0.558 0.037 0.115 0.115 0.50 0.49
Peripheral Vascularization −0.029 0.581 0.036 0.162 0.162 0.50 0.51

* Correlation is significant at the 0.001 level (2-tailed). ** A good model has a value above 0.5. A value less than 0.5
indicates the model is no better than random prediction.

3.2.2. ROC Analysis

All models utilized the same training and validation sets. Initially, an ROC analysis
was conducted on the training set for each feature individually to select features for the
final model and establish variable cut-offs. The AUC was above 0.747 and statistically
significant (p < 0.001) for all variables except for PI, with an AUC of 0.558 (p = 0.118), and
PV, with an AUC of 0.581 (p = 0.025). Both the LDA model and ROC analysis, along with
z-scores from the Mann–Whitney U Test, yielded a consistent variable ranking. However,
the Model Quality (MQ) was considered low for peripheral infiltration (MQ = 0.49) and PV
(MQ = 0.51). For Model A, cut-offs that optimize Youden’s Index were applied, resulting in
a cut-off of 142 for SWEH, −1.55 for Negative RI, and 3.50 for CT.

3.2.3. Calibration and Validation of Clinical Algorithm
Model A

Following the conversion of continuous variables to binary ones based on the ROC
analysis cut-offs, and after removing the two variables that were not statistically significant,
we developed a straightforward algorithm that employs a linear combination of the newly
binary variables. These variables are denoted with a “B” suffix to indicate their binary
nature. To facilitate easy recall and application, we opted to use only integers as coefficients
in the combination. Considering the robust predictive ability of SWEH and RI even when
used independently, we assigned them a weight of 2. The other variables were assigned a
weight of 1 due to their comparably strong predictive power. Consequently, the formula
for calculating the Lymph Node Malignity Score (LNMS) is as follows:

LNMSA = 2 × BSWEHA + 2 × BRIA + LFH + UM + Hy + BCT

The LNMSA can range from 0 to 8, with a score of 8 indicating a higher likelihood
of malignancy.

The ROC analysis for Model A on the training set revealed an impressive AUC of
0.978 (S.E. = 0.007, p < 0.001), a Gini Index of 0.956, and a maximum Kolmogorov–Smirnov
(max K-S) statistic of 0.853 at a cut-off of 3.50. The model’s overall quality was rated at
0.96. It achieved an overall prediction accuracy of 92.1% in the training set, 88.3% in the
validation set, and 90.2% across the entire sample. The NPV in the validation set stood
at 95.1%.

Model B

In Model B, we altered the cut-offs of SWEH and RI to reduce the risk of false negatives
(i.e., maximizing NPV), setting sensibility to at least 0.95, leading to a cut-off of 137 for
SWEH, −2.25 for Negative RI, and 3.50 for CT.
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Consequently, the formula for calculating the LNMS is as follows:

LNMSB = 2 × BSWEHB + 2 × BRIB + LFH + UM + Hy + BCT

The ROC analysis for Model B on the training set revealed an impressive AUC of
0.973 (S.E. = 0.009, p < 0.001), a Gini Index of 0.863, and a max K-S statistic of 0.863 at
a cut-off of 4.50. The model’s overall quality was rated at 0.95. It achieved an over-
all prediction accuracy of 92.1% in the training set, 88.6% in the validation set, and
90.4% across the entire sample. The NPV in the validation set stood at 99.2%.

Model C

Model C uses the same cut-offs as Model B, but BSWEHB is not included in the formula.
Consequently, the formula for calculating the LNMS is as follows:

LNMSC = 2 × BRIB + LFH + UM + Hy + BCT

The LNMSC can range from 0 to 6, with a score of 6 indicating a higher likelihood
of malignancy.

The ROC analysis for Model C on the training set revealed an impressive AUC of
0.940 (S.E. = 0.015, p < 0.001), a Gini Index of 0.879, and a max K-S statistic of 0.817 at
a cut-off of 2.50. The model’s overall quality was rated at 0.91. It achieved an over-
all prediction accuracy of 90.9% in the training set, 89.4% in the validation set, and
90.2% across the entire sample. The NPV in the validation set stood at 89.4%. Figure 2
presents a comparison of the models.
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We performed LDA with the variables included in Models A, B, and C, to compare
the performance of simplified models with a linear combination of integer coefficients
for each feature, with models optimized to have the optimal coefficients for the discrim-
inant function. Each LDA model is reported in Table 3 below the corresponding clinical
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model. There is no significant difference between the clinical and corresponding LDA
models in the overall accuracy if we compare the whole sample. LNMSA accuracy = 0.902,
LDAA accuracy = 0.919; LNMSB accuracy = 0.904, LDAB accuracy = 0.907; LNMSC
accuracy = 0.902, LDAC accuracy = 0.877.

3.2.4. Two-Tier Model: Cassandra Score

We proposed a two-tiered model leveraging the strong predictive capabilities of
BSWEHB and BRIB. In the first tier, only BSWEHB and BRIB were evaluated: a positive
result was predicted if both were positive and conversely, a negative result was predicted if
both were negative. In the second tier, if there was a mix of positive and negative results
between BSWEHB and BRIB, we proceeded with the algorithm in Model B (Figure 3).
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The model demonstrated an overall prediction accuracy of 90.2% in the training set,
87.5% in the validation set, and 88.9% across the entire dataset. The NPV was notably high
at 99.2% in the validation set. Notably, 44% of the total sample was classified in the first tier.

It is important to highlight that while PI exhibited limited overall predictive power, it
had a significant PPV. PI was found in only 23 lymph nodes, representing 4.35% of the total
sample, yet all lymph nodes with PI were malignant, yielding a PPV of 100%. However,
the malignancy of all ALNs with PI was already correctly predicted by Models A and B,
and the two tiers were already computed in the first tier. Model C missed only one lymph
node with PI (Table 4).
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4. Discussion

The detection of ALN metastasis is crucial in managing patients with primary BC.
Currently, SLNB is the most accurate method for axillary staging, especially in cases of
BC with negative axillary US, as strongly suggested by Veronesi et al. SLNB is preferred
over ALND due to its elevated accuracy (93–97%), low false negative rate (i.e., 9.8%), and
consistent reduction in morbidities [26]. Recent clinical trials, such as ACOSOG Z0011,
have explored the potential for de-escalating axillary surgery, finding no additional ben-
efit of ALND in patients with one or two metastases detected by SLNB [27]. Imaging
plays a critical role in selecting patients with suspected axillary involvement who could
be candidates for neoadjuvant therapy or ALND [28]. US is the tool of choice for ALN
assessment [29,30], despite it being operator-dependent. BI-RADS was introduced to guide
the risk classification of breast lesions, but the interpretation of each feature remained
operator-dependent and subjective, leading to inter- and intra-observer variability in repro-
ducibility. Many authors have proposed multiple strategies to standardize the evaluation
of US characteristics, developing nomograms based on key features [31,32]. For example,
Yan et al. set up a nomogram model based on five features of BC lesions. The method
was compared to the BI-RADS model, demonstrating satisfactory discriminative function
(area under the receiver operating characteristic [ROC] curves [AUC], 0.940; 95% confi-
dence interval [CI], 0.909 to 0.971; sensitivity, 0.905; and specificity, 0.902 in the training
cohort and AUC, 0.968; 95% CI, 0.941 to 0.995; sensitivity, 0.971; and specificity, 0.867 in
the validation cohort) [33]. Another interesting approach consisted of the construction of a
prediction model for the ALN status of BC patients based on a radiomics analysis of US
images of primary breast lesions. The trial demonstrated high accuracy in the malignancy
prediction (AUC of 0.846 (95% CI, 0.790–0.902) for the training cohort and 0.733 (95% CI,
0.613–0.852) for the validation cohort) [34]. Other authors who developed similar models
capable of predicting ALN status by examining the US features of BC lumps reported
analog results [35–38].

To the best of our knowledge, the current study is the first to analyze ALN features
with US-ES to identify a reliable system capable of standardizing the axillary staging in
patients with BC. The main reported limitation in this type of assessment was to correlate
the ALN identified in axillary scans with a definitive histological examination. Therefore,
we decided to perform intraoperative US-ES (immediately after ALND), to classify and
send each lymph node individually for definitive histological examination. Therefore, we
established a direct correlation between the US-ES characteristics and the malignancy or
benignity of the ALN. A total of 529 lymph nodes were resected and examined using US-ES.
We developed several statistical models to identify the most clinically functional approach
for this kind of patient. In Model A, we achieved a positive predictive value (PPV) of 95.1%,
while in Model B, we focused on diagnostic sensitivity, reaching a PPV of 99.1%. Indeed,
we deemed it clinically desirable to minimize false negatives as much as possible. Model C
was developed by excluding the extensive use of ES, considering that this technique is not
available on all US machines. In both models, A and B, the roundness index (RI) and SWEH
were found to have a high impact, so much so that they were assigned a weight of 2, while
the other variables were assigned a weight of 1. In addition, we developed a final model,
which probably has the best performance in clinical practice. Considering the important
impact of SWEH and RI, if both these variables are positive, the ALN is considered strongly
suspicious, and a further analysis of the remaining US features is unnecessary. However,
if only one of the variables is positive, the calculation of the score proceeds. This latter
procedure represents the final Cassandra score.

A further interesting focus is the potential changes in lymph node morphology after
lymphoscintigraphy in patient candidates for SLNB, following tracer accumulation. The
argument is complex, and no previous studies reported a clear indication of the topic.
However, we avoided enrolling SLNB patients in the study, excluding the possible effects
of the bias.
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The main limitations of the current study are the retrospective nature and the sample
size. Another possible problem is the duration of the US-ES examination after the excision
because the delayed immersion in fixative liquids can be associated with specimen arti-
facts [39]. Furthermore, we have not considered the use of CEUS, which appears promising
and interesting as reported in a recent meta-analysis [40]. Moreover, we verified that the
examinations were concluded in less than 40 min, avoiding reaching the limits of an hour
for the delay.

5. Conclusions

The prediction of malignancy of ALN is a cornerstone in the staging of patients with
BC. Several methods have been proposed in the literature without reaching satisfactory
results. The Cassandra score is a simple, non-invasive, fast, and reliable method that
showed a PPV of 99.1% in the malignancy prediction of ALN, potentially being also well
suited for young sonographers. Future studies with a larger sample size are desirable,
also being in a prospective setting. A further study, focusing on validating the score in a
preoperative setting, is ongoing.
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