The Current and Emerging Role of Statins in the Treatment of PCOS: The Evidence to Date
Abstract
:1. Introduction
2. Pathophysiology of Androgen Excess
3. Cardiovascular Risk and Dyslipidemia in PCOS
4. Statins for PCOS Management
Study (Refs.) | Population | Statin Used | Dose | Follow-Up | Intervention | Control | Effect on Androgen Levels |
---|---|---|---|---|---|---|---|
[106] | 40 patients | Atorvastatin | 20 mg | 12 weeks | Statin only | Placebo | Decrease * |
[107] | 84 patients | Simvastatin | 20 mg | 12 weeks | Statin plus metformin 1500 mg/day | Placebo + metformin 1500 mg/day | Decrease * |
[108] | 20 patients | Atorvastatin | 40 mg | 6 weeks | Statin only | Placebo | Decrease * |
[109] | 97 patients | Simvastatin | 20 mg | 6 months | Simvastatin plus metformin 1700 mg/day | Simvastatin or metformin 1700 mg/day | Decrease * |
[110] | 40 patients | Atorvastatin | 40 mg | 6 weeks | Statin only | Placebo | None |
[93] | 64 patients | Atorvastatin/Simvastatin | 20 mg each | 3 months | Atorvastatin | Simvastatin | Decrease in both groups. * |
[111] | 40 patients | Atorvastatin | 20 mg | 3 months | Statin only | placebo | Decrease |
[112] | 64 patients | Simvastatin | 20 mg | 8 week | Statin only | placebo | Decrease * |
5. Mechanisms of Action of Statins in PCOS
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. Oxf. Engl. 2004, 19, 41–47. [CrossRef]
- Lizneva, D.; Suturina, L.; Walker, W.; Brakta, S.; Gavrilova-Jordan, L.; Azziz, R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil. Steril. 2016, 106, 6–15. [Google Scholar] [CrossRef]
- Barthelmess, E.K.; Naz, R.K. Polycystic ovary syndrome: Current status and future perspective. Front. Biosci. Elite Ed. 2014, 6, 104–119. [Google Scholar] [CrossRef]
- Teede, H.J.; Joham, A.E.; Paul, E.; Moran, L.J.; Loxton, D.; Jolley, D.; Lombard, C. Longitudinal weight gain in women identified with polycystic ovary syndrome: Results of an observational study in young women. Obes. Silver Spring 2013, 21, 1526–1532. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Nabi, M.; Rasool, S.A.; Rashid, F.; Amin, S. Hyperandrogenism in polycystic ovarian syndrome and role of CYP gene variants: A review. Egypt. J. Med. Hum. Genet. 2019, 20, 25. [Google Scholar] [CrossRef]
- Jensterle, M.; Goricar, K.; Janez, A. Metformin as an initial adjunct to low-dose liraglutide enhances the weight-decreasing potential of liraglutide in obese polycystic ovary syndrome: Randomized control study. Exp. Ther. Med. 2016, 11, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Jensterle, M.; Kravos, N.A.; Goričar, K.; Janez, A. Short-term effectiveness of low dose liraglutide in combination with metformin versus high dose liraglutide alone in treatment of obese PCOS: Randomized trial. BMC Endocr. Disord. 2017, 17, 5. [Google Scholar] [CrossRef] [PubMed]
- Nylander, M.; Frøssing, S.; Clausen, H.V.; Kistorp, C.; Faber, J.; Skouby, S.O. Effects of liraglutide on ovarian dysfunction in polycystic ovary syndrome: A randomized clinical trial. Reprod. Biomed. Online 2017, 35, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.; Joy Mathew, C.; Jose, M.T.; Elshaikh, A.O.; Shah, L.; Cancarevic, I. A Review of the Impact of Bariatric Surgery in Women with Polycystic Ovary Syndrome. Cureus 2020, 12, e10811. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Donnelly, R. Sex Hormone-Binding Globulin (SHBG) as an Early Biomarker and Therapeutic Target in Polycystic Ovary Syndrome. Int. J. Mol. Sci. 2020, 21, 8191. [Google Scholar] [CrossRef] [PubMed]
- Carmina, E. Ovarian and adrenal hyperandrogenism. Ann. N. Y. Acad. Sci. 2006, 1092, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Xie, T.; Song, Y.; Zhou, L. The role of androgen and its related signals in PCOS. J. Cell. Mol. Med. 2021, 25, 1825–1837. [Google Scholar] [CrossRef] [PubMed]
- Kolnikaj, T.S.; Herman, R.; Janež, A.; Jensterle, M. Assessment of Eating Disorders and Eating Behavior to Improve Treatment Outcomes in Women with Polycystic Ovary Syndrome. Life 2022, 12, 1906. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.P. Metformin use in women with polycystic ovary syndrome. Ann. Transl. Med. 2014, 2, 56. [Google Scholar] [CrossRef] [PubMed]
- Diamanti-Kandarakis, E.; Bourguignon, J.-P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, H.M.; Adeli, I.; Calina, D.; Docea, A.O.; Mousavi, T.; Daniali, M.; Nikfar, S.; Tsatsakis, A.; Abdollahi, M. Polycystic Ovary Syndrome: A Comprehensive Review of Pathogenesis, Management, and Drug Repurposing. Int. J. Mol. Sci. 2022, 23, 583. [Google Scholar] [CrossRef] [PubMed]
- Azziz, R.; Carmina, E.; Chen, Z.; Dunaif, A.; Laven, J.S.E.; Legro, R.S.; Lizneva, D.; Natterson-Horowtiz, B.; Teede, H.J.; Yildiz, B.O. Polycystic ovary syndrome. Nat. Rev. Dis. Primer 2016, 2, 16057. [Google Scholar] [CrossRef] [PubMed]
- Baskind, N.E.; Balen, A.H. Hypothalamic-pituitary, ovarian and adrenal contributions to polycystic ovary syndrome. Best Pract. Res. Clin. Obstet. Gynaecol. 2016, 37, 80–97. [Google Scholar] [CrossRef]
- Moore, A.M.; Campbell, R.E. Polycystic ovary syndrome: Understanding the role of the brain. Front. Neuroendocrinol. 2017, 46, 1–14. [Google Scholar] [CrossRef]
- Ruddenklau, A.; Campbell, R.E. Neuroendocrine Impairments of Polycystic Ovary Syndrome. Endocrinology 2019, 160, 2230–2242. [Google Scholar] [CrossRef]
- Wang, J.; Wu, D.; Guo, H.; Li, M. Hyperandrogenemia and insulin resistance: The chief culprit of polycystic ovary syndrome. Life Sci. 2019, 236, 116940. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Ma, Y.; Xiao, J.; Luo, G.; Li, Y.; Wu, D. Multi-system reproductive metabolic disorder: Significance for the pathogenesis and therapy of polycystic ovary syndrome (PCOS). Life Sci. 2019, 228, 167–175. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Q.; Sun, D.; Cui, X.; Chen, S.; Bulbul, A.; Liu, S.; Yan, Q. Dehydroepiandrosterone stimulates inflammation and impairs ovarian functions of polycystic ovary syndrome. J. Cell. Physiol. 2019, 234, 7435–7447. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Yang, S.; Li, R.; Liu, P.; Qiao, J.; Zhang, Y. Effects of hyperandrogenism on metabolic abnormalities in patients with polycystic ovary syndrome: A meta-analysis. Reprod. Biol. Endocrinol. RBE 2016, 14, 67. [Google Scholar] [CrossRef] [PubMed]
- Schiffer, L.; Kempegowda, P.; Arlt, W.; O’Reilly, M.W. MECHANISMS IN ENDOCRINOLOGY: The sexually dimorphic role of androgens in human metabolic disease. Eur. J. Endocrinol. 2017, 177, R125–R143. [Google Scholar] [CrossRef] [PubMed]
- Paradisi, G.; Steinberg, H.O.; Hempfling, A.; Cronin, J.; Hook, G.; Shepard, M.K.; Baron, A.D. Polycystic ovary syndrome is associated with endothelial dysfunction. Circulation 2001, 103, 1410–1415. [Google Scholar] [CrossRef] [PubMed]
- Mather, K.J.; Verma, S.; Corenblum, B.; Anderson, T.J. Normal endothelial function despite insulin resistance in healthy women with the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2000, 85, 1851–1856. [Google Scholar] [CrossRef] [PubMed]
- Azziz, R.; Sanchez, L.A.; Knochenhauer, E.S.; Moran, C.; Lazenby, J.; Stephens, K.C.; Taylor, K.; Boots, L.R. Androgen excess in women: Experience with over 1000 consecutive patients. J. Clin. Endocrinol. Metab. 2004, 89, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Carmina, E.; Rosato, F.; Jannì, A.; Rizzo, M.; Longo, R.A. Extensive clinical experience: Relative prevalence of different androgen excess disorders in 950 women referred because of clinical hyperandrogenism. J. Clin. Endocrinol. Metab. 2006, 91, 2–6. [Google Scholar] [CrossRef]
- Unlu, E.; Unlu, B.S.; Yildiz, Y.; Beker-Acay, M.; Kacar, E.; Turamanlar, O.; Tulmac, O.B.; Seven, A.; Ozuguz, U. Adrenal gland volume assessed by magnetic resonance imaging in women with polycystic ovary syndrome. Diagn. Interv. Imaging 2016, 97, 57–63. [Google Scholar] [CrossRef]
- de Medeiros, S.F.; Barbosa, B.B.; Yamamoto, A.K.L.W.; Yamamoto, M.M.W.; de Medeiros, M.A.S.; Junior, J.M.S.; Baracat, E.C. The interplay between androgens and adipocytes: The foundation of comorbidities of polycystic ovary syndrome. GREM-Gynecol. Reprod. Endocrinol. Metab. 2022, 1, 2–8. [Google Scholar] [CrossRef]
- de Ziegler, D.; Steingold, K.; Cedars, M.; Lu, J.K.; Meldrum, D.R.; Judd, H.L.; Chang, R.J. Recovery of hormone secretion after chronic gonadotropin-releasing hormone agonist administration in women with polycystic ovarian disease. J. Clin. Endocrinol. Metab. 1989, 68, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, F.; Chang, L.; Horab, T.; Lobo, R.A. Evidence for heterogeneous etiologies of adrenal dysfunction in polycystic ovary syndrome. Fertil. Steril. 1996, 66, 354–361. [Google Scholar] [CrossRef]
- Rosenfield, R.L.; Ehrmann, D.A. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr. Rev. 2016, 37, 467–520. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.L.; Bose, H.S. Early steps in steroidogenesis: Intracellular cholesterol trafficking. J. Lipid Res. 2011, 52, 2111–2135. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.L. Disorders in the initial steps of steroid hormone synthesis. J. Steroid Biochem. Mol. Biol. 2017, 165, 18–37. [Google Scholar] [CrossRef]
- Miller, W.L. Steroidogenesis: Unanswered Questions. Trends Endocrinol. Metab. TEM 2017, 28, 771–793. [Google Scholar] [CrossRef]
- Sasano, H.; Okamoto, M.; Mason, J.I.; Simpson, E.R.; Mendelson, C.R.; Sasano, N.; Silverberg, S.G. Immunohistochemical studies of steroidogenic enzymes (aromatase, 17α-hydroxylase and cholesterol side-chain cleavage cytochromes P-450) in sex cord-stromal tumors of the ovary. Hum. Pathol. 1989, 20, 452–457. [Google Scholar] [CrossRef]
- Richards, J.S.; Hedin, L. Molecular aspects of hormone action in ovarian follicular development, ovulation, and luteinization. Annu. Rev. Physiol. 1988, 50, 441–463. [Google Scholar] [CrossRef]
- Jakimiuk, A.J.; Weitsman, S.R.; Magoffin, D.A. 5alpha-reductase activity in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 1999, 84, 2414–2418. [Google Scholar] [CrossRef]
- McNatty, K.P.; Makris, A.; Reinhold, V.N.; De Grazia, C.; Osathanondh, R.; Ryan, K.J. Metabolism of androstenedione by human ovarian tissues in vitro with particular reference to reductase and aromatase activity. Steroids 1979, 34, 429–443. [Google Scholar] [CrossRef]
- Coyle, C.; Campbell, R.E. Pathological pulses in PCOS. Mol. Cell. Endocrinol. 2019, 498, 110561. [Google Scholar] [CrossRef]
- Cadagan, D.; Khan, R.; Amer, S. Thecal cell sensitivity to luteinizing hormone and insulin in polycystic ovarian syndrome. Reprod. Biol. 2016, 16, 53–60. [Google Scholar] [CrossRef]
- Burt Solorzano, C.M.; Beller, J.P.; Abshire, M.Y.; Collins, J.S.; McCartney, C.R.; Marshall, J.C. Neuroendocrine dysfunction in polycystic ovary syndrome. Steroids 2012, 77, 332–337. [Google Scholar] [CrossRef]
- McAllister, J.M.; Byrd, W.; Simpson, E.R. The effects of growth factors and phorbol esters on steroid biosynthesis in isolated human theca interna and granulosa-lutein cells in long term culture. J. Clin. Endocrinol. Metab. 1994, 79, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Franks, S.; Stark, J.; Hardy, K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum. Reprod. Update 2008, 14, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Jakimiuk, A.J.; Weitsman, S.R.; Brzechffa, P.R.; Magoffin, D.A. Aromatase mRNA expression in individual follicles from polycystic ovaries. Mol. Hum. Reprod. 1998, 4, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wei, K.; Jiang, Z. 5α-reductase activity in women with polycystic ovary syndrome: A systematic review and meta-analysis. Reprod. Biol. Endocrinol. RBE 2017, 15, 21. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.K.; Judd, H.L.; Magoffin, D.A. A mechanism for the suppression of estrogen production in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 1996, 81, 3686–3691. [Google Scholar] [CrossRef] [PubMed]
- Willis, D.S.; Watson, H.; Mason, H.D.; Galea, R.; Brincat, M.; Franks, S. Premature response to luteinizing hormone of granulosa cells from anovulatory women with polycystic ovary syndrome: Relevance to mechanism of anovulation. J. Clin. Endocrinol. Metab. 1998, 83, 3984–3991. [Google Scholar] [CrossRef] [PubMed]
- Dewailly, D.; Andersen, C.Y.; Balen, A.; Broekmans, F.; Dilaver, N.; Fanchin, R.; Griesinger, G.; Kelsey, T.W.; La Marca, A.; Lambalk, C.; et al. The physiology and clinical utility of anti-Mullerian hormone in women. Hum. Reprod. Update 2014, 20, 370–385. [Google Scholar] [CrossRef]
- Garg, D.; Merhi, Z. Relationship between Advanced Glycation End Products and Steroidogenesis in PCOS. Reprod. Biol. Endocrinol. RBE 2016, 14, 71. [Google Scholar] [CrossRef]
- Herman, R.; Sever, M.J.; Janež, A.; Dolžan, V.; Herman, R.; Sever, M.J.; Janež, A.; Dolžan, V. Interplay between Oxidative Stress and Chronic Inflammation in PCOS: The Role of Genetic Variability in PCOS Risk and Treatment Responses; IntechOpen: London, UK, 2019; Available online: https://www.intechopen.com/chapters/68759 (accessed on 15 February 2023).
- Snider, A.P.; Wood, J.R. Obesity induces ovarian inflammation and reduces oocyte quality. Reprod. Camb. Engl. 2019, 158, R79–R90. [Google Scholar] [CrossRef]
- Sun, D.; Wu, Y.; Ding, M.; Zhu, F. Comprehensive Meta-Analysis of Functional and Structural Markers of Subclinical Atherosclerosis in Women with Polycystic Ovary Syndrome. Angiology 2022, 73, 622–634. [Google Scholar] [CrossRef] [PubMed]
- Osibogun, O.; Ogunmoroti, O.; Kolade, O.B.; Hays, A.G.; Okunrintemi, V.; Minhas, A.S.; Gulati, M.; Michos, E.D. A Systematic Review and Meta-Analysis of the Association between Polycystic Ovary Syndrome and Coronary Artery Calcification. J. Womens Health 2022, 31, 762–771. [Google Scholar] [CrossRef]
- Meun, C.; Gunning, M.N.; Louwers, Y.V.; Peters, H.; Roos-Hesselink, J.; Roeters van Lennep, J.; Rueda Ochoa, O.-L.; Appelman, Y.; Lambalk, N.; Boersma, E.; et al. The cardiovascular risk profile of middle-aged women with polycystic ovary syndrome. Clin. Endocrinol. 2020, 92, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.L.; Jenkins-Jones, S.; Currie, C.J.; Rees, D.A. Evaluation of adverse outcome in young women with polycystic ovary syndrome versus matched, reference controls: A retrospective, observational study. J. Clin. Endocrinol. Metab. 2012, 97, 3251–3260. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.Y.; Ayers, C.; Minhajuddin, A.; Jain, T.; Nurenberg, P.; de Lemos, J.A.; Wild, R.A.; Auchus, R.J. Polycystic ovarian syndrome and subclinical atherosclerosis among women of reproductive age in the Dallas heart study. Clin. Endocrinol. 2011, 74, 89–96. [Google Scholar] [CrossRef]
- Iftikhar, S.; Collazo-Clavell, M.L.; Roger, V.L.; St Sauver, J.; Brown, R.D.; Cha, S.; Rhodes, D.J. Risk of cardiovascular events in patients with polycystic ovary syndrome. Neth. J. Med. 2012, 70, 74–80. [Google Scholar]
- Zhou, Y.; Wang, X.; Jiang, Y.; Ma, H.; Chen, L.; Lai, C.; Peng, C.; He, C.; Sun, C. Association between polycystic ovary syndrome and the risk of stroke and all-cause mortality: Insights from a meta-analysis. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2017, 33, 904–910. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, Z.; Lou, H.; Zhu, G.; Huang, W.; Zhang, S.; Liu, F. Polycystic ovary syndrome (PCOS) and the risk of coronary heart disease (CHD): A meta-analysis. Oncotarget 2016, 7, 33715–33721. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, J.-H.; Qu, Q.-Q.; Zhong, G.-Q. Risk of Cardiovascular and Cerebrovascular Events in Polycystic Ovarian Syndrome Women: A Meta-Analysis of Cohort Studies. Front. Cardiovasc. Med. 2020, 7, 552421. [Google Scholar] [CrossRef]
- Wekker, V.; van Dammen, L.; Koning, A.; Heida, K.Y.; Painter, R.C.; Limpens, J.; Laven, J.S.E.; Roeters van Lennep, J.E.; Roseboom, T.J.; Hoek, A. Long-term cardiometabolic disease risk in women with PCOS: A systematic review and meta-analysis. Hum. Reprod. Update 2020, 26, 942–960. [Google Scholar] [CrossRef] [PubMed]
- Wild, S.; Pierpoint, T.; McKeigue, P.; Jacobs, H. Cardiovascular disease in women with polycystic ovary syndrome at long-term follow-up: A retrospective cohort study. Clin. Endocrinol. 2000, 52, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Mani, H.; Levy, M.J.; Davies, M.J.; Morris, D.H.; Gray, L.J.; Bankart, J.; Blackledge, H.; Khunti, K.; Howlett, T.A. Diabetes and cardiovascular events in women with polycystic ovary syndrome: A 20-year retrospective cohort study. Clin. Endocrinol. 2013, 78, 926–934. [Google Scholar] [CrossRef]
- Legro, R.S.; Kunselman, A.R.; Dunaif, A. Prevalence and predictors of dyslipidemia in women with polycystic ovary syndrome. Am. J. Med. 2001, 111, 607–613. [Google Scholar] [CrossRef]
- Zhu, T.; Cui, J.; Goodarzi, M.O. Polycystic Ovary Syndrome and Risk of Type 2 Diabetes, Coronary Heart Disease, and Stroke. Diabetes 2021, 70, 627–637. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Papavassiliou, A.G.; Kandarakis, S.A.; Chrousos, G.P. Pathophysiology and types of dyslipidemia in PCOS. Trends Endocrinol. Metab. 2007, 18, 280–285. [Google Scholar] [CrossRef]
- Brunzell, J.D.; Ayyobi, A.F. Dyslipidemia in the metabolic syndrome and type 2 diabetes mellitus. Am. J. Med. 2003, 115 (Suppl. 1), 24S–28S. [Google Scholar] [CrossRef]
- Kim, J.J.; Choi, Y.M. Dyslipidemia in women with polycystic ovary syndrome. Obstet. Gynecol. Sci. 2013, 56, 137–142. [Google Scholar] [CrossRef]
- Wild, R.A.; Rizzo, M.; Clifton, S.; Carmina, E. Lipid levels in polycystic ovary syndrome: Systematic review and meta-analysis. Fertil. Steril. 2011, 95, 1073–1079.e11. [Google Scholar] [CrossRef]
- Conway, G.S.; Agrawal, R.; Betteridge, D.J.; Jacobs, H.S. Risk factors for coronary artery disease in lean and obese women with the polycystic ovary syndrome. Clin. Endocrinol. 1992, 37, 119–125. [Google Scholar] [CrossRef] [PubMed]
- National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [Google Scholar] [CrossRef]
- Valkenburg, O.; Steegers-Theunissen, R.P.M.; Smedts, H.P.M.; Dallinga-Thie, G.M.; Fauser, B.C.J.M.; Westerveld, E.H.; Laven, J.S.E. A more atherogenic serum lipoprotein profile is present in women with polycystic ovary syndrome: A case-control study. J. Clin. Endocrinol. Metab. 2008, 93, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Gong, Z.; Fernando, T.; Zhang, L.; Zhu, X.; Shi, Y. The Lipid Profiles in Different Characteristics of Women with PCOS and the Interaction between Dyslipidemia and Metabolic Disorder States: A Retrospective Study in Chinese Population. Front. Endocrinol. 2022, 13, 892125. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Qiao, J.; Li, R.; Wang, L.; Li, M. Can serum apolipoprotein C-I demonstrate metabolic abnormality early in women with polycystic ovary syndrome? Fertil. Steril. 2010, 94, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Liu, H.; Wang, Y.; Zhang, F.; Bai, H. Apolipoprotein E-containing HDL-associated platelet-activating factor acetylhydrolase activities and malondialdehyde concentrations in patients with PCOS. Reprod. Biomed. Online 2012, 24, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.K.; Yadav, B.K.; Suri, A.; Shah, A.K. A study on lipoprotein-a and PAI-1 in women with polycystic ovary syndrome. Horm. Mol. Biol. Clin. Investig. 2022, 43, 357–361. [Google Scholar] [CrossRef]
- Moran, L.J.; Mundra, P.A.; Teede, H.J.; Meikle, P.J. The association of the lipidomic profile with features of polycystic ovary syndrome. J. Mol. Endocrinol. 2017, 59, 93–104. [Google Scholar] [CrossRef]
- Göbl, C.S.; Ott, J.; Bozkurt, L.; Feichtinger, M.; Rehmann, V.; Cserjan, A.; Heinisch, M.; Steinbrecher, H.; JustKukurova, I.; Tuskova, R.; et al. To Assess the Association between Glucose Metabolism and Ectopic Lipid Content in Different Clinical Classifications of PCOS. PLoS ONE 2016, 11, e0160571. [Google Scholar] [CrossRef]
- Robinson, S.; Henderson, A.D.; Gelding, S.V.; Kiddy, D.; Niththyananthan, R.; Bush, A.; Richmond, W.; Johnston, D.G.; Franks, S. Dyslipidaemia is associated with insulin resistance in women with polycystic ovaries. Clin. Endocrinol. 1996, 44, 277–284. [Google Scholar] [CrossRef]
- Choi, D.-H.; Lee, W.-S.; Won, M.; Park, M.; Park, H.-O.; Kim, E.; Lee, K.-A.; Bae, J. The Apolipoprotein A-I Level Is Downregulated in the Granulosa Cells of Patients with Polycystic Ovary Syndrome and Affects Steroidogenesis. J. Proteome Res. 2010, 9, 4329–4336. [Google Scholar] [CrossRef]
- Echiburú, B.; Pérez-Bravo, F.; Galgani, J.E.; Sandoval, D.; Saldías, C.; Crisosto, N.; Maliqueo, M.; Sir-Petermann, T. Enlarged adipocytes in subcutaneous adipose tissue associated to hyperandrogenism and visceral adipose tissue volume in women with polycystic ovary syndrome. Steroids 2018, 130, 15–21. [Google Scholar] [CrossRef]
- Schube, U.; Nowicki, M.; Jogschies, P.; Blumenauer, V.; Bechmann, I.; Serke, H. Resveratrol and Desferoxamine Protect Human OxLDL-Treated Granulosa Cell Subtypes From Degeneration. J. Clin. Endocrinol. Metab. 2014, 99, 229–239. [Google Scholar] [CrossRef]
- Sam, S.; Legro, R.S.; Bentley-Lewis, R.; Dunaif, A. Dyslipidemia and metabolic syndrome in the sisters of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2005, 90, 4797–4802. [Google Scholar] [CrossRef]
- Sam, S.; Legro, R.S.; Essah, P.A.; Apridonidze, T.; Dunaif, A. Evidence for metabolic and reproductive phenotypes in mothers of women with polycystic ovary syndrome. Proc. Natl. Acad. Sci. USA 2006, 103, 7030–7035. [Google Scholar] [CrossRef]
- Recabarren, S.E.; Smith, R.; Rios, R.; Maliqueo, M.; Echiburú, B.; Codner, E.; Cassorla, F.; Rojas, P.; Sir-Petermann, T. Metabolic profile in sons of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2008, 93, 1820–1826. [Google Scholar] [CrossRef] [PubMed]
- Shawish, M.I.; Bagheri, B.; Musini, V.M.; Adams, S.P.; Wright, J.M. Effect of atorvastatin on testosterone levels. Cochrane Database Syst. Rev. 2021, 1, CD013211. [Google Scholar] [CrossRef] [PubMed]
- Miao, K.; Zhou, H. Effect of statins combined or not combined with metformin on polycystic ovary syndrome: A systematic review and meta-analysis. J. Obstet. Gynaecol. Res. 2022, 48, 1806–1815. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shao, Y.; Xie, J.; Chen, L.; Zhu, G. The efficacy and safety of metformin combined with simvastatin in the treatment of polycystic ovary syndrome: A meta-analysis and systematic review. Medicine 2021, 100, e26622. [Google Scholar] [CrossRef] [PubMed]
- Banaszewska, B.; Pawelczyk, L.; Spaczynski, R.Z.; Dziura, J.; Duleba, A.J. Effects of simvastatin and oral contraceptive agent on polycystic ovary syndrome: Prospective, randomized, crossover trial. J. Clin. Endocrinol. Metab. 2007, 92, 456–461. [Google Scholar] [CrossRef]
- Kaya, C.; Pabuccu, R.; Cengiz, S.D.; Dünder, I. Comparison of the effects of atorvastatin and simvastatin in women with polycystic ovary syndrome: A prospective, randomized study. Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc. 2010, 118, 161–166. [Google Scholar] [CrossRef]
- Chen, L.-L.; Zheng, J.-H. Effects of atorvastatin on the insulin resistance in women of polycystic ovary syndrome: A systematic review and meta-analysis. Medicine 2021, 100, e26289. [Google Scholar] [CrossRef]
- Puurunen, J.; Piltonen, T.; Puukka, K.; Ruokonen, A.; Savolainen, M.J.; Bloigu, R.; Morin-Papunen, L.; Tapanainen, J.S. Statin Therapy Worsens Insulin Sensitivity in Women with Polycystic Ovary Syndrome (PCOS): A Prospective, Randomized, Double-Blind, Placebo-Controlled Study. J. Clin. Endocrinol. Metab. 2013, 98, 4798–4807. [Google Scholar] [CrossRef]
- Almalki, H.H.; Alshibani, T.M.; Alhifany, A.A.; Almohammed, O.A. Comparative efficacy of statins, metformin, spironolactone and combined oral contraceptives in reducing testosterone levels in women with polycystic ovary syndrome: A network meta-analysis of randomized clinical trials. BMC Womens Health 2020, 20, 68. [Google Scholar] [CrossRef]
- Krysiak, R.; Zmuda, W.; Okopien, B. The effect of ezetimibe on androgen production in hypercholesterolemic women with polycystic ovary syndrome. Cardiovasc. Ther. 2014, 32, 219–223. [Google Scholar] [CrossRef]
- Morgante, G.; Orvieto, R.; Di Sabatino, A.; Musacchio, M.C.; De Leo, V. The role of inositol supplementation in patients with polycystic ovary syndrome, with insulin resistance, undergoing the low-dose gonadotropin ovulation induction regimen. Fertil. Steril. 2011, 95, 2642–2644. [Google Scholar] [CrossRef]
- Feuerstein, J.S.; Bjerke, W.S. Powdered red yeast rice and plant stanols and sterols to lower cholesterol. J. Diet. Suppl. 2012, 9, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Musacchio, M.C.; Cappelli, V.; Di Sabatino, A.; Morgante, G.; De Leo, V. Evaluation of the myo-inositol-monacolin K association on hyperandrogenism and on the lipidic metabolism parameters in PCOS women. Minerva Ginecol. 2013, 65, 89–97. [Google Scholar] [PubMed]
- Morgante, G.; Cappelli, V.; Di Sabatino, A.; Massaro, M.G.; De Leo, V. Polycystic ovary syndrome (PCOS) and hyperandrogenism: The role of a new natural association. Minerva Ginecol. 2015, 67, 457–463. [Google Scholar] [PubMed]
- Vinci, P.; Panizon, E.; Tosoni, L.M.; Cerrato, C.; Pellicori, F.; Mearelli, F.; Biasinutto, C.; Fiotti, N.; Di Girolamo, F.G.; Biolo, G. Statin-Associated Myopathy: Emphasis on Mechanisms and Targeted Therapy. Int. J. Mol. Sci. 2021, 22, 11687. [Google Scholar] [CrossRef]
- Jose, J. Statins and its hepatic effects: Newer data, implications, and changing recommendations. J. Pharm. Bioallied Sci. 2016, 8, 23–28. [Google Scholar] [CrossRef]
- Hoogwerf, B.J. Statins may increase diabetes, but benefit still outweighs risk. Cleve. Clin. J. Med. 2023, 90, 53–62. [Google Scholar] [CrossRef]
- Vahedian-Azimi, A.; Makvandi, S.; Banach, M.; Reiner, Ž.; Sahebkar, A. Fetal toxicity associated with statins: A systematic review and meta-analysis. Atherosclerosis 2021, 327, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Sathyapalan, T.; Kilpatrick, E.S.; Coady, A.-M.; Atkin, S.L. The effect of atorvastatin in patients with polycystic ovary syndrome: A randomized double-blind placebo-controlled study. J. Clin. Endocrinol. Metab. 2009, 94, 103–108. [Google Scholar] [CrossRef]
- Kazerooni, T.; Shojaei-Baghini, A.; Dehbashi, S.; Asadi, N.; Ghaffarpasand, F.; Kazerooni, Y. Effects of metformin plus simvastatin on polycystic ovary syndrome: A prospective, randomized, double-blind, placebo-controlled study. Fertil. Steril. 2010, 94, 2208–2213. [Google Scholar] [CrossRef]
- Raja-Khan, N.; Kunselman, A.R.; Hogeman, C.S.; Stetter, C.M.; Demers, L.M.; Legro, R.S. Effects of atorvastatin on vascular function, inflammation, and androgens in women with polycystic ovary syndrome: A double-blind, randomized placebo-controlled trial. Fertil. Steril. 2011, 95, 1849–1852. [Google Scholar] [CrossRef] [PubMed]
- Banaszewska, B.; Pawelczyk, L.; Spaczynski, R.Z.; Duleba, A.J. Effects of Simvastatin and Metformin on Polycystic Ovary Syndrome after Six Months of Treatment. J. Clin. Endocrinol. Metab. 2011, 96, 3493–3501. [Google Scholar] [CrossRef]
- Akbari, M.; Almasi, A.; Naderi, Z.; Kouhpayezadeh, J.; Pourali, R.; Hossinzadeh, Z. The Effect of Atrovastatin on the Ovarian Arterial Blood Flow and Serum Androgen Level in PCOS Patient. Biomed. Pharmacol. J. 2016, 9, 1041–1048. [Google Scholar]
- Sathyapalan, T.; Smith, K.A.; Coady, A.-M.; Kilpatrick, E.S.; Atkin, S.L. Atorvastatin therapy decreases androstenedione and dehydroepiandrosterone sulphate concentrations in patients with polycystic ovary syndrome: Randomized controlled study. Ann. Clin. Biochem. 2012, 49 Pt 1, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, B.; Abediasl, J.; Tehraninejad, E.; Rahmanpour, H.; Sills, E.S. Simvastatin effects on androgens, inflammatory mediators, and endogenous pituitary gonadotropins among patients with PCOS undergoing IVF: Results from a prospective, randomized, placebo-controlled clinical trial. J. Investig. Med. Off. Publ. Am. Fed. Clin. Res. 2011, 59, 912–916. [Google Scholar] [CrossRef]
- Sirtori, C.R. The pharmacology of statins. Pharmacol. Res. 2014, 88, 3–11. [Google Scholar] [CrossRef]
- Bilheimer, D.W.; Grundy, S.M.; Brown, M.S.; Goldstein, J.L. Mevinolin and colestipol stimulate receptor-mediated clearance of low density lipoprotein from plasma in familial hypercholeserolemia heterozygotes. Atheroscler. Suppl. 2004, 5, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, T.A.; Gylling, H.; Nissinen, M.J. The role of serum non-cholesterol sterols as surrogate markers of absolute cholesterol synthesis and absorption. Nutr. Metab. Cardiovasc. Dis. NMCD 2011, 21, 765–769. [Google Scholar] [CrossRef] [PubMed]
- de Haan, W.; van der Hoogt, C.C.; Westerterp, M.; Hoekstra, M.; Dallinga-Thie, G.M.; Princen, H.M.G.; Romijn, J.A.; Jukema, J.W.; Havekes, L.M.; Rensen, P.C.N. Atorvastatin increases HDL cholesterol by reducing CETP expression in cholesterol-fed APOE*3-Leiden.CETP mice. Atherosclerosis 2008, 197, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Buhaescu, I.; Izzedine, H. Mevalonate pathway: A review of clinical and therapeutical implications. Clin. Biochem. 2007, 40, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Mansi, I.A.; Chansard, M.; Lingvay, I.; Zhang, S.; Halm, E.A.; Alvarez, C.A. Association of Statin Therapy Initiation with Diabetes Progression: A Retrospective Matched-Cohort Study. JAMA Intern. Med. 2021, 181, 1562–1574. [Google Scholar] [CrossRef] [PubMed]
- Naples, M.; Federico, L.M.; Xu, E.; Nelken, J.; Adeli, K. Effect of rosuvastatin on insulin sensitivity in an animal model of insulin resistance: Evidence for statin-induced hepatic insulin sensitization. Atherosclerosis 2008, 198, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Sokalska, A.; Piotrowski, P.C.; Rzepczynska, I.J.; Cress, A.; Duleba, A.J. Statins inhibit growth of human theca-interstitial cells in PCOS and non-PCOS tissues independently of cholesterol availability. J. Clin. Endocrinol. Metab. 2010, 95, 5390–5394. [Google Scholar] [CrossRef] [PubMed]
- Zubelewicz-Szkodzińska, B.; Szkodziński, J.; Danikiewicz, A.; Romanowski, W.; Błazelonis, A.; Muc-Wierzgon, M.; Pietka-Rzycka, A.; Muryn, Z. Effects of simvastatin on pro-inflammatory cytokines in patients with hypercholesterolemia. Kardiol. Pol. 2003, 59, 465–474. [Google Scholar]
- Danesh, F. Statins and VEGF-Induced Cytoskeletal Remodeling. Available online: https://grantome.com/grant/NIH/R01-DK067604-03 (accessed on 13 January 2023).
- Sathyapalan, T.; Atkin, S.L. Evidence for statin therapy in polycystic ovary syndrome. Ther. Adv. Endocrinol. Metab. 2010, 1, 15–22. [Google Scholar] [CrossRef]
- Ortega, I.; Cress, A.B.; Wong, D.H.; Villanueva, J.A.; Sokalska, A.; Moeller, B.C.; Stanley, S.D.; Duleba, A.J. Simvastatin reduces steroidogenesis by inhibiting Cyp17a1 gene expression in rat ovarian theca-interstitial cells. Biol. Reprod. 2012, 86, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.; Tiwari, S. Therapeutic Interventions for Advanced Glycation-End Products and its Receptor-Mediated Cardiovascular Disease. Curr. Pharm. Des. 2017, 23, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhao, D.; Xu, L.; Guo, W.; Nie, L.; Lei, Y.; Long, Y.; Liu, M.; Wang, Y.; Zhang, X.; et al. Role of PCSK9 in lipid metabolic disorders and ovarian dysfunction in polycystic ovary syndrome. Metabolism 2019, 94, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.A.; Thompson, P.D. Statins and Their Effect on PCSK9-Impact and Clinical Relevance. Curr. Atheroscler. Rep. 2016, 18, 46. [Google Scholar] [CrossRef] [PubMed]
- Maligłówka, M.; Kosowski, M.; Hachuła, M.; Cyrnek, M.; Bułdak, Ł.; Basiak, M.; Bołdys, A.; Machnik, G.; Bułdak, R.J.; Okopień, B. Insight into the Evolving Role of PCSK9. Metabolites 2022, 12, 256. [Google Scholar] [CrossRef] [PubMed]
- Blom, D.J.; Chen, J.; Yuan, Z.; Borges, J.L.C.; Monsalvo, M.L.; Wang, N.; Hamer, A.W.; Ge, J. Effects of evolocumab therapy and low LDL-C levels on vitamin E and steroid hormones in Chinese and global patients with type 2 diabetes. Endocrinol. Diabetes Metab. 2020, 3, e00123. [Google Scholar] [CrossRef] [PubMed]
- Scicali, R.; Russo, G.I.; Di Mauro, M.; Manuele, F.; Di Marco, G.; Di Pino, A.; Ferrara, V.; Rabuazzo, A.M.; Piro, S.; Morgia, G.; et al. Analysis of Arterial Stiffness and Sexual Function after Adding on PCSK9 Inhibitor Treatment in Male Patients with Familial Hypercholesterolemia: A Single Lipid Center Real-World Experience. J. Clin. Med. 2020, 9, 3597. [Google Scholar] [CrossRef]
- Bizoń, A.; Franik, G.; Madej, P. The role of proprotein convertase subtilisin/kexin type-9 concentration and paraoxonase 1 activities in the blood of women with polycystic ovary syndrome. Environ. Toxicol. Pharmacol. 2021, 84, 103612. [Google Scholar] [CrossRef]
- Xavier, L.B.; Sóter, M.O.; Sales, M.F.; Oliveira, D.K.; Reis, H.J.; Candido, A.L.; Reis, F.M.; Silva, I.O.; Gomes, K.B.; Ferreira, C.N. Evaluation of PCSK9 levels and its genetic polymorphisms in women with polycystic ovary syndrome. Gene 2018, 644, 129–136. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, R.; Song, L.; Han, H.; Wang, P.; Zhao, Y.; Zhang, Y.; Zhang, H. Causal association between lipid-lowering drugs and female reproductive endocrine diseases: A drug-targeted Mendelian randomization study. Front. Endocrinol. 2023, 14, 1295412. [Google Scholar] [CrossRef] [PubMed]
- Wattar, B.H.A.; Fisher, M.; Bevington, L.; Talaulikar, V.; Davies, M.; Conway, G.; Yasmin, E. Clinical Practice Guidelines on the Diagnosis and Management of Polycystic Ovary Syndrome: A Systematic Review and Quality Assessment Study. J. Clin. Endocrinol. Metab. 2021, 106, 2436. [Google Scholar] [CrossRef] [PubMed]
Apolipoprotein | Characteristics | Levels in PCOS |
---|---|---|
ApoA-I | Carried with HDL, cardioprotective effects. | Low [75]. |
ApoB | Present in all atherogenic lipoproteins. | Elevated in PCOS subgroup related to insulin resistance [76]. |
ApoC-I | Inhibits uptake of TG-rich lipoproteins via hepatic receptors. | Elevated in PCOS women even with lean patients. Probably the earliest variation in lipid metabolic abnormality in PCOS [77]. |
ApoE | Present in HDL and LDL. | Low [78]. |
Lipoprotein a | ApoB-100 and ApoA, atherogenic, prothrombotic. | High * [79]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolnikaj, T.S.; Herman, R.; Janež, A.; Jensterle, M. The Current and Emerging Role of Statins in the Treatment of PCOS: The Evidence to Date. Medicina 2024, 60, 244. https://doi.org/10.3390/medicina60020244
Kolnikaj TS, Herman R, Janež A, Jensterle M. The Current and Emerging Role of Statins in the Treatment of PCOS: The Evidence to Date. Medicina. 2024; 60(2):244. https://doi.org/10.3390/medicina60020244
Chicago/Turabian StyleKolnikaj, Tea Shehu, Rok Herman, Andrej Janež, and Mojca Jensterle. 2024. "The Current and Emerging Role of Statins in the Treatment of PCOS: The Evidence to Date" Medicina 60, no. 2: 244. https://doi.org/10.3390/medicina60020244
APA StyleKolnikaj, T. S., Herman, R., Janež, A., & Jensterle, M. (2024). The Current and Emerging Role of Statins in the Treatment of PCOS: The Evidence to Date. Medicina, 60(2), 244. https://doi.org/10.3390/medicina60020244