Utilization of Augmented Reality Head-Mounted Display for the Surgical Management of Thoracolumbar Spinal Trauma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Analysis
2.2. Surgical Technique for AR-HMD
3. Results
3.1. AR-HMD-Assisted Patient Cohort
3.2. Robotic-Assisted Patient Cohort
3.3. Comparison between AR-HMD and Robotic-Assisted Patient Cohorts
4. Clinical Case Examples
4.1. AR-HMD
4.2. Robotic
5. Discussion
Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dick, W.; Kluger, P.; Magerl, F.; Woersdörfer, O.; Zäch, G. A new device for internal fixation of thoracolumbar and lumbar spine fractures: The ‘fixateur interne’. Spinal Cord 1985, 23, 225–232. [Google Scholar] [CrossRef]
- Love, D.; Lockey, S.; Ye, I.; Ludwig, S. Percutaneous pedicle screw instrumentation. Semin. Spine Surg. 2021, 33, 100890. [Google Scholar] [CrossRef]
- Park, D.K.; Thomas, A.O.; Clair, S.S.; Bawa, M. Percutaneous lumbar and thoracic pedicle screws: A trauma experience. Clin. Spine Surg. 2014, 27, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Nottmeier, E. A review of image-guided spinal surgery. J. Neurosurg. Sci. 2012, 56, 35–47. [Google Scholar] [PubMed]
- Rahmathulla, G.; Nottmeier, E.W.; Pirris, S.M.; Deen, H.G.; Pichelmann, M.A. Intraoperative image-guided spinal navigation: Technical pitfalls and their avoidance. Neurosurg. Focus 2014, 36, E3. [Google Scholar] [CrossRef] [PubMed]
- Gautschi, O.P.; Schatlo, B.; Schaller, K.; Tessitore, E. Clinically relevant complications related to pedicle screw placement in thoracolumbar surgery and their management: A literature review of 35,630 pedicle screws. Neurosurg. Focus 2011, 31, E8. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.; Villa, T.; Anasetti, F.; Tomei, M.; Ortolina, A.; Cardia, A.; La Barbera, L.; Fornari, M.; Galbusera, F. Primary stability of pedicle screws depends on the screw positioning and alignment. Spine J. 2013, 13, 1934–1939. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.L.; Amin, A.G.; Santiago-Dieppa, D.; Liauw, J.A.; Bydon, A.; Sciubba, D.M.; Wolinsky, J.P.; Gokaslan, Z.L.; Witham, T.F. Incidence and clinical significance of vascular encroachment resulting from freehand placement of pedicle screws in the thoracic and lumbar spine: Analysis of 6816 consecutive screws. Spine 2014, 39, 683–687. [Google Scholar] [CrossRef]
- Hu, X.; Ohnmeiss, D.D.; Lieberman, I.H. Robotic-assisted pedicle screw placement: Lessons learned from the first 102 patients. Eur. Spine J. 2013, 22, 661–666. [Google Scholar] [CrossRef]
- Lieberman, I.H.; Kisinde, S.; Hesselbacher, S. Robotic-Assisted Pedicle Screw Placement During Spine Surgery. JBJS Essent. Surg. Tech. 2020, 10, e0020. [Google Scholar] [CrossRef]
- Van Dijk, J.D.; van den Ende, R.P.; Stramigioli, S.; Köchling, M.; Höss, N. Clinical pedicle screw accuracy and deviation from planning in robot-guided spine surgery: Robot-guided pedicle screw accuracy. Spine 2015, 40, E986–E991. [Google Scholar] [CrossRef]
- D’Souza, M.; Gendreau, J.; Feng, A.; Kim, L.H.; Ho, A.L.; Veeravagu, A. Robotic-assisted spine surgery: History, efficacy, cost, and future trends. Robot. Surg. Res. Rev. 2019, 6, 9. [Google Scholar] [CrossRef]
- Buza, J.A.; Good, C.R.; Lehman, R.A.; Pollina, J.; Chua, R.V.; Buchholz, A.L.; Gum, J.L. Robotic-assisted cortical bone trajectory (CBT) screws using the Mazor X Stealth Edition (MXSE) system: Workflow and technical tips for safe and efficient use. J. Robot. Surg. 2021, 15, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Morse, K.W.; Otremski, H.; Page, K.; Widmann, R.F. Less Invasive Pediatric Spinal Deformity Surgery: The Case for Robotic-Assisted Placement of Pedicle Screws. HSS J. 2021, 17, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Molina, C.A.; Theodore, N.; Ahmed, A.K.; Westbroek, E.M.; Mirovsky, Y.; Harel, R.; Orru’, E.; Khan, M.; Witham, T.; Sciubba, D.M. Augmented reality–assisted pedicle screw insertion: A cadaveric proof-of-concept study. J. Neurosurg. Spine 2019, 31, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Jin, Y.; Cottrill, E.; Khan, M.; Westbroek, E.; Ehresman, J.; Pennington, Z.; Lo, S.-F.L.; Sciubba, D.M.; Molina, C.A.; et al. Clinical accuracy and initial experience with augmented reality-assisted pedicle screw placement: The first 205 screws. J. Neurosurg. Spine 2021, 36, 351–357. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. International Classification of Diseases. Available online: https://www.who.int/standards/classifications/classification-of-diseases (accessed on 27 February 2023).
- Yahanda, A.T.; Moore, E.; Ray, W.Z.; Pennicooke, B.; Jennings, J.W.; Molina, C.A. First in-human report of the clinical accuracy of thoracolumbar percutaneous pedicle screw placement using augmented reality guidance. Neurosurg. Focus 2021, 51, E10. [Google Scholar] [CrossRef] [PubMed]
- Molina, C.A.; Sciubba, D.M.; Greenberg, J.K.; Khan, M.; Witham, T. Clinical Accuracy, Technical Precision, and Workflow of the First in Human Use of an Augmented-Reality Head-Mounted Display Stereotactic Navigation System for Spine Surgery. Oper. Neurosurg. 2021, 20, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.R.; Smith, B.W.; Liu, X.; Park, P. Current applications of robotics in spine surgery: A systematic review of the literature. Neurosurg. Focus 2017, 42, E2. [Google Scholar] [CrossRef] [PubMed]
- Felix, B.; Kalatar, S.B.; Moatz, B.; Hofstetter, C.; Karsy, M.; Parr, R.; Gibby, W. Augmented Reality Spine Surgery Navigation Increasing Pedicle Screw: Insertion Accuracy for Both Open and Minimally Invasive S Surgeries. Spine 2022, 47, 865–872. [Google Scholar] [CrossRef]
- Molina, C.A.; Phillips, F.M.; Colman, M.W.; Ray, W.Z.; Khan, M.; Poelstra, K.; Khoo, L. A cadaveric precision and accuracy analysis of augmented reality-mediated percutaneous pedicle implant insertion. J. Neurosurg. Spine 2020, 34, 316–326. [Google Scholar] [CrossRef]
- Bhatt, F.R.; Orosz, L.D.; Tewari, A.; Boyd, D.; Roy, R.; Good, C.R.; Schuler, T.C.; Haines, C.M.; Jazini, E. Augmented Reality-Assisted Spine Surgery: An Early Experience Demonstrating Safety and Accuracy with 218 Screws. Glob. Spine J. 2022, 13, 2047–2052. [Google Scholar] [CrossRef]
- Molina, C.A.; Dibble, C.F.; Lo, S.F.L.; Witham, T.; Sciubba, D.M. Augmented reality-mediated stereotactic navigation for execution of en bloc lumbar spondylectomy osteotomies. J. Neurosurg. Spine 2021, 34, 700–705. [Google Scholar] [CrossRef]
- Dennler, C.; Jaberg, L.; Spirig, J.; Agten, C.; Götschi, T.; Fürnstahl, P.; Farshad, M. Augmented reality-based navigation increases precision of pedicle screw insertion. J. Orthop. Surg. Res. 2020, 15, 174. [Google Scholar] [CrossRef] [PubMed]
- Onen, M.R.; Simsek, M.; Naderi, S. Robotic spine surgery: A preliminary report. Turk. Neurosurg. 2014, 24, 512–518. [Google Scholar] [CrossRef]
- Khan, A.; Meyers, J.E.; Siasios, I.; Pollina, J. Next-Generation Robotic Spine Surgery: First Report on Feasibility, Safety, and Learning Curve. Oper. Neurosurg. 2019, 17, 61–69. [Google Scholar] [CrossRef]
- Han, X.; Tian, W.; Liu, Y.; Liu, B.; He, D.; Sun, Y.; Han, X.; Fan, M.; Zhao, J.; Xu, Y.; et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: A prospective randomized controlled trial. J. Neurosurg. Spine 2019, 30, 615–622. [Google Scholar] [CrossRef]
- Huntsman, K.T.; Ahrendtsen, L.A.; Riggleman, J.R.; Ledonio, C.G. Robotic-assisted navigated minimally invasive pedicle screw placement in the first 100 cases at a single institution. J. Robot. Surg. 2020, 14, 199–203. [Google Scholar] [CrossRef]
- Jiang, B.; Pennington, Z.; Zhu, A.; Matsoukas, S.; Ahmed, A.K.; Ehresman, J.; Mahapatra, S.; Cottrill, E.; Sheppell, H.; Manbachi, A.; et al. Three-dimensional assessment of robot-assisted pedicle screw placement accuracy and instrumentation reliability based on a preplanned trajectory. J. Neurosurg. Spine 2020, 33, 519–528. [Google Scholar] [CrossRef] [PubMed]
- La Joie, R.; Perrotin, A.; Egret, S.; Pasquier, F.; Tomadesso, C.; Mézenge, F.; Desgranges, B.; de La Sayette, V.; Chételat, G. Qualitative and quantitative assessment of self-reported cognitive difficulties in nondemented elders: Association with medical help seeking, cognitive deficits, and β-amyloid imaging. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2016, 5, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Matur, A.V.; Palmisciano, P.; Duah, H.O.; Chilakapati, S.S.; Cheng, J.S.; Adogwa, O. Robotic and navigated pedicle screws are safer and more accurate than fluoroscopic freehand screws: A systematic review and meta-analysis. Spine J. Off. J. N. Am. Spine Soc. 2023, 23, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Butler, A.J.; Colman, M.W.; Lynch, J.; Phillips, F.M. Augmented reality in minimally invasive spine surgery: Early efficiency and complications of percutaneous pedicle screw instrumentation. Spine J. Off. J. N. Am. Spine Soc. 2023, 23, 27–33. [Google Scholar] [CrossRef] [PubMed]
Value | ||
---|---|---|
Variable | AR Assisted | Robotic Assisted |
Female sex | 4 (44%) | 5 (38%) |
White race | 8 (89%) | 13 (100%) |
Mean age, yrs | 66.00 ± 10.33 | 55.62 ± 19.75 |
Mean BMI, kg/m2 | 29.37 ± 6.09 | 27.12 ± 5.12 |
Charlson Comorbidity Index | 4.11 ± 2.98 | 3.77 ± 4.21 |
Surgical Invasiveness Index | 8.78 ± 3.19 | 14.23 ± 7.08 * |
Injury Classification | ||
| 6 (67%) | 10 (77%) |
| 2 (22%) | 2 (15%) |
| 1 (11%) | 0 (0%) |
| 0 (0%) | 1 (8%) |
Mechanism of Injury | ||
| 4 (44%) | 6 (46%) |
| 2 (22%) | 1 (8%) |
| 1 (11%) | 0 (0%) |
| 1 (11%) | 0 (0%) |
| 1 (11%) | 5 (38%) |
| 0 (0%) | 1 (8%) |
Total No. of Screws | 77 | 128 |
| 39 (51%) | 75 (59%) |
| 30 (39%) | 47 (37%) |
| 8 (10%) | 2 (2%) |
| 0 (%) | 2 (2%) |
| 0 (%) | 2 (2%) |
Discharge Disposition | ||
| 4 (44%) | 9 (69%) |
| 2 (22%) | 2 (15%) |
| 0 (0%) | 1 (8%) |
| 1 (11%) | 0 (0%) |
| 2 (22%) | 1 (8%) |
Patient No. | Surgical Procedure | No. and Location of Pedicle Screws Placed | Harmonious Position on Biplanar Projections | Complications/Reoperations |
---|---|---|---|---|
1 | Percutaneous posterior spinal instrumentation from L4 to L5; open sacroiliac fixation with dual screws at the S2–S3 vertebral body level. | 4 lumbar, 2 sacral | Yes | Lumbar pseudoarthrosis # |
2 | Percutaneous posterior spinal instrumentation from T7 to L2; T10 and T11 laminectomy; bilateral facetectomies at T10–11 and T11–T12; bilateral T11 pediculectomies; removal of posterolateral and ventral tumor. | 12 thoracic, 4 lumbar | Yes | None |
3 | Spinal arthrodesis from L2 to S1; posterior spinal instrumentation from L2 to S1; pelvic fixation using an S2 alar iliac screw technique; posterior column osteotomies and sublaminar decompression at L2–L3, at previously arthrodesis L3–L4, and L5–S1. | 8 lumbar, 4 sacral | Yes | None |
4 | Percutaneous posterior spinal instrumentation from T9 to L2; posterior spinal arthrodesis from T10–T11; complete laminectomies including foraminotomies at T10 to T11. | 8 thoracic, 4 lumbar | Yes | None |
5 | Posterolateral and midline arthrodesis from L4 to S1; pelvic fixation using S2 alar iliac screw technique. | 2 sacral | Yes | None |
6 | Percutaneous posterior spinal instrumentation from T12 to L4; laminectomy of the L2 vertebra for decompression. | 2 thoracic, 6 lumbar | Yes | None/Elective hardware removal 12 months |
7 | Percutaneous posterior spinal instrumentation from T8 to T12; spinal arthrodesis from T8 to T12. | 4 thoracic | Yes | None |
8 | Percutaneous posterior spinal instrumentation from T8 to T11. | 8 thoracic | Yes | None |
9 | Percutaneous posterior spinal instrumentation from T10 to L2. | 5 thoracic *, 4 lumbar | Yes | None |
Patient No. | Surgical Procedure | No. and Location of Pedicle Screws Placed | Harmonious Position on Biplanar Projections | Complications/Reoperations |
---|---|---|---|---|
1 | Posterior spinal instrumentation S1 to the pelvis. | 2 iliac, 2 sacral | Yes | None/Elective hardware removal after 8 months |
2 | Laminectomies from L1 to L3 for decompression; T12–L4 posterior spinal instrumentation; spinal arthrodesis from T12 to L4 | 2 thoracic, 6 lumbar | Yes | None |
3 | Posterior spinal instrumentation from T7 to T11; spinal arthrodesis from T7 to T11. | 8 thoracic | Yes | None/Elective hardware removal after 10 months |
4 | Posterior spinal instrumentation from L1 to the pelvis; fusion spinal–posterior lumber/thoracic with instrumentation—T8–L1. | 10 thoracic, 5 lumbar *, 2 pelvis | Yes | None/Elective hardware removal 12 months |
5 | Laminectomies from T7–T8 for decompression; posterior spinal instrumentation from T5 to T10; spinal arthrodesis T5–T10. | 8 thoracic | Yes | None |
6 | Laminectomies and facetectomy at the T10–T11 and T11–T12 levels; posterior spinal instrumentation from T9 to L1; spinal arthrodesis from T9–T11; corpectomy/partial vertebral column resection with anterior column reconstruction at T11. | 6 thoracic, 2 lumbar | Yes | None |
7 | Percutaneous posterior spinal instrumentation T10 to L3; spinal arthrodesis from T10 to L3. | 6 thoracic, 6 lumbar | Yes | None |
8 | Bilateral facetectomies at L2–L3; partial medial facetectomies L3 to L4; percutaneous posterior spinal instrumentation L1 to L5; spinal arthrodesis from L2 to L4. | 8 lumbar | Yes | None |
9 | Percutaneous posterior spinal instrumentation from T5 to T7. | 6 thoracic | Yes | None |
10 | Posterior spinal instrumentation from T6 to L1; spinal arthrodesis from T6 to L1. | 14 thoracic, 2 lumbar | Yes | None |
11 | Percutaneous posterior spinal instrumentation from T10 to L2. | 6 thoracic, 4 lumbar | Yes | None |
12 | Laminectomies and medical facetectomies from T11 to L1; right T12 transpedicular decompression for ventral spinal cord decompression; posterior instrumented fusion from T9 to L3; spinal arthrodesis from T9 to L3. | 7 thoracic †, 6 lumbar | Yes | None |
13 | Percutaneous spinal instrumentation from T12 to L4. | 2 thoracic, 8 lumbar | Yes | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kann, M.R.; Ruiz-Cardozo, M.A.; Brehm, S.; Bui, T.; Joseph, K.; Barot, K.; Trevino, G.; Carey-Ewend, A.; Singh, S.P.; De La Paz, M.; et al. Utilization of Augmented Reality Head-Mounted Display for the Surgical Management of Thoracolumbar Spinal Trauma. Medicina 2024, 60, 281. https://doi.org/10.3390/medicina60020281
Kann MR, Ruiz-Cardozo MA, Brehm S, Bui T, Joseph K, Barot K, Trevino G, Carey-Ewend A, Singh SP, De La Paz M, et al. Utilization of Augmented Reality Head-Mounted Display for the Surgical Management of Thoracolumbar Spinal Trauma. Medicina. 2024; 60(2):281. https://doi.org/10.3390/medicina60020281
Chicago/Turabian StyleKann, Michael Ryan, Miguel A. Ruiz-Cardozo, Samuel Brehm, Tim Bui, Karan Joseph, Karma Barot, Gabriel Trevino, Abigail Carey-Ewend, Som P. Singh, Matthew De La Paz, and et al. 2024. "Utilization of Augmented Reality Head-Mounted Display for the Surgical Management of Thoracolumbar Spinal Trauma" Medicina 60, no. 2: 281. https://doi.org/10.3390/medicina60020281
APA StyleKann, M. R., Ruiz-Cardozo, M. A., Brehm, S., Bui, T., Joseph, K., Barot, K., Trevino, G., Carey-Ewend, A., Singh, S. P., De La Paz, M., Hanafy, A., Olufawo, M., Patel, R. P., Yahanda, A. T., Perdomo-Pantoja, A., Jauregui, J. J., Cadieux, M., Pennicooke, B., & Molina, C. A. (2024). Utilization of Augmented Reality Head-Mounted Display for the Surgical Management of Thoracolumbar Spinal Trauma. Medicina, 60(2), 281. https://doi.org/10.3390/medicina60020281