Evaluation of Surface Structure and Morphological Phenomena of Caucasian Virgin Hair with Atomic Force Microscopy
Abstract
:1. Introduction
2. Material and Methods
2.1. The Objective of the Study
2.2. Subjects
2.3. Hair Preparation
2.4. Atomic Force Microscopy (AFM)
2.5. Method of Taking Measurements and Analyzing Images Obtained with Atomic Force Microscopy (AFM)
- -
- From 0 to 5 for the broken edges of scales and the endocuticle (qualification for a given range was made on the basis of a comparison of the trait in question between different subjects and on the basis of the researcher’s own experience).
- -
- From 1 to 3 for the shape of the edge (1—convex, 2—straight, 3—concave); the evaluation was based on the researcher’s own experience and comparison between different photos.
2.6. Statistical Analysis
3. Results
3.1. Dimensions and Size of the Scale
3.2. Surface Phenomena Resulting from the Natural Delamination Process
3.3. Other Morphological Phenomena Visualized on the Hair Surface
- Pitting (Figure 4a,b)
- Oval indentations (Figure 4c,d)
- Scratches (Figure 4e,f)
- Wavy edge (Figure 5a,b)
- Globules (Figure 5c,d)
- Rod-like macrofibrillar elements (Figure 5e,f)
4. Discussion
4.1. Basics of AFM Operation and Functioning
4.2. AFM Research on Hair
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mcmullen, R.L.; Zhang, G. Investigation of the Internal Structure of Human Hair with Atomic Force Microscopy. J. Cosmet. Sci. 2020, 71, 117–131. [Google Scholar]
- Chen, N.; Bhushan, B. Morphological, nanomechanical and cellular structural characterization of human hair and conditioner distribution using torsional resonance mode with an atomic force microscope. J. Microsc. 2005, 220 Pt 2, 96–112. [Google Scholar] [CrossRef] [PubMed]
- Swift, J.A.; Smith, J.R. Atomic force microscopy of human hair. Scanning 2000, 22, 310–318. [Google Scholar] [CrossRef] [PubMed]
- You, H.; Yu, L. Atomic force microscopy as a tool for study of human hair. Scanning 1997, 19, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.R. A quantitative method for analysing AFM images of the outer surfaces of human hair. J. Microsc. 1998, 191 Pt 3, 223–228. [Google Scholar] [CrossRef]
- La Torre, C.; Bhushan, B. Nanotribological effects of silicone type, silicone deposition level, and surfactant type on human hair using atomic force microscopy. J. Cosmet. Sci. 2006, 57, 37–56. [Google Scholar]
- Chen, N.; Bhushan, B. Atomic force microscopy studies of conditioner thickness distribution and binding interactions on the hair surface. J. Microsc. 2006, 221 Pt 3, 203–215. [Google Scholar] [CrossRef]
- LaTorre, C.; Bhushan, B. Investigation of scale effects and directionality dependence on friction and adhesion of human hair using AFM and macroscale friction test apparatus. Ultramicroscopy 2006, 106, 720–734. [Google Scholar] [CrossRef]
- Lodge, R.A.; Bhushan, B. Effect of physical wear and triboelectric interaction on surface charge as measured by Kelvin probe microscopy. J. Colloid Interface Sci. 2007, 310, 321–330. [Google Scholar] [CrossRef]
- Binnig, G.; Quate, C.F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930–933. [Google Scholar] [CrossRef]
- Dorobantu, L.S.; Goss, G.G.; Burrell, R.E. Atomic force microscopy: A nanoscopic view of microbial cell surfaces. Micron 2012, 43, 1312–1322. [Google Scholar] [CrossRef]
- Weisenhorn, A.; Hansma, P.; Albrecht, T.; Quate, C. Forces in atomic force microscopy in air and water. Appl. Phys. Lett. 1989, 54, 2651–2653. [Google Scholar] [CrossRef]
- Amenabar, I.; Poly, S.; Goikoetxea, M.; Nuansing, W.; Lasch, P.; Hillenbrand, R. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy. Nat. Commun. 2017, 8, 14402. [Google Scholar] [CrossRef]
- Allison, D.P.; Mortensen, N.P.; Sullivan, C.J.; Doktycz, M.J. Atomic force microscopy of biological samples. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 618–634. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Youcef-Toumi, K. Review: Advanced Atomic Force Microscopy Modes for Biomedical Research. Biosensors 2022, 12, 1116. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, J. Friction Determination by Atomic Force Microscopy in Field of Biochemical Science. Micromachines 2018, 9, 313. [Google Scholar] [CrossRef] [PubMed]
- Muller, D.J.; Engel, A. Atomic force microscopy and spectroscopy of native membrane proteins. Nat. Protoc. 2007, 2, 2191–2197. [Google Scholar] [CrossRef] [PubMed]
- Miyata, K.; Tracey, J.; Miyazawa, K.; Haapasilta, V.; Spijker, P.; Kawagoe, Y.; Foster, A.S.; Tsukamoto, K.; Fukuma, T. Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency Modulation Atomic Force Microscopy and Simulation. Nano Lett. 2017, 17, 4083–4089. [Google Scholar] [CrossRef] [PubMed]
- Ando, T.; Uchihashi, T.; Scheuring, S. Filming Biomolecular Processes by High-Speed Atomic Force Microscopy. Chem. Rev. 2014, 114, 3120–3188. [Google Scholar] [CrossRef] [PubMed]
- Stylianou, A.; Kontomaris, S.V.; Grant, C.; Alexandratou, E. Atomic Force Microscopy on Biological Materials Related to Pathological Conditions. Scanning 2019, 2019, 8452851. [Google Scholar] [CrossRef]
- Rosa-Zeiser, A.; Weilandt, E.; Hild, S.; Marti, O. The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: Pulsed-force mode operation. Meas. Sci. Technol. 1997, 8, 1333. [Google Scholar] [CrossRef]
- Fritz, M.; Radmacher, M.; Gaub, H.E. Granula motion and membrane spreading during activation of human platelets imaged by atomic-force microscopy. Biophys. J. 1994, 66, 1328–1334. [Google Scholar] [CrossRef]
- Radmacher, M.; Fritz, M.; Hansma, P.K. Imaging soft samples with the atomic-force microscope—Gelatin in water and propanol. Biophys. J. 1995, 69, 264–270. [Google Scholar] [CrossRef]
- Hassan, E.; Heinz, W.F.; Antonik, M.D.; D’Costa, N.P.; Nageswaran, S.; Schoenenberger, C.A.; Hoh, J.H. Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 1998, 74, 1564–1578. [Google Scholar] [CrossRef]
- Radmacher, M.; Cleveland, J.P.; Fritz, M.; Hansma, H.G.; Hansma, P.K. Mapping interaction forces with the atomic force microscope. Biophys. J. 1994, 66, 2159–2165. [Google Scholar] [CrossRef] [PubMed]
- Raman, A.; Trigueros, S.; Cartagena, A.; Stevenson, A.P.Z.; Susilo, M.; Nauman, E.; Contera, S.A. Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy. Nat. Nanotechnol. 2011, 6, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Maver, U.; Velnar, T.; Gaberšček, M.; Planinšek, O.; Finšgar, M. Recent progressive use of atomic force microscopy in biomedical applications. TrAC Trends Anal. Chem. 2016, 80, 96–111. [Google Scholar] [CrossRef]
- Altman, E.I.; Baykara, M.Z.; Schwarz, U.D. Noncontact atomic force microscopy: An emerging tool for fundamental catalysis research. Acc. Chem. Res. 2015, 48, 2640–2648. [Google Scholar] [CrossRef] [PubMed]
- Chtcheglova, L.A.; Hinterdorfer, P. Simultaneous AFM topography and recognition imaging at the plasma membrane of mammalian cells. Semin. Cell Dev. Biol. 2018, 73, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Benoit, M.; Gabriel, D.; Gerisch, G.; Gaub, H.E. Discrete interactions in cell adhesion measured by singlemolecule force spectroscopy. Nat. Cell Biol. 2000, 2, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Almqvist, N.; Bhatia, R.; Primbs, G.; Desai, N.; Banerjee, S.; Lal, R. Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophys. J. 2004, 86, 1753–1762. [Google Scholar] [CrossRef]
- Schindler, H.; Badt, D.; Hinterdorfer, P.; Kienberger, F.; Raab, A.; Wielert-Badt, S.; Pastushenko, V.P. Optimal sensitivity for molecular recognition MAC-mode AFM. Ultramicroscopy 2000, 82, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, I.; Dokukin, M.E. Imaging of Soft and Biological Samples Using AFM Ringing Mode. Methods Mol. Biol. 2018, 1814, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Trohalaki, S. Multifrequency force microscopy improves sensitivity and resolution over conventional AFM. MRS Bull. 2012, 37, 545–546. [Google Scholar] [CrossRef]
- Braunsmann, C.; Seifert, J.; Rheinlaender, J.; Schäffer, T.E. High-speed force mapping on living cells with a small cantilever atomic force microscope. Rev. Sci. Instrum. 2014, 85, 073703. [Google Scholar] [CrossRef] [PubMed]
- Morris, V.J.; Kirby, A.R.; Gunning, A.P. Atomic Force Microscopy for Biologists; Imperial College Press: London, UK, 2008. [Google Scholar]
- Burnham, N.A.; Behrend, O.P.; Oulevey, F.; Germaud, G.; Gallo, P.-J.; Gourdon, D.; Dupas, E.; Kulik, A.J.; Pollok, H.M.; Briggs, G.A.D. How does a tip tap? Nanotechnology 1997, 8, 67–75. [Google Scholar] [CrossRef]
- Krisenko, M.O.; Cartagena, A.; Raman, A.; Geahlen, R.L. Nanomechanical property maps of breast cancer cells as determined by multiharmonic atomic force microscopy reveal SYK-dependent changes in microtubule stability mediated by map1b. Biochemistry 2015, 54, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Harcombe, D.M.; Ruppert, M.G.; Ragazzon, M.R.P.; Fleming, A.J. Higher-harmonic AFM imaging with a highbandwidth multifrequency Lyapunov filter. In Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017; pp. 725–730. [Google Scholar]
- Benaglia, S.; Gisbert, V.G.; Perrino, A.P.; Amo, C.A.; Garcia, R. Fast and high-resolution mapping of elastic properties of biomolecules and polymers with bimodal AFM. Nat. Protoc. 2018, 13, 2890–2907. [Google Scholar] [CrossRef] [PubMed]
- Garcia, R.; Proksch, R. Nanomechanical mapping of soft matter by bimodal force microscopy. Eur. Polym. J. 2013, 49, 1897–1906. [Google Scholar] [CrossRef]
- Solares, S.D.; An, S.; Long, C.J. Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air. Beilstein J. Nanotechnol. 2014, 5, 1637–1648. [Google Scholar] [CrossRef]
- Dufrêne, Y.F.; Ando, T.; Garcia, R.; Alsteens, D.; Martinez-Martin, D.; Engel, A.; Gerber, C.; Müller, D.J. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 2017, 12, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, L.J. Topography of some cuticle cells. Text. Res. J. 1972, 42, 252–254. [Google Scholar] [CrossRef]
- Shin, M.K.; Kim, K.S.; Ahn, J.J.; Kim, N.I.; Park, H.K.; Haw, C.R. Investigation of the hair of patients with scalp psoriasis using atomic force microscopy. Clin. Exp. Dermatol. 2012, 37, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Clifford, C.A.; Sano, N.; Doyle, P.; Seah, M.P. Nanomechanical measurements of hair as an example of micro-fibre analysis using atomic force microscopy nanoindentation. Ultramicroscopy 2012, 114, 38–45. [Google Scholar] [CrossRef]
- Seshadri, I.P.; Bhushan, B. Effect of ethnicity and treatments on in situ tensile response and morphological changes of human hair characterized by atomic force microscopy. Acta Mater. 2008, 56, 3585–3597. [Google Scholar] [CrossRef]
- Seshadri, I.P.; Bhushan, B. In situ tensile deformation characterization of human hair with atomic force microscopy. Acta Mater. 2008, 56, 774–781. [Google Scholar] [CrossRef]
- Lu, H.; Wen, Y.; Zhang, H.; Xie, H.; Shen, Y. 360° multiparametric imaging atomic force microscopy: A method for three-dimensional nanomechanical mapping. Ultramicroscopy 2019, 196, 83–87. [Google Scholar] [CrossRef]
- Fellows, A.P.; Casford, M.T.L.; Davies, P.B. Nanoscale Molecular Characterization of Hair Cuticle Cells Using Integrated Atomic Force Microscopy-Infrared Laser Spectroscopy. Appl. Spectrosc. 2020, 74, 1540–1550. [Google Scholar] [CrossRef]
- Fellows, A.P.; Casford, M.T.L.; Davies, P.B. Using hybrid atomic force microscopy and infrared spectroscopy (AFM-IR) to identify chemical components of the hair medulla on the nanoscale. J. Microsc. 2021, 284, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Fellows, A.P.; Casford, M.T.L.; Davies, P.B. Chemically characterizing the cortical cell nano-structure of human hair using atomic force microscopy integrated with infrared spectroscopy (AFM-IR). Int. J. Cosmet. Sci. 2022, 44, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Marcott, C.; Lo, M.; Kjoller, K.; Fiat, F.; Baghdadli, N.; Balooch, G.; Luengo, G.S. Localization of Human Hair Structural Lipids Using Nanoscale Infrared Spectroscopy and Imaging. Appl. Spectrosc. 2014, 68, 564–569. [Google Scholar] [CrossRef] [PubMed]
Feature | Absolute Number—Range or Qualitative Description of the Feature | Corresponding Grade |
---|---|---|
The number of scales with striated surface | 0 | 0 |
1–3 | 1 | |
4–7 | 2 | |
8–11 | 3 | |
12–15 | 4 | |
16–20 | 5 | |
The number of scales with smooth surface | 0 | 0 |
1–2 | 1 | |
3–4 | 2 | |
5–6 | 3 | |
7–9 | 4 | |
10–12 | 5 | |
The number of ghost signs | 0 | 0 |
1–2 | 1 | |
3–4 | 2 | |
5–6 | 3 | |
7–8 | 4 | |
9–10 | 5 | |
Shape of edges | Convex | 1 |
Streight | 2 | |
Concave | 3 | |
Broken edges | - Edge undamaged, smooth; | 0 |
- Edge smooth with single small cracks; | 1 | |
- Numerous small cracks, smooth edge visible for less than 40%; | 2 | |
- Lack of smooth edge, numerous larger cracks and scale breakages; | 3 | |
- Deep breakouts, edge like chain saw’s teeth; | 4 | |
- Very uneven, deep, different shaped breakouts. | 5 | |
Endocuticle | - absent; | 0 |
- Single nodules 2–4 nm in diameter, located at the base of the scales’ edges; | 1 | |
- Single nodules spread over the entire scale surface; | 2 | |
- Granular plaques 3–5 nm wide localized at the base of the scales’ edges; | 3 | |
- Granular plaques 4–7 nm wide located across the width of the scales, at the base of the scale edges; | 4 | |
- Granular structure occupying more than 50% of the cuticle surface. | 5 |
Distance from the Root | Scale Step Height—Mean [nm] | Scale Step Height—SD [nm] | Apparent Scale Length—Mean [nm] | Apparent Scale Length—SD [nm] | Scale Width—Mean [nm] | Scale Width—SD [nm] |
---|---|---|---|---|---|---|
0.5 cm | 512.9 | 99.5 | 7879.5 | 1135.4 | 17,234.0 | 3649.5 |
1.0 cm | 509.5 | 119.2 | 6847.4 | 1352.8 | 16,589.0 | 2245.0 |
1.5 cm | 480.5 | 106.2 | 7562.5 | 1369.4 | 17,177.0 | 2616.2 |
2.0 cm | 494.4 | 81.4 | 7673.4 | 1071.3 | 20,646.0 | 3685.4 |
3.5 cm | 522.2 | 50.5 | 6719.1 | 1014.1 | 19,218.0 | 2865.8 |
4.5 cm | 531.1 | 168.3 | 7855.9 | 1883.1 | 19,215.0 | 4010.3 |
5.5 cm | 530.8 | 92.2 | 7495.0 | 1251.4 | 18,670.0 | 3236.4 |
6.5 cm | 530.5 | 112.6 | 7255.7 | 1335.1 | 20,219.0 | 4404.2 |
7.0 cm | 500.5 | 132.3 | 7589.2 | 1579.6 | 19,715.0 | 4310.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krawczyk-Wołoszyn, K.; Roczkowski, D.; Reich, A. Evaluation of Surface Structure and Morphological Phenomena of Caucasian Virgin Hair with Atomic Force Microscopy. Medicina 2024, 60, 297. https://doi.org/10.3390/medicina60020297
Krawczyk-Wołoszyn K, Roczkowski D, Reich A. Evaluation of Surface Structure and Morphological Phenomena of Caucasian Virgin Hair with Atomic Force Microscopy. Medicina. 2024; 60(2):297. https://doi.org/10.3390/medicina60020297
Chicago/Turabian StyleKrawczyk-Wołoszyn, Karolina, Damian Roczkowski, and Adam Reich. 2024. "Evaluation of Surface Structure and Morphological Phenomena of Caucasian Virgin Hair with Atomic Force Microscopy" Medicina 60, no. 2: 297. https://doi.org/10.3390/medicina60020297
APA StyleKrawczyk-Wołoszyn, K., Roczkowski, D., & Reich, A. (2024). Evaluation of Surface Structure and Morphological Phenomena of Caucasian Virgin Hair with Atomic Force Microscopy. Medicina, 60(2), 297. https://doi.org/10.3390/medicina60020297