Colliding Challenges: An Analysis of SARS-CoV-2 Infection in Patients with Pulmonary Tuberculosis versus SARS-CoV-2 Infection Alone
Abstract
:1. Introduction
2. Materials and Methods
- □
- pulmonary TB (PTB) diagnosed 1 month prior to the confirmation of SARS-CoV-2 infection at most, through solid or liquid cultures (Gene-Xpert) in the TB ambulatory service from Timișoara [29];
- □
- moderate or severe SARS-CoV-2 forms of infection at the moment of hospital admittance, confirmed by nasopharyngeal exudate RT-PCR analysis in an acreditted laboratory. A moderate form was considered that in which the individual was exhibiting signs of lower respiratory disease during clinical evaluation or imaging, with oxygen saturation measured by pulse oximetry SpO2 ≥ 94% on room air.
- □
- extrapulmonary TB, including pleural TB efussions, TB lymphadenopaties, miliar TB, osteoarticular TB, intestinal TB, urogenital TB, meningitis TB, and other forms.
- □
- overweight (BMI = 25 to 30 kg/m2) or obesity (BMI ≥ 30 kg/m2) [33];
- □
- pre-existing severe or uncontrolled arterial hypertension [34];
- □
- □
- □
- pre-existing advanced chronic heart failure [39];
- □
- hepatic, renal, or digestive chronic conditions that may result in weight loss and HIV infection
2.1. Data Collection
- □
- unilateral pulmonary infiltrate, no cavities;
- □
- bilateral pulmonary infiltrates, no cavities;
- □
- unilateral pulmonary cavitary lesions;
- □
- bilateral pulmonary cavitary lesions.
- 0 points: no involvement;
- 1 point: less than 5% involvement;
- 2 points: 5–25% involvement;
- 3 points: 26–49% involvement;
- 4 points: 50–75% involvement;
- 5 points: more than 75% involvement.
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALT | Alanine aminotransferase |
AST | Aspartate aminotransferase |
AUC | Area under the receiver operating characteristic curve |
BMI | Body mass index |
COPD | Chronic Obstructive Pulmonary Disease |
CRP | C-reactive protein |
CT | Computer tomography |
DM | Diabetes Mellitus |
HIV | Human Deficiency Virus |
IL-6 | Interleukin 6 |
LDH | Lactate Dehydrogenase |
n | number of subjects |
p | p-value |
PCT | Procalcitonin |
PTB | pulmonary tuberculosis |
ROC | Receiver operating characteristic |
RT-PCR | Reverse Transcription Polymerase Chain Reaction |
SpO2 | Saturation of peripheral oxygen |
TB | Tuberculosis |
X-ray | high-energy electromagnetic radiation |
WHO | World Health Organization |
Appendix A
References
- Mathiasen, V.D.; Andersen, P.H.; Johansen, I.S.; Lillebaek, T.; Wejse, C. Clinical features of tuberculous lymphadenitis in a low-incidence country. Int. J. Infect. Dis. 2020, 98, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Visca, D.; Ong, C.W.M.; Tiberi, S. Tuberculosis and COVID-19 interaction: A review of biological, clinical, and public health effects. Pulmonology 2021, 27, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; China Medical Treatment Expert Group for COVID-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.W.M.; Goletti, D. Impact of the global COVID-19 outbreak on the management of other communicable diseases. Int. J. Tuberc. Lung Dis. 2020, 24, 547–548. [Google Scholar] [CrossRef] [PubMed]
- Kames, J.; Holcomb, D.D.; Kimchi, O.; DiCuccio, M.; Hamasaki-Katagiri, N.; Wang, T.; Komar, A.A.; Alexaki, A.; Kimchi-Sarfaty, C. Sequence analysis of SARS-CoV-2 genome reveals features important for vaccine design. Nat. Sci. Rep. 2020, 10, 15643. [Google Scholar] [CrossRef] [PubMed]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; COVID-19 Genomics UK (COG-UK) Consortium; et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Farinholt, T.; Doddapaneni, H.; Qin, X.; Menon, V.; Meng, Q.; Metcalf, G.; Chao, H.; Gingras, M.C.; Farinholt, P.; Agrawal, C.; et al. Transmission event of SARS-CoV-2 Delta variant reveals multiple vaccine breakthrough infections. medRxiv 2021, 19, 255. [Google Scholar] [CrossRef]
- Surleac, M.; Banica, L.; Casangiu, C.; Cotic, M.; Florea, D.; Sandulescu, O.; Milu, P.; Streinu-Cercel, A.; Vlaicu, O.; Paraskevis, D.; et al. Molecular Epidemiology Analysis of SARS-CoV-2 Strains Circulating in Romania during the First Months of the Pandemic. Life 2020, 10, 152. [Google Scholar] [CrossRef]
- Lobiuc, A.; Dimian, M.; Gheorghita, R.; Sturdza, O.A.C.; Covasa, M. Introduction and Characteristics of SARS-CoV-2 in North-East of Romania During the First COVID-19 Outbreak. Front. Microbiol. 2021, 12, 654417. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report 2020; World Health Organization: Geneva, Swizerland, 2020; Available online: https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf (accessed on 14 February 2024).
- Cilloni, L.; Fu, H.; Vesga, J.F.; Dowdy, D.; Pretorius, C.; Ahmedov, S. The potential impact of the COVID-19 pandemic on the tuberculosis epidemic: A modelling analysis. EClinicalMedicine. 2020, 28, 100603. [Google Scholar] [CrossRef]
- Migliori, G.B.; Thong, P.M.; Akkerman, O.; Alffenaar, J.W.; Álvarez-Navascués, F.; Assao-Neino, M.M. Worldwide Effects of Coronavirus Disease Pandemic on Tuberculosis Services, January–April 2020. Emerg. Infect. Dis. 2020, 26, 2709–2712. [Google Scholar] [CrossRef] [PubMed]
- Buonsenso, D.; Iodice, F.; Sorba Biala, J.; Goletti, D. COVID-19 effects on tuberculosis care in Sierra Leone. Pulmonology 2021, 27, 67–69. [Google Scholar] [CrossRef]
- Tadolini, M.; Codecasa, L.R.; García-García, J.M.; Blanc, F.X.; Borisov, S.; Alffenaar, J.W. Active tuberculosis, sequelae and COVID-19 co-infection: First cohort of 49 cases. Eur. Respir. J. 2020, 56, 2001398. [Google Scholar] [CrossRef] [PubMed]
- Mousquer, G.T.; Peres, A.; Fiegenbaum, M. Pathology of TB/COVID-19 co-infection: The phantom menace. Tuberculosis 2020, 126, 102020. [Google Scholar] [CrossRef]
- Singh, A.; Prasad, R.; Gupta, A.; Das, K.; Gupta, N. Severe acute respiratory syndrome coronavirus-2 and pulmonary tuberculosis: Convergence can be fatal. Monaldi Arch. Chest Dis. 2020, 90, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Liu, Y.; Yuan, J.; Wen, Y.; Xu, G.; Zhao, J.; Chen, L.; Li, J.; Wang, X.; Wang, F.; et al. The landscape of lung bron-choalveolar immune cells in COVID-19 revealed by single-cell RNA sequencing. MedRxiv 2020, 26, 842–844. [Google Scholar] [CrossRef]
- Carlos, W.G.; Dela Cruz, C.S.; Cao, B.; Pasnick, S.; Jamil, S. Novel Wuhan (2019-nCoV) Coronavirus. Am. J. Respir. Crit. Care Med. 2020, 201, 7–8. [Google Scholar] [CrossRef]
- Rolo, M.; González-Blanco, B.; Reyes, C.A.; Rosillo, N.; López-Roa, P. Epidemiology and factors associated with Extra-pulmonary tuberculosis in a Low-prevalence area. J. Clin. Tuberc. Other Mycobact. Dis. 2023, 32, 100377. [Google Scholar] [CrossRef]
- Udoakang, A.J.; Djomkam Zune, A.L.; Tapela, K.; Nganyewo, N.N.; Olisaka, F.N.; Anyigba, C.A.; Tawiah-Eshun, S.; Owusu, I.A.; Paemka, L.; Awandare, G.A.; et al. The COVID-19, tuberculosis and HIV/AIDS: Ménage à Trois. Front. Immunol. 2023, 14, 1104828. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xin, C.; Xiong, Z.; Yan, X.; Cai, Y.; Zhou, K. Clinical characteristics and outcomes of 421 patients with coronavirus disease 2019 treated in a mobile cabin hospital. Chest 2020, 158, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Zhao, Y.; Qian, Z.; Yang, B.; Xi, J.; Wei, J. Pneumonia caused by Mycobacterium tuberculosis. Microb. Infect. 2020, 22, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Narjess, B.; Faramarz, M.J.; Shabnam, R. Mycobacterium tuberculosis and SARS-CoV-2 Coinfections: A Review. Front. Microbiol. 2021, 12, 747826. [Google Scholar] [PubMed]
- Getnet, F.; Demissie, M.; Worku, A.; Gobena, T.; Tschopp, R.; Girmachew, M. Delay in diagnosis of pulmonary tuberculosis increases the risk of pulmonary cavitation in pastoralist setting of Ethiopia. BMC Pulm. Med. 2019, 19, 201. [Google Scholar] [CrossRef] [PubMed]
- Kaftan, A.N.; Hussain, M.K.; Algenabi, A.A.; Naser, F.H.; Enaya, M.A. Predictive Value of C–reactive Protein, Lactate Dehydrogenase, Ferritin and D-dimer Levels in Diagnosing COVID-19 Patients: A Retrospective Study. Acta Inform. Med. 2021, 29, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Dheda, K.; Booth, H.; Huggett, J.F.; Johnson, M.A.; Zumla, A.; Rook, G.A.W. Lung remodeling in pulmonary tuberculosis. J. Infect. Dis. 2005, 192, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.K.; Datta, B.; Goyal, P.; Chatterjee, P.; Gupta, G. GENE-XPERT gives early diagnosis in early tuberculosis. Eur. Respir. J. 2016, 48 (Suppl. S60), PA2775. [Google Scholar] [CrossRef]
- COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 1 March 2024).
- Gounden, V.; Bhatt, H.; Jialal, I. Renal Function Tests. [Updated 2023 Jul 17]. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507821/ (accessed on 13 February 2024).
- World Health Organization. BCG vaccines: WHO position paper—February 2018. Wkly. Epidemiol. Rec. 2018, 93, 73–96. [Google Scholar]
- Purnell, J.Q. Definitions, Classification, and Epidemiology of Obesity. [Updated 4 May 2023]. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279167/ (accessed on 13 February 2024).
- Akpek, M. Does COVID-19 Cause Hypertension? Angiology 2022, 73, 682–687. [Google Scholar] [CrossRef]
- Parker, C.S.; Siracuse, C.G.; Litle, V.R. Identifying lung cancer in patients with active pulmonary tuberculosis. JTD 2018, 10 (Suppl. S28), S3392–S3397. [Google Scholar] [CrossRef] [PubMed]
- Ramamoorthy, S.; Srinivas, B.H.; Badhe, B.A.; Jinkala, S.; Ganesh, R.N. Coexistence of malignancy and tuberculosis: Is it double disease or double hit related to COVID-19?—Experience from a tertiary care center. Int. J. Clin. Exp. Pathol. 2023, 16, 1–7. [Google Scholar]
- Chung, M.J.; Goo, J.M.; Im, J.-G. Pulmonary tuberculosis in patients with idiopathic pulmonary fibrosis. Eur. J. Radiol. 2004, 52, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Novikova, L.; Ilkovich, Y.; Speranskaya, A. Tuberculosis in patients with idiopathic pulmonary fibrosis. Eur. Respir J. 2015, 46, PA2046. [Google Scholar] [CrossRef]
- Metra, M.; Dinatolo, E.; Dasseni, N. The New Heart Failure Association Definition of Advanced Heart Failure. Card. Fail. Rev. 2019, 5, 5–8. [Google Scholar] [CrossRef] [PubMed]
- NHLBI Obesity Education Initiative Expert Panel on the Identification E and T of O in A (US). Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults: The Evidence Report. In Obesity Prevention and Management; National Heart, Lung, and Blood Institute, Ed.; NHLBI Obesity Education Initiative Expert Panel on the Identification, Evaluation, and Treatment of Obesity in Adults (US): Bethesda, MD, USA, 1998. [Google Scholar]
- Seifi, S.; Khatony, A.; Moradi, G.; Abdi, A.; Najafi, F. Accuracy of pulse oximetry in detection of oxygen saturation in patients admitted to the intensive care unit of heart surgery: Comparison of finger, toe, forehead, and earlobe probes. BMC Nurs. 2018, 17, 15. [Google Scholar] [CrossRef] [PubMed]
- Fukui, S.; Ikeda, K.; Kobayashi, M.; Nishida, K.; Yamada, K.; Horie, S.; Shimada, Y.; Miki, H.; Goto, H.; Hayashi, K.; et al. Predictive prognostic biomarkers in patients with COVID 19 infection. Mol. Med. Rep. 2023, 27, 15. [Google Scholar] [CrossRef]
- Ali, E.T.; Jabbar, A.S.; Al Ali, H.S.; Hamadi, S.S.; Jabir, M.S.; Albukhaty, S. Extensive Study on Hematological, Immunological, Inflammatory Markers, and Biochemical Profile to Identify the Risk Factors in COVID-19 Patients. Int. J. Inflam 2022, 2022, 5735546. [Google Scholar] [CrossRef]
- Ravindra, R.; Ramamurthy, P.; Aslam, S.S.M.; Kulkarni, A.; Suhail, K.; Ramamurthy, P.S. Platelet Indices and Platelet to Lymphocyte Ratio (PLR) as Markers for Predicting COVID-19 Infection Severity. Cureus 2022, 14, e28206. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Zinellu, A. Systemic inflammation index, disease severity, and mortality in patients with COVID-19: A systematic review and meta-analysis. Front. Immunol. 2023, 14, 1212998. [Google Scholar] [CrossRef]
- Hansell, D.M.; Bankier, A.A.; MacMahon, H.; McLoud, T.C.; Müller, N.L.; Remy, J. Fleischner society: Glossary of terms for thoracic imaging. Radiology 2008, 246, 697–722. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Romieu, A.C.; Little, B.P.; Bernheim, A.; Schechter, M.C.; Ray, S.M.; Bizune, D.; Kempker, R. Increasing Number and Volume of Cavitary Lesions on Chest Computed Tomography Are Associated With Prolonged Time to Culture Conversion in Pulmonary Tuberculosis. Open Forum Infect Dis. 2019, 6, ofz232. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-C.; Yu, C.-J.; Chang, S.-C.; Galvin, J.R.; Liu, H.-M.; Hsiao, C.-H.; Kuo, P.-H.; Chen, K.-Y.; Franks, T.J.; Huang, K.-M.; et al. Pulmonary sequelae in convalescent patients after severe acute respiratory syndrome: Evaluation with thin-section CT. Radiology 2005, 236, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, N.A.; Ghadery, A.H.; SeyedAlinaghi, S.; Jafari, F.; Jafari, S.; Hasannezad, M.; Koochak, H.E.; Salehi, M.; Manshadi, S.A.D.; Meidani, M.; et al. Predictors of the chest CT score in COVID-19 patients: A cross-sectional study. Virol. J. 2021, 18, 225, Erratum in Virol. J. 2021, 18, 241. [Google Scholar] [CrossRef] [PubMed]
- Nhamoyebonde, S.; Leslie, A. Biological Differences Between the Sexes and Susceptibility to Tuberculosis. J. Infect. Dis. 2014, 209 (Suppl. S3), S100–S106. [Google Scholar] [CrossRef] [PubMed]
- Borgdorff, M.W.; Nagelkerke, N.J.; Dye, C.; Nunn, P. Gender and tuberculosis: A comparison of prevalence surveys with notification data to explore sex differences in case detection. Int. J. Tuberc. Lung Dis. 2000, 4, 123–132. [Google Scholar]
- Min, J.; Park, J.S.; Kim, H.W.; Ko, Y.; Oh, J.Y.; Jeong, Y.-J.; Na, J.O.; Kwon, S.-J.; Choe, K.H.; Lee, W.-Y.; et al. Differential effects of sex on tuberculosis location and severity across the lifespan. Sci. Rep. 2023, 13, 6023. [Google Scholar] [CrossRef]
- Caraux-Paz, P.; Diamantis, S.; de Wazières, B.; Gallien, S. Tuberculosis in the Elderly. J. Clin. Med. 2021, 10, 5888. [Google Scholar] [CrossRef] [PubMed]
- Bartleson, J.M.; Radenkovic, D.; Covarrubias, A.J.; Furman, D.; Winer, D.A.; Verdin, E. SARS-CoV-2, COVID-19 and the Ageing Immune System. Nat. Aging 2021, 1, 769–782. [Google Scholar] [CrossRef]
- Nathella Pavan, K.; Arul, P.N.; Kadar, M.; Pradeep, A.M.; Vaithilingam, V.B.; Nair, D.; Sujatha, N.; Babu, S. Low Body Mass Index Is Associated with Diminished Plasma Cytokines and Chemokines in Both Active and Latent Tuberculosis. Front. Nutr. 2023, 10, 1194682. [Google Scholar] [CrossRef]
- Edwards, L.B.; Livesay, V.T.; Acquaviva, F.A.; Palmer, C.E. Height, Weight, Tuberculous Infection, and Tuberculous Disease. Arch. Environ. Health 1971, 22, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Tverdal, A. Body Mass Index and Incidence of Tuberculosis. Eur. J. Respir. Dis. 1986, 69, 355–362. [Google Scholar] [PubMed]
- Cho, S.H.; Lee, H.; Kwon, H.; Shin, D.W.; Joh, H.-K.; Han, K.; Park, J.H.; Cho, B. Association of Underweight Status with the Risk of Tuberculosis: A Nationwide Population-Based Cohort Study. Sci. Rep. 2022, 12, 16207. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Yoo, J.E.; Han, K.; Choi, W.; Rhee, S.Y.; Lee, H.; Shin, D.W. Body Mass Index, Diabetes, and Risk of Tuberculosis: A Retrospective Cohort Study. Front. Nutr. 2021, 8, 739766. [Google Scholar] [CrossRef] [PubMed]
- Casha, A.R.; Scarci, M. The Link between Tuberculosis and Body Mass Index. J. Pers. Med. 2017, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Piernas, C.; Astbury, N.M.; Hippisley-Cox, J.; O’Rahilly, S.; Aveyard, P.; Jebb, S.A. Associations between Body-Mass Index and COVID-19 Severity in 6·9 Million People in England: A Prospective, Community-Based, Cohort Study. Lancet Diabetes Endocrinol. 2021, 9, 350–359. [Google Scholar] [CrossRef]
- Lockhart, S.M.; O’Rahilly, S. When Two Pandemics Meet: Why Is Obesity Associated with Increased COVID-19 Mortality? Med 2020, 1, 33–42. [Google Scholar] [CrossRef]
- Hewitt, J.; Carter, B.; Vilches-Moraga, A.; Quinn, T.J.; Braude, P.; Verduri, A.; Pearce, L.; Stechman, M.; Short, R.; Price, A.; et al. The Effect of Frailty on Survival in Patients with COVID-19 (COPE): A Multicentre, European, Observational Cohort Study. Lancet Public Health 2020, 5, e444–e451. [Google Scholar] [CrossRef] [PubMed]
- Jayanama, K.; Theou, O.; Godin, J.; Mayo, A.; Cahill, L.; Rockwood, K. Relationship of Body Mass Index with Frailty and All-Cause Mortality Among Middle-Aged and Older Adults. BMC Med. 2022, 20, 404. [Google Scholar] [CrossRef]
- Watanabe, D.; Yoshida, T.; Watanabe, Y.; Yamada, Y.; Kimura, M. A U-Shaped Relationship between the Prevalence of Frailty and Body Mass Index in Community-Dwelling Japanese Older Adults: The Kyoto–Kameoka Study. J. Clin. Med. 2020, 9, 1367. [Google Scholar] [CrossRef]
- Koupaei, M.; Naimi, A.; Moafi, N.; Mohammadi, P.; Tabatabaei, F.S.; Ghazizadeh, S.; Heidary, M.; Khoshnood, S. Clinical Characteristics, Diagnosis, Treatment, and Mortality Rate of TB/COVID-19 Coinfected Patients: A Systematic Review. Front. Med. 2021, 8, 740593. [Google Scholar] [CrossRef] [PubMed]
- Duarte, R.; Aguiar, A.; Pinto, M.; Furtado, I.; Tiberi, S.; Lönnroth, K.; Migliori, G.B. Different Disease, Same Challenges: Social Determinants of Tuberculosis and COVID-19. Pulmonology 2021, 27, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Przybylski, G.; Dabrowska, A.; Pilaczyńska-Cemel, M.; Krawiecka, D. Unemployment in TB Patients—Ten-Year Observation at Regional Center of Pulmonology in Bydgoszcz, Poland. Med. Sci. Monit. 2014, 20, 2125–2131. [Google Scholar] [CrossRef] [PubMed]
- Altet, M.; Alcaide, J.; Plans, P.; Taberner, J.; Saltó, E.; Folguera, L.; Salleras, L. Passive Smoking and Risk of Pulmonary Tuberculosis in Children Immediately Following Infection. A Case-Control Study. Tuberc. Lung Dis. 1996, 77, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Malayil, L.; Kaukab, S.; Merenstein, Z.; Sapkota, A.R. The Predisposition of Smokers to COVID-19 Infection: A Mini-Review of Global Perspectives. Heliyon 2023, 9, e17783. [Google Scholar] [CrossRef] [PubMed]
- Morojele, N.K.; Shenoi, S.V.; Shuper, P.A.; Braithwaite, R.S.; Rehm, J. Alcohol Use and the Risk of Communicable Diseases. Nutrients 2021, 13, 3317. [Google Scholar] [CrossRef]
- Inghammar, M.; Ekbom, A.; Engström, G.; Ljungberg, B.; Romanus, V.; Lofdahl, C.G.; Egesten, A. COPD and the Risk of Tuberculosis—A Population-Based Cohort Study. PLoS ONE 2010, 5, e10138. [Google Scholar] [CrossRef] [PubMed]
- Awatade, N.T.; Wark, P.A.B.; Chan, A.S.L.; Mamun, S.M.A.A.; Mohd Esa, N.Y.; Matsunaga, K.; Rhee, C.K.; Hansbro, P.M.; Sohal, S.S. The Complex Association between COPD and COVID-19. J. Clin. Med. 2023, 12, 3791. [Google Scholar] [CrossRef] [PubMed]
- Shewade, H.D.; Jeyashree, K.; Mahajan, P.; Shah, A.N.; Kirubakaran, R.; Rao, R.; Kumar, A.M.V. Effect of Glycemic Control and Type of Diabetes Treatment on Unsuccessful TB Treatment Outcomes among People with TB-Diabetes: A Systematic Review. PLoS ONE 2017, 12, e0186697. [Google Scholar] [CrossRef]
- Baker, M.A.; Harries, A.D.; Jeon, C.Y.; Hart, J.E.; Kapur, A.; Lönnroth, K.; Ottmani, S.-E.; Goonesekera, S.D.; Murray, M.B. The Impact of Diabetes on Tuberculosis Treatment Outcomes: A Systematic Review. BMC Med. 2011, 9, 81. [Google Scholar] [CrossRef]
- Faurholt-Jepsen, D.; Range, N.; PrayGod, G.; Jeremiah, K.; Faurholt-Jepsen, M.; Aabye, M.G.; Changalucha, J.; Christensen, D.L.; Grewal, H.M.S.; Martinussen, T.; et al. Diabetes is a Strong Predictor of Mortality during Tuberculosis Treatment: A Prospective Cohort Study among Tuberculosis Patients from Mwanza, Tanzania. Trop. Med. Int. Health 2013, 18, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Moreira, J.; Castro, R.; Lamas, C.; Ribeiro, S.; Grinsztejn, B.; Veloso, V.G. Hyperglycemia during Tuberculosis Treatment Increases Morbidity and Mortality in a Contemporary Cohort of HIV-Infected Patients in Rio de Janeiro, Brazil. Int. J. Infect. Dis. 2018, 69, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Dungan, K.M.; Braithwaite, S.S.; Preiser, J.C. Stress Hyperglycaemia. Lancet 2009, 373, 1798–1807. [Google Scholar] [CrossRef]
- Kubjane, M.; Berkowitz, N.; Goliath, R.; Levitt, N.S.; Wilkinson, R.J.; Oni, T. Tuberculosis, HIV and the Association with Transient Hyperglycaemia in Peri-Urban South Africa. Clin. Infect. Dis. 2020, 71, 1080–1088. [Google Scholar] [CrossRef] [PubMed]
- Ottmani, S.E.; Murray, M.B.; Jeon, C.Y.; Baker, M.A.; Kapur, A.; Lönnroth, K.; Harries, A.D. Consultation Meeting on Tuberculosis and Diabetes Mellitus: Meeting Summary and Recommendations. Int. J. Tuberc. Lung Dis. 2010, 14, 1513–1517. [Google Scholar] [PubMed]
- Albai, O.; Braha, A.; Timar, B.; Sima, A.; Deaconu, L.; Timar, R. Assessment for Clinical Outcome in Patient with SARS-CoV-2 Infection and Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2024, 17, 271–282. [Google Scholar] [CrossRef]
- Mathur, S.B.; Saxena, R.; Pallavi, P.; Jain, R.; Mishra, D.; Jhamb, U. Effect of Concomitant Tuberculosis Infection on COVID-19 Disease in Children: A Matched, Retrospective Cohort Study. J. Trop. Pediatr. 2022, 68, fmac056. [Google Scholar] [CrossRef] [PubMed]
- Habib, G.; Mahmood, K.; Ahmad, L.; Gul, H.; Hayat, A.; Ur Rehman, M. Clinical Manifestations of Active Tuberculosis Patients Coinfected with Severe Acute Respiratory Syndrome Coronavirus-2. J. Clin. Tuberc. Other Mycobact. Dis. 2023, 31, 100359. [Google Scholar] [CrossRef]
- Daneshvar, P.; Hajikhani, B.; Sameni, F.; Noorisepehr, N.; Zare, F.; Bostanshirin, N.; Yazdani, S.; Goudarzi, M.; Sayyari, S.; Dadashi, M. COVID-19 and Tuberculosis Coinfection: An Overview of Case Reports/Case Series and Meta-Analysis of Prevalence Studies. Heliyon 2023, 9, e13637. [Google Scholar] [CrossRef]
- Gou, J.; Zhang, G. Characteristics of COVID-19 and Tuberculosis Co-Infection: A Cross-Sectional Study in Henan Province. J. Clin. Med. Img. 2022, 6, 1–8. [Google Scholar]
- Mollalign, H.; Chala, D.; Beyene, D. Clinical Features and Treatment Outcome of Coronavirus and Tuberculosis Co-Infected Patients: A Systematic Review of Case Reports. Infect. Drug Resist. 2022, 15, 4037–4046. [Google Scholar] [CrossRef] [PubMed]
- Illg, Z.; Muller, G.; Mueller, M.; Nippert, J.; Allen, B. Analysis of the Absolute Lymphocyte Count in COVID-19 Patients. Am. J. Emerg. Med. 2021, 46, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Tadic, M.; Cuspidi, C.; Grassi, G.; Mancia, G. COVID-19 and Arterial Hypertension: Hypothesis or Evidence? J. Clin. Hypertens. 2020, 22, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Wong, J.; Henry, B.M. Hypertension in Patients with Coronavirus Disease 2019 (COVID-19): A Pooled Analysis. Pol. Arch. Intern. Med. 2020, 130, 304–309. [Google Scholar] [PubMed]
- Härter, G.; Spinner, C.D.; Roider, J.; Bickel, M.; Krznaric, I.; Grunwald, S.; Schabaz, F.; Gillor, D.; Postel, N.; Mueller, M.C.; et al. A Case Series of 33 Patients with COVID-19 in People Living with Human Immunodeficiency Virus. Infection 2020, 48, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Huang, I.; Pranata, R. Lymphopenia in Severe Coronavirus Disease-2019 (COVID-19): A Systematic Review and Meta-Analysis. J. Intensive Care 2020, 8, 36. [Google Scholar] [CrossRef]
- Anai, M.; Akaike, K.; Iwagoe, H.; Akasaka, T.; Higuchi, T.; Miyazaki, A.; Naito, D.; Tajima, Y.; Takahashi, H.; Komatsu, T.; et al. A Decrease in Hemoglobin Levels Predicts an Increased Risk for Severe Respiratory Failure in COVID-19 Patients with Pneumonia. Respir. Res. 2021, 59, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, K.; Zhang, Y.; Gu, Z.; Huang, C. Neutrophils in COVID-19: Recent Insights and Advances. Virol. J. 2023, 20, 169. [Google Scholar] [CrossRef] [PubMed]
- Janiuk, K.; Jabłońska, E.; Garley, M. Significance of NETs Formation in COVID-19. Cells 2021, 10, 151. [Google Scholar] [CrossRef]
- Moideen, K.; Kumar, N.P.; Nair, D.; Banurekha, V.V.; Bethunaickan, R.; Babu, S. Heightened Systemic Levels of Neutrophil and Eosinophil Granular Proteins in Pulmonary Tuberculosis and Reversal following Treatment. Infect. Immun. 2018, 86, e00008-18. [Google Scholar] [CrossRef]
- Cormican, L.J.; Schey, S.; Milburn, H.J. G-CSF Enables Completion of Tuberculosis Therapy Associated with Iatrogenic Neutropenia. Eur. Respir. J. 2004, 23, 649–650. [Google Scholar] [CrossRef] [PubMed]
- Noor, F.M.; Islam, M.M. Prevalence and Associated Risk Factors of Mortality Among COVID-19 Patients: A Meta-Analysis. J. Commun. Health 2020, 45, 1270–1282. [Google Scholar] [CrossRef] [PubMed]
- Baj, J.; Karakuła-Juchnowicz, H.; Teresiński, G.; Buszewicz, G.; Ciesielka, M.; Sitarz, R.; Forma, A.; Karakuła, K.; Flieger, W.; Portincasa, P.; et al. Specific and Non-Specific Clinical Manifestations and Symptoms: The Current State of Knowledge. J. Clin. Med. 2020, 9, 1753. [Google Scholar] [CrossRef] [PubMed]
- Zulfic, Z.; Weickert, C.S.; Weickert, T.W.; Liu, D.; Myles, N.; Galletly, C. Neutrophil-Lymphocyte Ratio—A Simple, Accessible Measure of Inflammation, Morbidity and Prognosis in Psychiatric Disorders? Australas. Psychiatry 2020, 28, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xie, J.; Huang, Y.; Liu, S.; Guo, F.; Liu, L.; Yang, Y. Leukocyte Kinetics During the Early Stage Acts as a Prognostic Marker in Patients with Septic Shock in Intensive Care Unit. Medicine 2021, 100, e26288. [Google Scholar] [CrossRef] [PubMed]
- Sumardi, U.; Valentino, B.; Prasetya, D.; Debora, J.; Sugianli, A.K. The Diagnostic Value of Kinetics of NLR to Identify Secondary Pulmonary Bacterial Infection Among COVID-19 Patients at Single Tertiary Hospital in Indonesia. Int. J. Gen. Med. 2023, 16, 3281–3289. [Google Scholar] [CrossRef]
- Toori, K.U.; Qureshi, M.A.; Chaudhry, A.; Safdar, M.F. Neutrophil to Lymphocyte Ratio (NLR) in COVID-19: A Cheap Prognostic Marker in a Resource Constraint Setting. Pak. J. Med. Sci. 2021, 37, 1435–1439. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Kim, S.J.; Lee, S.H.; Sim, Y.S.; Ryu, Y.J.; Chang, J.H.; Shim, S.S.; Kim, Y.; Lee, J.H. High Blood Neutrophil-Lymphocyte Ratio Associated with Poor Outcomes in Miliary Tuberculosis. J. Thorac. Dis. 2018, 10, 339. [Google Scholar] [CrossRef] [PubMed]
- Shojaan, H.; Kalami, N.; Ghasempour Alamdari, M.; Alorizy, S.M.E.; Ghaedi, A.; Bazrgar, A.; Khanzadeh, M.; Lucke-Wold, B.; Khanzadeh, S. Diagnostic Value of the Neutrophil Lymphocyte Ratio in Discrimination between Tuberculosis and Bacterial Community Acquired Pneumonia: A Meta-Analysis. J. Clin. Tuberc. Other Mycobact. Dis. 2023, 33, 100395. [Google Scholar] [CrossRef]
- Connors, J.M.; Levy, J.H. Thromboinflammation and the Hypercoagulability of COVID-19. J. Thromb. Haemost. 2020, 18, 1559–1561. [Google Scholar] [CrossRef]
- Lippi, G.; Plebani, M.; Henry, B.M. Thrombocytopenia is Associated with Severe Coronavirus Disease 2019 (COVID-19) Infections: A Meta-Analysis. Clin. Chim. Acta 2020, 506, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.; Ling, Y.; Zhang, Y.H.; Wei, L.Y.; Chen, X.; Li, X.M.; Liu, X.Y.; Liu, H.M.; Guo, Z.; Ren, H.; et al. Platelet-to-Lymphocyte Ratio is Associated with Prognosis in Patients with Coronavirus Disease-19. J. Med. Virol. 2020, 92, 1533–1541. [Google Scholar] [CrossRef]
- Urbano, M.; Costa, E.; Geraldes, C. Hematological Changes in SARS-CoV-2 Positive Patients. Hematol. Transfus. Cell Ther. 2022, 44, 218–224. [Google Scholar] [CrossRef]
- Simon, P.; Le Borgne, P.; Lefevbre, F.; Cipolat, L.; Remillon, A.; Dib, C.; Hoffmann, M.; Gardeur, I.; Sabah, J.; Kepka, S.; et al. Platelet-to-Lymphocyte Ratio (PLR) Is Not a Predicting Marker of Severity but of Mortality in COVID-19 Patients Admitted to the Emergency Department: A Retrospective Multicenter Study. J. Clin. Med. 2022, 11, 4903. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wu, C.; Luo, Z.; Teng, Y.; Mao, S. Platelet-Lymphocyte Ratios: A Potential Marker for Pulmonary Tuberculosis Diagnosis in COPD Patients. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 2737–2740. [Google Scholar] [CrossRef]
- Karaaslan, T.; Karaaslan, E. Predictive Value of Systemic Immune-Inflammation Index in Determining Mortality in COVID-19 Patients. J. Crit. Care Med. 2022, 8, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Ştefanescu, S.; Cocoş, R.; Turcu-Stiolica, A.; Mahler, B.; Meca, A.-D.; Giura, A.M.C.; Bogdan, M.; Shelby, E.-S.; Zamfirescu, G.; Pisoschi, C.-G. Evaluation of Prognostic Significance of Hematological Profiles After the Intensive Phase Treatment in Pulmonary Tuberculosis Patients from Romania. PLoS ONE 2021, 16, e0249301. [Google Scholar] [CrossRef] [PubMed]
- Martínez Chamorro, E.; Díez Tascón, A.; Ibáñez Sanza, L.; Ossaba Vélez, S.; Borruel Nacente, S. Radiologic Diagnosis of Patients with COVID-19. Radiología Engl. Ed. 2020, 63, 56–73. [Google Scholar] [CrossRef]
- Bomanji, J.B.; Gupta, N.; Gulati, P.; Das, C.J. Imaging in Tuberculosis. Cold Spring Harb. Perspect. Med. 2015, 5, a017814. [Google Scholar] [CrossRef]
- Tham, S.M.; Lim, W.Y.; Lee, C.K.; Loh, J.; Premkumar, A.; Yan, B.; Kee, A.; Chai, L.; Tambyah, P.A.; Yan, G. Four Patients with COVID-19 and Tuberculosis, Singapore, April-May 2020. Emerg. Infect. Dis. 2020, 26, 2764–2766. [Google Scholar] [CrossRef]
- Mançano, A.D.; Zanetti, G.; Marchiori, E. Concomitant COVID-19 and Pulmonary Tuberculosis: Computed Tomography Aspects. Radiol. Bras. 2022, 55, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Chirico, F.; Teixeira da Silva, J.A.; Tsigaris, P.; Sharun, K. Safety & Effectiveness of COVID-19 Vaccines: A Narrative Review. Indian J. Med. Res. 2022, 155, 91–104. [Google Scholar] [CrossRef] [PubMed]
Parameter | Co-Infection Group Median Value | SARS-CoV-2 group Median Value | p |
---|---|---|---|
SpO2 at diagnosis | 90 | 94 | 0.0009 |
Lowest SpO2 | 83.5 | 89.5 | 0.004 |
Peripheral SBP at diagnosis | 138 | 133 | 0.04 |
Peripheral DBP at diagnosis | 92 | 87 | 0.07 |
CRP | 89.5 | 55.5 | 0.0001 |
LDH | 288 | 243.5 | 0.51 |
IL-6 | 4.2 | 1.2 | 0.08 |
AST | 36 | 29 | 0.003 |
ALT | 38.5 | 30 | 0.0002 |
D-dimer | 1.91 | 0.91 | 0.01 |
Neutrophils * | 6758.75 (SD = 3733.15) | 5878.3 (SD = 1162.67) | <0.001 |
Lymphocytes | 2210 | 3010 | 0.003 |
Thrombocytes | 242.5 × 103 | 252 × 103 | 0.42 |
NLR | 2 | 1.83 | 0.67 |
PLR | 128.85 | 77.95 | 0.03 |
SII | 538,198.71 | 459,783.69 | 0.7 |
Chest CT involvement score | 16 | 12 | 0.002 |
Parameter | Odds Ratio | 95% CI | Coefficient | Std. Err. | Constant | p |
---|---|---|---|---|---|---|
BMI | 0.76 | 0.65–0.89 | −0.26 | 0.08 | 4.9 | 0.001 |
Symptoms severity | 1.16 | 1.19–8.56 | 1.16 | 0.5 | 4.9 | 0.02 |
Parameter | Odds Ratio | 95% CI | Coefficient | Std. Err. | p |
---|---|---|---|---|---|
SpO2 at diagnosis | 0.58 | 0.55–0.91 | −0.33 | 0.12 | 0.007 |
LDH | 0.98 | 0.98–0.99 | −0.01 | 0.003 | 0.0005 |
ALT | 1.05 | 1.01–1.11 | 0.05 | 0.02 | 0.01 |
Neutrophil count | 0.99 | 0.99–1 | −0.0002 | 0.0001 | 0.03 |
Chest CT involvement score | 1.35 | 1.14–1.61 | 0.3 | 0.08 | 0.0005 |
Parameter | AUC | p | Se% | 95% CI | Sp% | 95% CI | PPV % | NPV % |
---|---|---|---|---|---|---|---|---|
Age | 0.6 | 0.058 | 81.25 | 63.6–92.8 | 39 | 29.4–49.3 | 29.9 | 87.7 |
Sex | 0.58 | 0.08 | 68.75 | 50.0–83.9 | 48 | 37.9–58.2 | 29.7 | 82.8 |
BMI | 0.72 | <0.0001 | 84.37 | 67.2–94.7 | 67 | 56.9–76.1 | 43 | 93.1 |
Employment status | 0.5 | 0.97 | 75 | 56.6–88.5 | 10 | 4.9–17.6 | 21.1 | 55.6 |
Smoking | 0.51 | 0.72 | 37.5 | 21.1–56.3 | 66 | 55.8–75.2 | 26.1 | 76.7 |
COPD | 0.5 | 0.97 | 81.25 | 63.6–92.8 | 19 | 11.8–28.1 | 24.3 | 76 |
Type 2 DM | 0.59 | 0.052 | 37.5 | 21.1–56.3 | 81 | 71.9–88.2 | 38.7 | 80.2 |
Parameter | AUC | p | Se% | 95% CI | Sp% | 95% CI | PPV % | NPV % |
---|---|---|---|---|---|---|---|---|
SpO2 at diagnosis | 0.69 | 0.002 | 46.88 | 29.1–65.3 | 94 | 87.4–97.8 | 71.4 | 84.7 |
Lowest SpO2 | 0.67 | 0.007 | 62.5 | 43.7–78.9 | 72 | 62.1–80.5 | 41.7 | 85.7 |
Symptoms severity | 0.62 | 0.01 | 43.75 | 26.4–62.3 | 80 | 70.8–87.3 | 41.2 | 81.6 |
CRP | 0.73 | <0.001 | 65.62 | 46.8–81.4 | 75 | 65.3–83.1 | 45.7 | 87.2 |
PCT | 0.56 | 0.17 | 28.12 | 13.7–46.7 | 84 | 75.3–90.6 | 36 | 78.5 |
LDH | 0.54 | 0.52 | 62.5 | 43.7–78.9 | 50 | 39.8–60.2 | 28.6 | 80.6 |
IL-6 | 0.6 | 0.04 | 81.25 | 63.6–92.8 | 45 | 35–55.3 | 32.1 | 88.2 |
AST | 0.67 | 0.006 | 46.88 | 29.1–65.3 | 93 | 86.1–97.1 | 68.2 | 84.5 |
ALT | 0.72 | 0.0001 | 65.62 | 46.8–81.4 | 78 | 68.6–85.7 | 48.8 | 87.6 |
D-dimer | 0.64 | 0.01 | 56.25 | 37.7–73.6 | 69 | 59.0–77.9 | 36.7 | 83.1 |
Neutrophils | 0.58 | 0.3 | 46.88 | 29.1–65.3 | 92 | 84.8–96.5 | 65.2 | 84.4 |
Lymphocytes | 0.67 | 0.002 | 78.12 | 60–90.7 | 59 | 48.7–68.7 | 37.8 | 89.4 |
Thrombocytes | 0.54 | 0.48 | 37.5 | 21.1–56.3 | 88 | 80–93.6 | 50 | 81.5 |
NLR | 0.71 | 0.52 | 43.75 | 26.4–62.3 | 80 | 70.8–87.3 | 41.2 | 81.6 |
PLR | 0.62 | 0.04 | 50 | 31.9–68.1 | 79 | 69.7–86.5 | 43.2 | 83.2 |
SII | 0.52 | 0.74 | 43.75 | 26.4–62.3 | 76 | 66.4–84 | 36.8 | 86.9 |
Chest Rx | 0.7 | <0.001 | 62.5 | 43.7–78.9 | 75 | 65.3–83.1 | 44.4 | 86.2 |
Chest CT involvement score | 0.67 | 0.001 | 62.5 | 43.7–78.9 | 73 | 63.2–81.4 | 42.6 | 85.9 |
Parameter | Fisher’s Exact Test p | |
---|---|---|
Presence of PTB | Smoking | 0.83 |
COPD | 0.99 | |
Type 2 DM | 0.053 | |
TB prior to present episode | <0.0001 | |
Severe symptoms | 0.01 | |
PCT | 0.19 | |
Outcome | 0.31 |
Chest CT Involvement Score | PTB-SARS-CoV-2 Co-Infection n | Associated Cavitary Lesions n | SARS-CoV-2 Co-Infection n |
---|---|---|---|
>14 | 20 | 2 | 27 |
≤14 | 12 | 2 | 73 |
Parameter | Odds Ratio | 95% CI | Coefficient | Std. Err. | Constant | p |
---|---|---|---|---|---|---|
Type 2 DM | 7.03 | 1.8–27.3 | 1.9 | 0.69 | −4.78 | 0.004 |
Severe symptoms | 12.17 | 3.1–47.75 | 2.49 | 0.69 | −4.78 | 0.0003 |
Hospitalization | 1.16 | 1.02–1.32 | 0.15 | 0.006 | −4.78 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihuta, C.; Socaci, A.; Hogea, P.; Tudorache, E.; Mihuta, M.S.; Oancea, C. Colliding Challenges: An Analysis of SARS-CoV-2 Infection in Patients with Pulmonary Tuberculosis versus SARS-CoV-2 Infection Alone. Medicina 2024, 60, 823. https://doi.org/10.3390/medicina60050823
Mihuta C, Socaci A, Hogea P, Tudorache E, Mihuta MS, Oancea C. Colliding Challenges: An Analysis of SARS-CoV-2 Infection in Patients with Pulmonary Tuberculosis versus SARS-CoV-2 Infection Alone. Medicina. 2024; 60(5):823. https://doi.org/10.3390/medicina60050823
Chicago/Turabian StyleMihuta, Camil, Adriana Socaci, Patricia Hogea, Emanuela Tudorache, Monica Simina Mihuta, and Cristian Oancea. 2024. "Colliding Challenges: An Analysis of SARS-CoV-2 Infection in Patients with Pulmonary Tuberculosis versus SARS-CoV-2 Infection Alone" Medicina 60, no. 5: 823. https://doi.org/10.3390/medicina60050823
APA StyleMihuta, C., Socaci, A., Hogea, P., Tudorache, E., Mihuta, M. S., & Oancea, C. (2024). Colliding Challenges: An Analysis of SARS-CoV-2 Infection in Patients with Pulmonary Tuberculosis versus SARS-CoV-2 Infection Alone. Medicina, 60(5), 823. https://doi.org/10.3390/medicina60050823