Differential Effects of Intra-Abdominal Hypertension and ARDS on Respiratory Mechanics in a Porcine Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Settings
2.2. Ethics and Registry
2.3. Animal Preparation
2.4. Measurements and Calculations
2.5. Experimental Protocol
2.6. Statistical Analysis
3. Results
3.1. Baseline
3.2. Alterations after 6 h
3.3. Respiratory Mechanics after 6 h
3.4. Oxygenation after 6 h
3.5. Hemodynamic Parameters after 6 h
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; van Haren, F.; Larsson, A.; McAuley, D.F.; et al. Epidemiology, Patterns of Care, and Mortality for Patients with Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016, 315, 788–800. [Google Scholar] [CrossRef] [PubMed]
- Katira, B.H. Ventilator-Induced Lung Injury: Classic and Novel Concepts. Respir. Care 2019, 64, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Tonetti, T.; Cressoni, M.; Cadringher, P.; Herrmann, P.; Moerer, O.; Protti, A.; Gotti, M.; Chiurazzi, C.; Carlesso, E.; et al. Ventilator-related causes of lung injury: The mechanical power. Intensive Care Med. 2016, 42, 1567–1575. [Google Scholar] [CrossRef] [PubMed]
- Meyer, N.J.; Gattinoni, L.; Calfee, C.S. Acute respiratory distress syndrome. Lancet 2021, 398, 622–637. [Google Scholar] [CrossRef] [PubMed]
- Chiumello, D.; Carlesso, E.; Cadringher, P.; Caironi, P.; Valenza, F.; Polli, F.; Tallarini, F.; Cozzi, P.; Cressoni, M.; Colombo, A.; et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2008, 178, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Dellamonica, J.; Lerolle, N.; Sargentini, C.; Beduneau, G.; Di Marco, F.; Mercat, A.; Richard, J.C.; Diehl, J.L.; Mancebo, J.; Rouby, J.J.; et al. PEEP-induced changes in lung volume in acute respiratory distress syndrome. Two methods to estimate alveolar recruitment. Intensive Care Med. 2011, 37, 1595–1604. [Google Scholar] [CrossRef] [PubMed]
- Malbrain, M.L.; Cheatham, M.L.; Kirkpatrick, A.; Sugrue, M.; Parr, M.; De Waele, J.; Balogh, Z.; Leppaniemi, A.; Olvera, C.; Ivatury, R.; et al. Results from the International Conference of Experts on Intra-abdominal Hypertension and Abdominal Compartment Syndrome. I. Definitions. Intensive Care Med. 2006, 32, 1722–1732. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, P.; Quintel, M.; Malbrain, M.L. Effect of intra-abdominal pressure on respiratory mechanics. Acta Clin. Belg. 2007, 62 (Suppl. S1), 78–88. [Google Scholar] [CrossRef] [PubMed]
- Regli, A.; Pelosi, P.; Malbrain, M. Ventilation in patients with intra-abdominal hypertension: What every critical care physician needs to know. Ann. Intensive Care 2019, 9, 52. [Google Scholar] [CrossRef]
- Wauters, J.; Wilmer, A.; Valenza, F. Abdomino-thoracic transmission during acs: Facts and figures. Acta Clin. Belg. 2007, 62 (Suppl. S1), 200–205. [Google Scholar] [CrossRef]
- Wauters, J.; Claus, P.; Brosens, N.; McLaughlin, M.; Hermans, G.; Malbrain, M.; Wilmer, A. Relationship between Abdominal Pressure, Pulmonary Compliance, and Cardiac Preload in a Porcine Model. Crit. Care Res. Pract. 2012, 2012, 763181. [Google Scholar] [CrossRef] [PubMed]
- Tonetti, T.; Cavalli, I.; Ranieri, V.M.; Mascia, L. Respiratory consequences of intra-abdominal hypertension. Minerva Anestesiol. 2020, 86, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, M.O.; Diktanaite, D.; Simeliunas, E.; Pilz, M.; Kalenka, A. Prospective Observational Study to Evaluate the Effect of Different Levels of Positive End-Expiratory Pressure on Lung Mechanics in Patients with and without Acute Respiratory Distress Syndrome. J. Clin. Med. 2020, 9, 2446. [Google Scholar] [CrossRef] [PubMed]
- Jonkman, A.H.; Telias, I.; Spinelli, E.; Akoumianaki, E.; Piquilloud, L. The oesophageal balloon for respiratory monitoring in ventilated patients: Updated clinical review and practical aspects. Eur. Respir. Rev. 2023, 32, 220186. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, V.M.; Brienza, N.; Santostasi, S.; Puntillo, F.; Mascia, L.; Vitale, N.; Giuliani, R.; Memeo, V.; Bruno, F.; Fiore, T.; et al. Impairment of lung and chest wall mechanics in patients with acute respiratory distress syndrome: Role of abdominal distension. Am. J. Respir. Crit. Care Med. 1997, 156 Pt 1, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Busana, M.; Giosa, L.; Macri, M.M.; Quintel, M. Prone Positioning in Acute Respiratory Distress Syndrome. Semin. Respir Crit. Care Med. 2019, 40, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Akoumianaki, E.; Maggiore, S.M.; Valenza, F.; Bellani, G.; Jubran, A.; Loring, S.H.; Pelosi, P.; Talmor, D.; Grasso, S.; Chiumello, D.; et al. The application of esophageal pressure measurement in patients with respiratory failure. Am. J. Respir. Crit. Care Med. 2014, 189, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, M.O.; Simeliunas, E.; Deutsch, B.L.; Diktanaite, D.; Harms, A.; Brune, M.; Dietrich, M.; Uhle, F.; Weigand, M.A.; Kalenka, A. Impact of Different Positive End-Expiratory Pressures on Lung Mechanics in the Setting of Moderately Elevated Intra-Abdominal Pressure and Acute Lung Injury in a Porcine Model. J. Clin. Med. 2021, 10, 306. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, M.O.; Deutsch, B.L.; Simeliunas, E.; Diktanaite, D.; Harms, A.; Brune, M.; Uhle, F.; Weigand, M.; Brenner, T.; Kalenka, A. Effect of moderate elevated intra-abdominal pressure on lung mechanics and histological lung injury at different positive end-expiratory pressures. PLoS ONE 2020, 15, e0230830. [Google Scholar] [CrossRef] [PubMed]
- Malbrain, M.L.; Chiumello, D.; Pelosi, P.; Bihari, D.; Innes, R.; Ranieri, V.M.; Del Turco, M.; Wilmer, A.; Brienza, N.; Malcangi, V.; et al. Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: A multiple-center epidemiological study. Crit. Care Med. 2005, 33, 315–322. [Google Scholar] [CrossRef]
- Matute-Bello, G.; Downey, G.; Moore, B.B.; Groshong, S.D.; Matthay, M.A.; Slutsky, A.S.; Kuebler, W.M., on half of the Acute Lung Injury in Animals Study Group. An official American Thoracic Society workshop report: Features and measurements of experimental acute lung injury in animals. Am. J. Respir. Cell Mol. Biol. 2011, 44, 725–738. [Google Scholar] [CrossRef] [PubMed]
- Baydur, A.; Behrakis, P.K.; Zin, W.A.; Jaeger, M.; Milic-Emili, J. A simple method for assessing the validity of the esophageal balloon technique. Am. Rev. Respir. Dis. 1982, 126, 788–791. [Google Scholar]
- Lachmann, B.; Robertson, B.; Vogel, J. In vivo lung lavage as an experimental model of the respiratory distress syndrome. Acta Anaesthesiol. Scand. 1980, 24, 231–236. [Google Scholar] [CrossRef]
- Grieco, D.L.; Chen, L.; Brochard, L. Transpulmonary pressure: Importance and limits. Ann. Transl. Med. 2017, 5, 285. [Google Scholar] [CrossRef]
- Olegard, C.; Sondergaard, S.; Houltz, E.; Lundin, S.; Stenqvist, O. Estimation of functional residual capacity at the bedside using standard monitoring equipment: A modified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction. Anesth. Analg. 2005, 101, 206–212. [Google Scholar] [CrossRef]
- Swindle, M.M.; Makin, A.; Herron, A.J.; Clubb, F.J., Jr.; Frazier, K.S. Swine as models in biomedical research and toxicology testing. Vet. Pathol. 2012, 49, 344–356. [Google Scholar] [CrossRef]
- Malbrain, M.L.; Deeren, D.H. Effect of bladder volume on measured intravesical pressure: A prospective cohort study. Crit. Care 2006, 10, R98. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, A.W.; Nickerson, D.; Roberts, D.J.; Rosen, M.J.; McBeth, P.B.; Petro, C.C.; Berrevoet, F.; Sugrue, M.; Xiao, J.; Ball, C.G. Intra-Abdominal Hypertension and Abdominal Compartment Syndrome after Abdominal Wall Reconstruction: Quaternary Syndromes? Scand. J. Surg. 2017, 106, 97–106. [Google Scholar] [CrossRef]
- Jakob, S.M.; Knuesel, R.; Tenhunen, J.J.; Pradl, R.; Takala, J. Increasing abdominal pressure with and without PEEP: Effects on intra-peritoneal, intra-organ and intra-vascular pressures. BMC Gastroenterol. 2010, 10, 70. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.C.; Motta-Ribeiro, G.C.; Vidal Melo, M.F. Driving Pressure and Transpulmonary Pressure: How Do We Guide Safe Mechanical Ventilation? Anesthesiology 2019, 131, 155–163. [Google Scholar] [CrossRef]
- Chiumello, D.; Carlesso, E.; Brioni, M.; Cressoni, M. Airway driving pressure and lung stress in ARDS patients. Crit. Care 2016, 20, 276. [Google Scholar] [CrossRef] [PubMed]
- Meers, C.M.; De Wever, W.; Verbeken, E.; Mertens, V.; Wauters, S.; De Vleeschauwer, S.I.; Vos, R.; Vanaudenaerde, B.M.; Verleden, G.M.; Van Raemdonck, D.E. A porcine model of acute lung injury by instillation of gastric fluid. J. Surg. Res. 2011, 166, e195–e204. [Google Scholar] [CrossRef]
- Gattinoni, L.; Pesenti, A.; Avalli, L.; Rossi, F.; Bombino, M. Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am. Rev. Respir. Dis. 1987, 136, 730–736. [Google Scholar] [CrossRef] [PubMed]
- The Acute Respiratory Distress Syndrome Network; Brower, R.G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342, 1301–1308. [Google Scholar]
- Amato, M.B.; Meade, M.O.; Slutsky, A.S.; Brochard, L.; Costa, E.L.; Schoenfeld, D.A.; Stewart, T.E.; Briel, M.; Talmor, D.; Mercat, A.; et al. Driving pressure and survival in the acute respiratory distress syndrome. N. Engl. J. Med. 2015, 372, 747–755. [Google Scholar] [CrossRef]
- Gattinoni, L.; Pelosi, P.; Suter, P.M.; Pedoto, A.; Vercesi, P.; Lissoni, A. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am. J. Respir. Crit. Care Med. 1998, 158, 3–11. [Google Scholar] [CrossRef]
- Gattinoni, L.; Pesenti, A. The concept of “baby lung”. Intensive Care Med. 2005, 31, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Carlesso, E.; Caironi, P. Stress and strain within the lung. Curr. Opin. Crit. Care 2012, 18, 42–47. [Google Scholar] [CrossRef]
- Silva, P.L.; Ball, L.; Rocco, P.R.M.; Pelosi, P. Physiological and Pathophysiological Consequences of Mechanical Ventilation. Semin. Respir. Crit. Care Med. 2022, 43, 321–334. [Google Scholar] [CrossRef]
- Gattinoni, L. Definitions, guidelines and opinions: The white, the black and the grey. Intensive Care Med. 2024. [Google Scholar] [CrossRef]
Group A (Mean Value ± SEM) | Group B (Mean Value ± SEM) | Group C (Mean Value ± SEM) | ANOVA (p-Value) | |
---|---|---|---|---|
Body weight (kg) | 49 ± 1 | 37 ± 1 | 49 ± 3 | <0.001 |
IAP (mmHg) | 1.8 ± 0.5 | 1.7 ± 0.6 | 2.1 ± 0.3 | 0.836 |
EELV/kg (mL/kg) | 27 ± 3 | 30 ± 1 | 25 ± 1 | 0.249 |
Ppeak (cmH2O) | 16 ± 1 | 15 ± 1 | 17 ± 1 | 0.078 |
Pmean (cmH2O) | 8.5 ± 0.2 | 8.3 ± 0.2 | 9.3 ± 0.3 | 0.036 |
Driving pres. (cmH2O) | 11 ± 1 | 10 ± 1 | 12 ± 1 | 0.092 |
PEsinsp (cmH2O) | 12.2 ± 0.8 | 9.2 ± 1.0 | 9.8 ± 0.9 | 0.071 |
PEsexp (cmH2O) | 6.2 ± 0.3 | 4.3 ± 1.0 | 4.5 ± 0.7 | 0.166 |
TPPinsp (cmH2O) | 4.0 ± 0.6 | 5.7 ± 1.0 | 7.3 ± 1.1 | 0.063 |
TPPexp (cmH2O) | −1.2 ± 0.3 | 0.5 ± 1.0 | 0.5 ± 0.7 | 0.184 |
TPP (stress) (cmH2O) | 5.2 ± 0.4 | 5.2 ± 0.4 | 6.8 ± 0.8 | 0.085 |
Strain (mL/mL) | 0.31 ± 0.03 | 0.27 ± 0.01 | 0.33 ± 0.01 | 0.211 |
CRS stat (mL/cmH2O) | 42 ± 3 | 39 ± 4 | 40 ± 4 | 0.821 |
ERS stat (cmH2O/mL) | 29 ± 1 | 33 ± 2 | 32 ± 3 | 0.344 |
EL stat (cmH2O/mL) | 13 ± 1 | 17 ± 1 | 18 ± 2 | 0.165 |
ECW stat (cmH2O/mL) | 15 ± 2 | 16 ± 1 | 14 ± 1 | 0.532 |
Mech. power (J/min) | 8.9 ± 0.3 | 6.3 ± 0.4 | 9.3 ± 0.5 | <0.001 |
P/F ratio (mmHg) | 425 ± 20 | 365 ± 15 | 453 ± 18 | 0.009 |
paCO2 (mmHg) | 43 ± 2 | 42 ± 2 | 40 ± 2 | 0.615 |
Heart rate (bpm) | 113 ± 9 | 77 ± 10 | 66 ± 7 | 0.005 |
MAP (mmHg) | 98 ± 5 | 91 ± 1 | 89 ± 2 | 0.207 |
Lactate (mmol/L) | 4.3 ± 1.0 | 1.2 ± 0.2 | 1.2 ± 0.1 | 0.003 |
Heart index (L/min/m2) | 5.7 ± 0.3 | 4.1 ± 0.3 | 4.1 ± 0.3 | 0.002 |
GEDI (mL/m2) | 651 ± 30 | 601 ± 29 | 664 ± 28 | 0.299 |
ELWI (mL/kg) | 16 ± 1 | 13 ± 0 | 13 ± 1 | 0.105 |
Group A (Mean Value ± SEM) | Group B (Mean Value ± SEM) | Group C (Mean Value ± SEM) | ANOVA (p-Value) | Post hoc A vs. B (p-Value) | Post hoc A vs. C (p-Value) | Post hoc B vs. C (p-Value) | |
---|---|---|---|---|---|---|---|
ΔIAP (mmHg) | 8.3 ± 0.4 | 18.3 ± 0.6 | 8.1 ± 0.4 | <0.001 | <0.001 | 1 | <0.001 |
ΔEELV/kg (mL/kg) | −3.6 ± 0.7 | −6.1 ± 1.3 | −11.0 ± 2.5 | 0.022 | 0.939 | 0.022 | 0.171 |
ΔPpeak (cmH2O) | 8.3 ± 0.6 | 17.7 ± 0.8 | 18.0 ± 2.3 | <0.001 | 0.001 | <0.001 | 1 |
ΔPmean (cmH2O) | 6.2 ± 0.3 | 9.5 ± 0.6 | 9.2 ± 1.2 | 0.018 | 0.029 | 0.053 | 1 |
ΔDriving pres. (cmH2O) | 3.3 ± 0.6 | 12.5 ± 0.9 | 13.2 ± 2.3 | <0.001 | 0.002 | <0.001 | 1 |
ΔPEsinsp (cmH2O) | 7.3 ± 1.3 | 14.7 ± 1.3 | 7.8 ± 1.3 | 0.001 | 0.003 | 1 | 0.005 |
ΔPEsexp (cmH2O) | 5.5 ± 1.1 | 4.8 ± 0.9 | 6.0 ± 0.9 | 0.694 | 1 | 1 | 1 |
ΔTPPinsp (cmH2O) | 1.0 ± 1.4 | 3.0 ± 0.7 | 10.2 ± 2.6 | 0.005 | 1 | 0.006 | 0.031 |
ΔTPPexp (cmH2O) | −0.5 ± 1.1 | 0.3 ± 1.0 | −1.2 ± 0.8 | 0.55 | 1 | 1 | 0.849 |
ΔTPP (stress) (cmH2O) | 1.5 ± 0.5 | 2.7 ± 0.6 | 11.3 ± 2.1 | <0.001 | 1 | <0.001 | <0.001 |
ΔStrain (mL/mL) | 0.05 ± 0.01 | 0.07 ± 0.01 | 0.55 ± 0.31 | 0.115 | 1 | 0.198 | 0.232 |
ΔCRS stat (mL/cmH2O) | −9.7 ± 2.7 | −21.7 ± 2.8 | −19.5 ± 3.4 | 0.027 | 0.036 | 0.1 | 1 |
ΔERS stat (cmH2O/mL) | 8.5 ± 1.6 | 41.7 ± 3.1 | 34.3 ± 6.5 | <0.001 | <0.001 | 0.002 | 0.714 |
ΔEL stat (cmH2O/mL) | 3.8 ± 1.3 | 8.9 ± 1.9 | 29.9 ± 5.9 | <0.001 | 1 | <0.001 | 0.003 |
ΔECW stat (cmH2O/mL) | 4.8 ± 1.9 | 32.8 ± 3.2 | 4.4 ± 1.8 | <0.001 | <0.001 | 1 | <0.001 |
ΔMech. power (J/min) | 5.6 ± 0.3 | 7.3 ± 0.3 | 9.5 ± 0.9 | <0.001 | 0.153 | <0.001 | 0.036 |
ΔP/F ratio (mmHg) | −29 ± 16 | 51 ± 18 | −213 ± 67 | 0.001 | 0.563 | 0.02 | 0.001 |
ΔpaCO2 (mmHg) | −2.5 ± 2.3 | 2.5 ± 2.1 | −1.1 ± 2.3 | 0.297 | 0.405 | 1 | 0.854 |
ΔHeart rate (bpm) | −14 ± 5 | 11 ± 11 | 18 ± 12 | 0.085 | 0.272 | 0.111 | 1 |
ΔMAP (mmHg) | 4.2 ± 5.2 | 18.5 ± 3.4 | 10.2 ± 5.1 | 0.12 | 0.131 | 1 | 0.66 |
ΔLactate (mmol/L) | −3.2 ± 1.1 | −0.6 ± 0.2 | −0.5 ± 0.1 | 0.011 | 0.026 | 0.023 | 1 |
ΔHeart index (L/min/m2) | −0.9 ± 0.3 | −0.3 ± 0.4 | −0.1 ± 0.3 | 0.319 | 0.816 | 0.458 | 1 |
ΔGEDI (mL/m2) | −22 ± 19 | −55 ± 24 | 39 ± 32 | 0.059 | 1 | 0.343 | 0.062 |
ΔELWI (mL/kg) | 0.0 ± 0.7 | 0.5 ± 0.3 | 1.8 ± 1.4 | 0.38 | 1 | 0.555 | 0.985 |
Total crystalloids (L) | 6.3 ± 0.5 | 5.4 ± 0.3 | 6.0 ± 0.6 | 0.391 | 0.549 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seybold, B.; Deutsch, A.M.; Deutsch, B.L.; Simeliunas, E.; Weigand, M.A.; Fiedler-Kalenka, M.O.; Kalenka, A. Differential Effects of Intra-Abdominal Hypertension and ARDS on Respiratory Mechanics in a Porcine Model. Medicina 2024, 60, 843. https://doi.org/10.3390/medicina60060843
Seybold B, Deutsch AM, Deutsch BL, Simeliunas E, Weigand MA, Fiedler-Kalenka MO, Kalenka A. Differential Effects of Intra-Abdominal Hypertension and ARDS on Respiratory Mechanics in a Porcine Model. Medicina. 2024; 60(6):843. https://doi.org/10.3390/medicina60060843
Chicago/Turabian StyleSeybold, Benjamin, Anna M. Deutsch, Barbara Luise Deutsch, Emilis Simeliunas, Markus A. Weigand, Mascha O. Fiedler-Kalenka, and Armin Kalenka. 2024. "Differential Effects of Intra-Abdominal Hypertension and ARDS on Respiratory Mechanics in a Porcine Model" Medicina 60, no. 6: 843. https://doi.org/10.3390/medicina60060843
APA StyleSeybold, B., Deutsch, A. M., Deutsch, B. L., Simeliunas, E., Weigand, M. A., Fiedler-Kalenka, M. O., & Kalenka, A. (2024). Differential Effects of Intra-Abdominal Hypertension and ARDS on Respiratory Mechanics in a Porcine Model. Medicina, 60(6), 843. https://doi.org/10.3390/medicina60060843