The Role of Lymph Node Downstaging Following Neoadjuvant Treatment in a Group of Patients with Advanced Stage Cervical Cancer
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Crosbie, E.J.; Einstein, M.H.; Franceschi, S.; Kitchener, H.C. Human Papillomavirus and Cervical Cancer. Lancet 2013, 382, 889–899. [Google Scholar] [CrossRef]
- Everett, T.; Bryant, A.; Griffin, M.F.; Martin-Hirsch, P.P.; Forbes, C.A.; Jepson, R.G. Interventions Targeted at Women to Encourage the Uptake of Cervical Screening. Cochrane Database Syst. Rev. 2011, 5, CD002834. [Google Scholar] [CrossRef]
- Gilles, C.; Konopnicki, D.; Rozenberg, S. The Recent Natural History of Human Papillomavirus Cervical Infection in Women Living with HIV: A Scoping Review of Meta-analyses and Systematic Reviews and the Construction of a Hypothetical Model. HIV Med. 2023, 24, 877–892. [Google Scholar] [CrossRef]
- Olusola, P.; Banerjee, H.N.; Philley, J.V.; Dasgupta, S. Human Papilloma Virus-Associated Cervical Cancer and Health Disparities. Cells 2019, 8, 622. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, I.A.; Cuello, M.A. Obesity and Gynecological Cancers: A Toxic Relationship. Int. J. Gynecol. Obstet. 2021, 155, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Roura, E.; Castellsagué, X.; Pawlita, M.; Travier, N.; Waterboer, T.; Margall, N.; Bosch, F.X.; de Sanjosé, S.; Dillner, J.; Gram, I.T.; et al. Smoking as a Major Risk Factor for Cervical Cancer and Pre-Cancer: Results from the EPIC Cohort. Int. J. Cancer 2014, 135, 453–466. [Google Scholar] [CrossRef]
- Tekalegn, Y.; Sahiledengle, B.; Woldeyohannes, D.; Atlaw, D.; Degno, S.; Desta, F.; Bekele, K.; Aseffa, T.; Gezahegn, H.; Kene, C. High Parity Is Associated with Increased Risk of Cervical Cancer: Systematic Review and Meta-Analysis of Case-Control Studies. Womens Health 2022, 18, 17455065221075904. [Google Scholar] [CrossRef] [PubMed]
- Dicu-Andreescu, I.-G.; Marincaș, M.-A.; Prunoiu, V.-M.; Dicu-Andreescu, I.; Ionescu, S.-O.; Simionescu, A.-A.; Brătucu, E.; Simion, L. The Impact of Patient Characteristics, Risk Factors, and Surgical Intervention on Survival in a Cohort of Patients Undergoing Neoadjuvant Treatment for Cervical Cancer. Medicina 2023, 59, 2147. [Google Scholar] [CrossRef]
- Ghebre, R.G.; Grover, S.; Xu, M.J.; Chuang, L.T.; Simonds, H. Cervical Cancer Control in HIV-Infected Women: Past, Present and Future. Gynecol. Oncol. Rep. 2017, 21, 101–108. [Google Scholar] [CrossRef]
- Foran, C.; Brennan, A. Prevention and Early Detection of Cervical Cancer in the UK. Br. J. Nurs. 2015, 24, S22–S24, S26, S28–S29. [Google Scholar] [CrossRef]
- Lei, J.; Arroyo-Mühr, L.S.; Lagheden, C.; Eklund, C.; Nordqvist Kleppe, S.; Elfström, M.; Andrae, B.; Sparén, P.; Dillner, J.; Sundström, K. Human Papillomavirus Infection Determines Prognosis in Cervical Cancer. J. Clin. Oncol. 2022, 40, 1522–1528. [Google Scholar] [CrossRef]
- Cervical Cancer Statistics by Age. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/cervical-cancer/incidence#heading-One (accessed on 15 February 2024).
- Hull, R.; Mbele, M.; Makhafola, T.; Hicks, C.; Wang, S.; Reis, R.; Mehrotra, R.; Mkhize-Kwitshana, Z.; Kibiki, G.; Bates, D.; et al. Cervical Cancer in Low and Middle-income Countries (Review). Oncol. Lett. 2020, 20, 2058–2074. [Google Scholar] [CrossRef]
- NCCN Guidelines for Cervical Cancer. Available online: https://www.nccn.org/professionals/physician_gls/pdf/cervical.pdf (accessed on 18 June 2023).
- Marth, C.; Landoni, F.; Mahner, S.; McCormack, M.; Gonzalez-Martin, A.; Colombo, N. Cervical Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2017, 28, iv72–iv83. [Google Scholar] [CrossRef]
- Cibula, D.; Raspollini, M.R.; Planchamp, F.; Centeno, C.; Chargari, C.; Felix, A.; Fischerová, D.; Jahnn-Kuch, D.; Joly, F.; Kohler, C.; et al. ESGO/ESTRO/ESP Guidelines for the Management of Patients with Cervical Cancer—Update 2023*. Int. J. Gynecol. Cancer 2023, 33, 649–666. [Google Scholar] [CrossRef]
- Perelli, F.; Mattei, A.; Scambia, G.; Cavaliere, A.F. Editorial: Methods in Gynecological Oncology. Front. Oncol. 2023, 13, 1167088. [Google Scholar] [CrossRef]
- Áyen, Á.; Jiménez Martínez, Y.; Boulaiz, H. Targeted Gene Delivery Therapies for Cervical Cancer. Cancers 2020, 12, 1301. [Google Scholar] [CrossRef]
- Ramirez, P.T.; Pareja, R.; Rendón, G.J.; Millan, C.; Frumovitz, M.; Schmeler, K.M. Management of Low-Risk Early-Stage Cervical Cancer: Should Conization, Simple Trachelectomy, or Simple Hysterectomy Replace Radical Surgery as the New Standard of Care? Gynecol. Oncol. 2014, 132, 254–259. [Google Scholar] [CrossRef]
- Querleu, D.; Cibula, D.; Abu-Rustum, N.R. 2017 Update on the Querleu-Morrow Classification of Radical Hysterectomy. Ann. Surg. Oncol. 2017, 24, 3406–3412. [Google Scholar] [CrossRef]
- Dicu-Andreescu, I.-G.; Marincaș, A.-M.; Ungureanu, V.-G.; Ionescu, S.-O.; Prunoiu, V.-M.; Brătucu, E.; Simion, L. Current Therapeutic Approaches in Cervical Cancer Based on the Stage of the Disease: Is There Room for Improvement? Medicina 2023, 59, 1229. [Google Scholar] [CrossRef]
- Querleu, D.; Morrow, C.P. Classification of Radical Hysterectomy. Lancet Oncol. 2008, 9, 297–303. [Google Scholar] [CrossRef]
- Palfalvi, L.; Ungar, L. Laterally Extended Parametrectomy (LEP), the Technique for Radical Pelvic Side Wall Dissection: Feasibility, Technique and Results. Int. J. Gynecol. Cancer 2003, 13, 914–917. [Google Scholar] [CrossRef]
- Nagy, V.; Rancea, A.; Coza, O.; Kacso, G.; Aldea, B. Alexandru Eniu Ghid MS Conduita Cancer Col Uterin. Available online: http://old.ms.ro/index.php?pag=181&pg=5 (accessed on 4 March 2024).
- Cao, L.; Kong, W.; Li, J.; Song, D.; Jin, B.; Liu, T.; Han, C. Analysis of Lymph Node Metastasis and Risk Factors in 975 Patients with FIGO 2009 Stage IA–IIA Cervical Cancer. Gynecol. Obstet. Investig. 2023, 88, 30–36. [Google Scholar] [CrossRef]
- Ronsini, C.; Anchora, L.P.; Restaino, S.; Fedele, C.; Arciuolo, D.; Teodorico, E.; Bizzarri, N.; Zannoni, G.F.; Ferrandina, G.; Scambia, G.; et al. The Role of Semiquantitative Evaluation of Lympho-Vascular Space Invasion in Early Stage Cervical Cancer Patients. Gynecol. Oncol. 2021, 162, 299–307. [Google Scholar] [CrossRef]
- Luo, L.; Luo, Q.; Tang, L. Diagnostic Value and Clinical Significance of MRI and CT in Detecting Lymph Node Metastasis of Early Cervical Cancer. Oncol. Lett. 2020, 19, 700–706. [Google Scholar] [CrossRef]
- Zhu, Y.; Shen, B.; Pei, X.; Liu, H.; Li, G. CT, MRI, and PET Imaging Features in Cervical Cancer Staging and Lymph Node Metastasis. Am. J. Transl. Res. 2021, 13, 10536–10544. [Google Scholar]
- Kondo, E.; Yoshida, K.; Tabata, T.; Kobayashi, Y.; Yamagami, W.; Ebina, Y.; Kaneuchi, M.; Nagase, S.; Machida, H.; Mikami, M. Comparison of Treatment Outcomes of Surgery and Radiotherapy, Including Concurrent Chemoradiotherapy for Stage Ib2-IIb Cervical Adenocarcinoma Patients: A Retrospective Study. J. Gynecol. Oncol. 2022, 33, e14. [Google Scholar] [CrossRef]
- Voinea, S.; Herghelegiu, C.; Sandru, A.; Ioan, R.; Bohilțea, R.; Bacalbașa, N.; Chivu, L.; Furtunescu, F.; Stanica, D.; Neacșu, A. Impact of Histological Subtype on the Response to Chemoradiation in Locally Advanced Cervical Cancer and the Possible Role of Surgery. Exp. Ther. Med. 2020, 21, 93. [Google Scholar] [CrossRef]
- Kaidar-Person, O.; Yosefia, S.; Abdah-Bortnyak, R. Response of Adenocarcinoma of the Uterine Cervix to Chemoradiotherapy. Oncol. Lett. 2015, 9, 2791–2794. [Google Scholar] [CrossRef]
- Kang, J.-H.; Cho, W.K.; Yeo, H.J.; Jeong, S.Y.; Noh, J.J.; Shim, J.I.; Lee, Y.-Y.; Kim, T.-J.; Lee, J.-W.; Kim, B.-G.; et al. Prognostic Significance of Tumor Regression Rate during Concurrent Chemoradiotherapy in Locally Advanced Cervix Cancer: Analysis by Radiation Phase and Histologic Type. J. Clin. Med. 2020, 9, 3471. [Google Scholar] [CrossRef]
- Wakatsuki, M.; Ohno, T.; Kato, S.; Ando, K.; Noda, S.-e.; Kiyohara, H.; Shibuya, K.; Karasawa, K.; Kamada, T.; Nakano, T. Impact of Boost Irradiation on Pelvic Lymph Node Control in Patients with Cervical Cancer. J. Radiat. Res. 2014, 55, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Serkies, K.; Badzio, A.; Jassem, J. Clinical Relevance of Hemoglobin Level in Cervical Cancer Patients Administered Definitive Radiotherapy. Acta Oncol. 2006, 45, 695–701. [Google Scholar] [CrossRef]
- Mercadante, S.; Gebbia, V.; Marrazzo, A.; Filosto, S. Anaemia in Cancer: Pathophysiology and Treatment. Cancer Treat. Rev. 2000, 26, 303–311. [Google Scholar] [CrossRef]
- Dunst, J.; Kuhnt, T.; Strauss, H.G.; Krause, U.; Pelz, T.; Koelbl, H.; Haensgen, G. Anemia in Cervical Cancers: Impact on Survival, Patterns of Relapse, and Association with Hypoxia and Angiogenesis. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Caro, J.J.; Salas, M.; Ward, A.; Goss, G. Anemia as an Independent Prognostic Factor for Survival in Patients with Cancer: A Systemic, Quantitative Review. Cancer 2001, 91, 2214–2221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Kong, W.; Chen, S.; Zhao, X.; Luo, D.; Xie, Y. Surgical Staging of Locally Advanced Cervical Cancer: Current Status and Research Progress. Front. Oncol. 2022, 12, 940807. [Google Scholar] [CrossRef] [PubMed]
- Arbyn, M.; Weiderpass, E.; Bruni, L.; de Sanjosé, S.; Saraiya, M.; Ferlay, J.; Bray, F. Estimates of Incidence and Mortality of Cervical Cancer in 2018: A Worldwide Analysis. Lancet Glob. Health 2020, 8, e191–e203. [Google Scholar] [CrossRef] [PubMed]
- Vora, C.; Gupta, S. Targeted Therapy in Cervical Cancer. ESMO Open 2018, 3, e000462. [Google Scholar] [CrossRef] [PubMed]
- Watkins, D.E.; Craig, D.J.; Vellani, S.D.; Hegazi, A.; Fredrickson, K.J.; Walter, A.; Stanbery, L.; Nemunaitis, J. Advances in Targeted Therapy for the Treatment of Cervical Cancer. J. Clin. Med. 2023, 12, 5992. [Google Scholar] [CrossRef]
- Qin, C.; Chen, X.; Bai, Q.; Davis, M.R.; Fang, Y. Factors Associated with Radiosensitivity of Cervical Cancer. Anticancer Res. 2014, 34, 4649–4656. [Google Scholar]
- Singh, U.; Verma, M.L.; Rahman, Z.; Qureshi, S.; Srivastava, K. Factors Affecting Quality of Life of Cervical Cancer Patients: A Multivariate Analysis. J. Cancer Res. Ther. 2019, 15, 1338–1344. [Google Scholar] [CrossRef]
- Osann, K.; Hsieh, S.; Nelson, E.L.; Monk, B.J.; Chase, D.; Cella, D.; Wenzel, L. Factors Associated with Poor Quality of Life among Cervical Cancer Survivors: Implications for Clinical Care and Clinical Trials. Gynecol. Oncol. 2014, 135, 266–272. [Google Scholar] [CrossRef]
- Mereu, L.; Pecorino, B.; Ferrara, M.; Tomaselli, V.; Scibilia, G.; Scollo, P. Neoadjuvant Chemotherapy plus Radical Surgery in Locally Advanced Cervical Cancer: Retrospective Single-Center Study. Cancers 2023, 15, 5207. [Google Scholar] [CrossRef]
- Cui, H.; Huang, Y.; Wen, W.; Li, X.; Xu, D.; Liu, L. Prognostic Value of Lymph Node Ratio in Cervical Cancer: A Meta-Analysis. Medicine 2022, 101, e30745. [Google Scholar] [CrossRef]
- Sun, C.; Wang, S.; Ye, W.; Wang, R.; Tan, M.; Zhang, H.; Zhou, J.; Li, M.; Wei, L.; Xu, P.; et al. The Prognostic Value of Tumor Size, Volume and Tumor Volume Reduction Rate During Concurrent Chemoradiotherapy in Patients With Cervical Cancer. Front. Oncol. 2022, 12, 934110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, X.; Li, Z.; Wang, W.; Wang, L. Score for the Overall Survival Probability of Patients With First-Diagnosed Distantly Metastatic Cervical Cancer: A Novel Nomogram-Based Risk Assessment System. Front. Oncol. 2019, 9, 1106. [Google Scholar] [CrossRef] [PubMed]
- Berman, M.L.; Keys, H.; Creasman, W.; DiSaia, P.; Bundy, B.; Blessing, J. Survival and Patterns of Recurrence in Cervical Cancer Metastatic to Periaortic Lymph Nodes. Gynecol. Oncol. 1984, 19, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Mileshkin, L.R.; Moore, K.N.; Barnes, E.H.; Lee, Y.C.; Gebski, V.; Narayan, K.; Bradshaw, N.; Diamante, K.; Fyles, A.W.; Small, W.; et al. Staging Locally Advanced Cervical Cancer with FIGO 2018 versus FIGO 2008: Impact on Overall Survival and Progression-Free Survival in the OUTBACK Trial (ANZGOG 0902, RTOG 1174, NRG 0274). J. Clin. Oncol. 2022, 40, 5531. [Google Scholar] [CrossRef]
- Ronsini, C.; De Franciscis, P.; Carotenuto, R.M.; Pasanisi, F.; Cobellis, L.; Colacurci, N. The Oncological Implication of Sentinel Lymph Node in Early Cervical Cancer: A Meta-Analysis of Oncological Outcomes and Type of Recurrences. Medicina 2022, 58, 1539. [Google Scholar] [CrossRef]
- Ronsini, C.; Köhler, C.; De Franciscis, P.; La Verde, M.; Mosca, L.; Solazzo, M.C.; Colacurci, N. Laparo-Assisted Vaginal Radical Hysterectomy as a Safe Option for Minimal Invasive Surgery in Early Stage Cervical Cancer: A Systematic Review and Meta-Analysis. Gynecol. Oncol. 2022, 166, 188–195. [Google Scholar] [CrossRef]
- Ronsini, C.; Solazzo, M.C.; Molitierno, R.; De Franciscis, P.; Pasanisi, F.; Cobellis, L.; Colacurci, N. Fertility-Sparing Treatment for Early-Stage Cervical Cancer ≥ 2 Cm: Can One Still Effectively Become a Mother? A Systematic Review of Fertility Outcomes. Ann. Surg. Oncol. 2023, 30, 5587–5596. [Google Scholar] [CrossRef] [PubMed]
- Ronsini, C.; Solazzo, M.C.; Bizzarri, N.; Ambrosio, D.; La Verde, M.; Torella, M.; Carotenuto, R.M.; Cobellis, L.; Colacurci, N.; De Franciscis, P. Fertility-Sparing Treatment for Early-Stage Cervical Cancer ≥ 2 Cm: A Problem with a Thousand Nuances-A Systematic Review of Oncological Outcomes. Ann. Surg. Oncol. 2022, 29, 8346–8358. [Google Scholar] [CrossRef] [PubMed]
- Scotti, R.J.; Bergman, A.; Bhatia, N.N.; Ostergard, D.R. Urodynamic Changes in Urethrovesical Function After Radical Hysterectomy. Obstet. Gynecol. 1986, 68, 111–120. [Google Scholar] [PubMed]
Total (33) | Alive at 3 Years (22) | Deceased at 3 Years (11) | p-Value | |
---|---|---|---|---|
Age, years, median (SD) | 55.3 (11.5) | 56 (14) | 54 (26) | 0.895 |
Environment, n (%) | urban: 12 (36) rural: 21 (64) | urban: 8 (36) rural: 14 (64) | urban: 4 (36) rural: 7 (64) | 0.801 |
Histological types of cancer, (biopsy) n (%) | 1. Squamous cell carcinoma 30 (90) 2. Adenocarcinoma-2 (6) 3. Adenosquamous carcinoma-1 (3) | 1. Squamous cell Carcinoma-20 (90) 2. Adenocarcinoma-1 (4) 3. Adenosquamous Carcinoma-1 (4) | 1. Squamous cell carcinoma-10 (90) 2. Adenocarcinoma-1 (9) | 0.687 |
Pre-RT FIGO stage, n (%) | III C1 33 (100) | IIIC1: 22 (100) | IIIC1: 11 (100) | 1 |
Pre-RT Parametrial Invasion n (%) | 19 (57) | 11 (50) | 8 (72) | 0.210 |
Initial Tumor size (cm), median (IQR) | 2 (1.6) | 1.95 (0.9) | 3 (2.5) | 0.048 |
Pre-RT leukocyte count, median (IQR) | 6200 (2000) | 6350 (2100) | 6050 (2700) | 0.825 |
Pre-RT hemoglobin, mean (SD) | 12.5 (1.4) | 12.8 (1.1) | 11.5 (1.3) | 0.03 |
Post-Neoadjuvant Treatment Adverse Reactions | Alive at 3 Years after Treatment | Dead at 3 Years after Treatment | p-Value |
---|---|---|---|
Radiation colitis | 0 | 1 | 0.33 |
Radiation cystitis | 0 | 4 | 0.008 |
Anemia | 6 | 7 | 0.06 |
Leukopenia | 1 | 3 | 0.09 |
Total (33) | Alive at 3 Years (22) | Deceased at 3 Years (11) | p-Value | |
---|---|---|---|---|
RT dose, median (IQR) | 50 (0.2) | 50 (0.4) | 50 (0) | 0.611 |
Nr. of RT sessions, median (IQR) | 25 (1) | 25 (1) | 25 (1) | 0.807 |
Sensitization chemotherapy, median (IQR) | 5 (5) | 5 (5) | 3 (5) | 0.440 |
Postoperatively chemotherapy, n (%) | 10 (30) | 5 (22) | 5 (45) | 0.181 |
Total (33) | Alive at 3 Years (22) | Deceased at 3 Years (11) | p-Value | |
---|---|---|---|---|
Post-RT FIGO stage, n (%) | Absence of tumor: 10 (30) IA1-2 (6) IA2-1 (3) IB1-10 (30) IB2-1 (3) IIA1-1 (3) IIA2-1 (3) IIB-1 (3) IIIA-1 (3) IIIC1-5 (15) | Absence of tumor: 10 (45) IA1-2 (9) IA2-0 (0) IB1-6 (27) IB2-0 (0) IIA1-1 (4) IIA2-0 (0) IIB-1 (5) IIIA-0 (0) IIIC1-2 (9) | Absence of tumor: 0 (0) IA1-0 (0) IA2-1 (9) IB1-4 (36) IB2-1 (9) IIA1-0 (0) IIA2-1 (9) IIB-0 (0) IIIA-1 (9) IIIC1-3 (27) | 0.121 |
Post-RT lymphadenopathy, n (%) | 5 (15) | 2 (9) | 3 (27) | 0.304 |
Preoperative leukocyte count, median (IQR) | 5600 (2100) | 5630 (2070) | 5600 (3500) | 0.721 |
Preoperative hemoglobin, mean (SD) | 11.9 (1.4) | 12.3 (1.2) | 11 (1.4) | 0.02 |
Intraoperative FIGO stage, n (%) | Absence of tumor: 15 (45) IA1-2 (6) IA2-3 (9) IB1-3 (9) IB2-0 (0) IIA1-1 (3) IIA2-1 (3) IIB-1 (3) IIIA-1 (3) IIIC1-4 (12) | Absence of tumor: 13 (59) IA1-1 (4) IA2-2 (9) IB1-1 (4) IB2-0 (0) IIA1-1 (4) IIA2-0 (0) IIB-1 (4) IIIA-0 (0) IIIC1-1 (4) | Absence of tumor: 2 (18) IA1-1 (9) IA2-1 (9) IB1-2 (18) IB2-0 (0) IIA1-0 (0) IIA2-1 (9) IIB-0 (0) IIIA-1 (9) IIIC1-3 (27) | 0.119 |
Intraoperative histological type of cancer n (%) | Absence of tumor: 15 (45) In situ carcinoma: 1 (3) Squamous cell carcinoma: 15 (45) 2. Adenocarcinoma: 1 (3) 3. Adenosquamous Carcinoma: 1 (3) | Absence of tumor: 13 (59) In situ carcinoma: 0 (0) Squamous cell carcinoma: 8 (36) 2. Adenocarcinoma: 0 (0) 3. Adenosquamous Carcinoma: 1 (4) | Absence of tumor: 2 (18) In situ carcinoma: 1 (9) Squamous cell Carcinoma: 7 (63) 2. Adenocarcinoma: 1 (9) 3. Adenosquamous Carcinoma: 0 (0) | |
Intraoperative parametrial Invasion n (%) | 2 (6) | 1(4) | 1(9) | 0.601 |
Positive intraoperative lymph nodes, n (%) | 3 (9) | 1 (4) | 2 (18) | 0.252 |
Lymphovascular invasion, n (%) | 7 (21) | 3 (13) | 4 (36) | 0.186 |
Factors | HR | CI | p-Value |
---|---|---|---|
Age | 0.987 | 0.935–1.041 | 0.621 |
Environment | 1.001 | 0.292–3.423 | 0.999 |
Histological types of cancer, (biopsy) | 1.241 | 0.159–9.706 | 0.979 |
Pre-RT hemoglobin | 0.702 | 0.397–0.912 | 0.005 |
Initial Tumor size | 1.746 | 1.248–2.441 | 0.001 |
Pre-RT parametrial invasion | 2.445 | 0.647–9.227 | 0.187 |
RT dose | 0.970 | 0.792–1.187 | 0.766 |
Nr. of RT sessions | 0.971 | 0.689–1.368 | 0.867 |
Post-RT Lymphadenopathy | 3.186 | 0.835–12.153 | 0.09 |
Post-RT FIGO | 2.965 | 0.972–7.842 | 0.573 |
Sensitization chemotherapy | 0.937 | 0.761–1.155 | 0.543 |
Pre-RT hemoglobin | 0.702 | 0.397–0.912 | 0.005 |
Preoperative hemoglobin | 0.506 | 0.325–0.789 | 0.003 |
Preoperative leukocyte count | 1.153 | 0.895–1.486 | 0.271 |
Intraoperative FIGO | 47.447 9.203 | 3.078–731.400 1.529–55.372 | Stage IIIA: 0.006 Stage IIIC1: 0.01 |
Intraoperative parametrial invasion | 2.162 | 0.275–16.970 | 0.600 |
Positive intraoperative lymph nodes | 4.064 | 0.862–19.164 | 0.076 |
Postoperatively chemotherapy | 2.617 | 0.795–8.610 | 0.113 |
Lymphovascular invasion | 3.04 | 0.885–10.442 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dicu-Andreescu, I.-G.; Marincaș, M.-A.; Simionescu, A.-A.; Dicu-Andreescu, I.; Ionescu, S.-O.; Prunoiu, V.-M.; Brătucu, E.; Simion, L. The Role of Lymph Node Downstaging Following Neoadjuvant Treatment in a Group of Patients with Advanced Stage Cervical Cancer. Medicina 2024, 60, 871. https://doi.org/10.3390/medicina60060871
Dicu-Andreescu I-G, Marincaș M-A, Simionescu A-A, Dicu-Andreescu I, Ionescu S-O, Prunoiu V-M, Brătucu E, Simion L. The Role of Lymph Node Downstaging Following Neoadjuvant Treatment in a Group of Patients with Advanced Stage Cervical Cancer. Medicina. 2024; 60(6):871. https://doi.org/10.3390/medicina60060871
Chicago/Turabian StyleDicu-Andreescu, Irinel-Gabriel, Marian-Augustin Marincaș, Anca-Angela Simionescu, Ioana Dicu-Andreescu, Sînziana-Octavia Ionescu, Virgiliu-Mihail Prunoiu, Eugen Brătucu, and Laurențiu Simion. 2024. "The Role of Lymph Node Downstaging Following Neoadjuvant Treatment in a Group of Patients with Advanced Stage Cervical Cancer" Medicina 60, no. 6: 871. https://doi.org/10.3390/medicina60060871
APA StyleDicu-Andreescu, I. -G., Marincaș, M. -A., Simionescu, A. -A., Dicu-Andreescu, I., Ionescu, S. -O., Prunoiu, V. -M., Brătucu, E., & Simion, L. (2024). The Role of Lymph Node Downstaging Following Neoadjuvant Treatment in a Group of Patients with Advanced Stage Cervical Cancer. Medicina, 60(6), 871. https://doi.org/10.3390/medicina60060871