Clinical Evaluation of Response to Octreotide and Chemotherapy in High-Grade Malignant Neuroendocrine Tumors and Promising In Vitro Preclinical Results with Pasireotide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Data Collection
2.2. Cell Culture
2.3. Cell Viability Assay
2.4. RT-qPCR Assay
2.5. Statistic Studies
3. Results
3.1. Clinical Characteristics of Patients
3.2. In Vitro Cell Viability after Pasireotide Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huguet, I.; Grossman, A.B.; O’Toole, D. Changes in the Epidemiology of Neuroendocrine Tumours. Neuroendocrinology 2017, 104, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Anaizi, A.; Rizvi-Toner, A.; Valestin, J.; Schey, R. Large Cell Neuroendocrine Carcinoma of the Lung Presenting as Pseudoachalasia: A Case Report. J. Med. Case Rep. 2015, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.S.; Chen, L.-T.; Shan, Y.-S.; Chu, P.-Y.; Tsai, C.-R.; Tsai, H.-J. An Updated Analysis of the Epidemiologic Trends of Neuroendocrine Tumors in Taiwan. Sci. Rep. 2021, 11, 7881. [Google Scholar] [CrossRef] [PubMed]
- Popa, O.; Taban, S.M.; Pantea, S.; Plopeanu, A.D.; Barna, R.A.; Cornianu, M.; Pascu, A.-A.; Dema, A.L.C. The New WHO Classification of Gastrointestinal Neuroendocrine Tumors and Immunohistochemical Expression of Somatostatin Receptor 2 and 5. Exp. Ther. Med. 2021, 22, 1179. [Google Scholar] [CrossRef] [PubMed]
- Basturk, O.; Tang, L.; Hruban, R.H.; Adsay, V.; Yang, Z.; Krasinskas, A.M.; Vakiani, E.; La Rosa, S.; Jang, K.-T.; Frankel, W.L.; et al. Poorly Differentiated Neuroendocrine Carcinomas of the Pancreas: A Clinicopathologic Analysis of 44 Cases. Am. J. Surg. Pathol. 2014, 38, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Crippa, S.; Partelli, S.; Belfiori, G.; Palucci, M.; Muffatti, F.; Adamenko, O.; Cardinali, L.; Doglioni, C.; Zamboni, G.; Falconi, M. Management of Neuroendocrine Carcinomas of the Pancreas (WHO G3): A Tailored Approach between Proliferation and Morphology. World J. Gastroenterol. 2016, 22, 9944–9953. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.H.; Basturk, O.; Sue, J.J.; Klimstra, D.S. A Practical Approach to the Classification of WHO Grade 3 (G3) Well-Differentiated Neuroendocrine Tumor (WD-NET) and Poorly Differentiated Neuroendocrine Carcinoma (PD-NEC) of the Pancreas. Am. J. Surg. Pathol. 2016, 40, 1192–1202. [Google Scholar] [CrossRef] [PubMed]
- Pavel, M.; O’Toole, D.; Costa, F.; Capdevila, J.; Gross, D.; Kianmanesh, R.; Krenning, E.; Knigge, U.; Salazar, R.; Pape, U.-F.; et al. ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site. Neuroendocrinology 2016, 103, 172–185. [Google Scholar] [CrossRef] [PubMed]
- Rudin, C.M.; Brambilla, E.; Faivre-Finn, C.; Sage, J. Small-Cell Lung Cancer. Nat. Rev. Dis. Primers 2021, 7, 3. [Google Scholar] [CrossRef]
- Rindi, G.; Mete, O.; Uccella, S.; Basturk, O.; La Rosa, S.; Brosens, L.A.A.; Ezzat, S.; de Herder, W.W.; Klimstra, D.S.; Papotti, M.; et al. Overview of the 2022 WHO Classification of Neuroendocrine Neoplasms. Endocr. Pathol. 2022, 33, 115–154. [Google Scholar] [CrossRef]
- Cakir, M.; Dworakowska, D.; Grossman, A. Somatostatin Receptor Biology in Neuroendocrine and Pituitary Tumours: Part 1--Molecular Pathways. J. Cell Mol. Med. 2010, 14, 2570–2584. [Google Scholar] [CrossRef] [PubMed]
- Vitali, E.; Piccini, S.; Trivellin, G.; Smiroldo, V.; Lavezzi, E.; Zerbi, A.; Pepe, G.; Lania, A.G. The Impact of SST2 Trafficking and Signaling in the Treatment of Pancreatic Neuroendocrine Tumors. Mol. Cell Endocrinol. 2021, 527, 111226. [Google Scholar] [CrossRef] [PubMed]
- Ampofo, E.; Nalbach, L.; Menger, M.D.; Laschke, M.W. Regulatory Mechanisms of Somatostatin Expression. Int. J. Mol. Sci. 2020, 21, 4170. [Google Scholar] [CrossRef] [PubMed]
- Gatto, F.; Barbieri, F.; Arvigo, M.; Thellung, S.; Amarù, J.; Albertelli, M.; Ferone, D.; Florio, T. Biological and Biochemical Basis of the Differential Efficacy of First and Second Generation Somatostatin Receptor Ligands in Neuroendocrine Neoplasms. Int. J. Mol. Sci. 2019, 20, 3940. [Google Scholar] [CrossRef] [PubMed]
- Rai, U.; Thrimawithana, T.R.; Valery, C.; Young, S.A. Therapeutic Uses of Somatostatin and Its Analogues: Current View and Potential Applications. Pharmacol. Ther. 2015, 152, 98–110. [Google Scholar] [CrossRef]
- Caplin, M.E.; Pavel, M.; Phan, A.T.; Ćwikła, J.B.; Sedláčková, E.; Thanh, X.-M.T.; Wolin, E.M.; Ruszniewski, P.; CLARINET Investigators. Lanreotide Autogel/Depot in Advanced Enteropancreatic Neuroendocrine Tumours: Final Results of the CLARINET Open-Label Extension Study. Endocrine 2021, 71, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, G.; Nakanishi, Y.; Watanabe, N.; Honma, T.; Obana, Y.; Seki, T.; Ohni, S.; Nemoto, N. Expression of Somatostatin Receptor (SSTR) Subtypes (SSTR-1, 2A, 3, 4 and 5) in Neuroendocrine Tumors Using Real-Time RT-PCR Method and Immunohistochemistry. Acta Histochem. Cytochem. 2012, 45, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Benuck, M.; Marks, N. Differences in the Degradation of Hypothalamic Releasing Factors by Rat and Human Serum. Life Sci. 1976, 19, 1271–1276. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Porras, M.; Cárdenas-Salas, J.; Álvarez-Escolá, C. Somatostatin Analogs in Clinical Practice: A Review. Int. J. Mol. Sci. 2020, 21, 1682. [Google Scholar] [CrossRef] [PubMed]
- Rinke, A.; Wittenberg, M.; Schade-Brittinger, C.; Aminossadati, B.; Ronicke, E.; Gress, T.M.; Müller, H.-H.; Arnold, R.; PROMID Study Group. Placebo-Controlled, Double-Blind, Prospective, Randomized Study on the Effect of Octreotide LAR in the Control of Tumor Growth in Patients with Metastatic Neuroendocrine Midgut Tumors (PROMID): Results of Long-Term Survival. Neuroendocrinology 2017, 104, 26–32. [Google Scholar] [CrossRef]
- Hofland, L.J.; van der Hoek, J.; Feelders, R.; van Aken, M.O.; van Koetsveld, P.M.; Waaijers, M.; Sprij-Mooij, D.; Bruns, C.; Weckbecker, G.; de Herder, W.W.; et al. The Multi-Ligand Somatostatin Analogue SOM230 Inhibits ACTH Secretion by Cultured Human Corticotroph Adenomas via Somatostatin Receptor Type 5. Eur. J. Endocrinol. 2005, 152, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Colao, A.; Bronstein, M.D.; Brue, T.; De Marinis, L.; Fleseriu, M.; Guitelman, M.; Raverot, G.; Shimon, I.; Fleck, J.; Gupta, P.; et al. Pasireotide for Acromegaly: Long-Term Outcomes from an Extension to the Phase III PAOLA Study. Eur. J. Endocrinol. 2020, 182, 583. [Google Scholar] [CrossRef]
- Zhao, N.; Yang, X.; Li, C.; Ma, J.; Yin, X. Efficacy and Safety of Pasireotide for Cushing’s Disease. Medicine 2020, 99, e23824. [Google Scholar] [CrossRef] [PubMed]
- Wolin, E.M.; Jarzab, B.; Eriksson, B.; Walter, T.; Toumpanakis, C.; Morse, M.A.; Tomassetti, P.; Weber, M.M.; Fogelman, D.R.; Ramage, J.; et al. Phase III Study of Pasireotide Long-Acting Release in Patients with Metastatic Neuroendocrine Tumors and Carcinoid Symptoms Refractory to Available Somatostatin Analogues. Drug Des. Dev. Ther. 2015, 9, 5075–5086. [Google Scholar] [CrossRef]
- Kaemmerer, D.; Schindler, R.; Mußbach, F.; Dahmen, U.; Altendorf-Hofmann, A.; Dirsch, O.; Sänger, J.; Schulz, S.; Lupp, A. Somatostatin and CXCR4 Chemokine Receptor Expression in Hepatocellular and Cholangiocellular Carcinomas: Tumor Capillaries as Promising Targets. BMC Cancer 2017, 17, 896. [Google Scholar] [CrossRef] [PubMed]
- King, A.P.; Gutsche, N.T.; Raju, N.; Fayn, S.; Baidoo, K.E.; Bell, M.M.; Olkowski, C.S.; Swenson, R.E.; Lin, F.I.; Sadowski, S.M.; et al. 225Ac-MACROPATATE: A Novel α-Particle Peptide Receptor Radionuclide Therapy for Neuroendocrine Tumors. J. Nucl. Med. 2023, 64, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Ungefroren, H.; Künstner, A.; Busch, H.; Franzenburg, S.; Luley, K.; Viol, F.; Schrader, J.; Konukiewitz, B.; Wellner, U.F.; Meyhöfer, S.M.; et al. Differential Effects of Somatostatin, Octreotide, and Lanreotide on Neuroendocrine Differentiation and Proliferation in Established and Primary NET Cell Lines: Possible Crosstalk with TGF-β Signaling. Int. J. Mol. Sci. 2022, 23, 15868. [Google Scholar] [CrossRef] [PubMed]
- Rekhtman, N. Lung Neuroendocrine Neoplasms: Recent Progress and Persistent Challenges. Mod. Pathol. 2022, 35, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Tsao, M.-S.; Nicholson, A.G.; Maleszewski, J.J.; Marx, A.; Travis, W.D. Introduction to 2021 WHO Classification of Thoracic Tumors. J. Thorac. Oncol. 2022, 17, e1–e4. [Google Scholar] [CrossRef] [PubMed]
- Raso, M.G.; Bota-Rabassedas, N.; Wistuba, I.I. Pathology and Classification of SCLC. Cancers 2021, 13, 820. [Google Scholar] [CrossRef]
- Exner, S.; Prasad, V.; Wiedenmann, B.; Grötzinger, C. Octreotide Does Not Inhibit Proliferation in Five Neuroendocrine Tumor Cell Lines. Front. Endocrinol. 2018, 9, 146. [Google Scholar] [CrossRef] [PubMed]
- Gulde, S.; Wiedemann, T.; Schillmaier, M.; Valença, I.; Lupp, A.; Steiger, K.; Yen, H.-Y.; Bäuerle, S.; Notni, J.; Luque, R.; et al. Gender-Specific Efficacy Revealed by Head-to-Head Comparison of Pasireotide and Octreotide in a Representative In Vivo Model of Nonfunctioning Pituitary Tumors. Cancers 2021, 13, 3097. [Google Scholar] [CrossRef] [PubMed]
- Tsuta, K.; Wistuba, I.I.; Moran, C.A. Differential Expression of Somatostatin Receptors 1-5 in Neuroendocrine Carcinoma of the Lung. Pathol. Res. Pract. 2012, 208, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Muscarella, L.A.; D’Alessandro, V.; la Torre, A.; Copetti, M.; De Cata, A.; Parrella, P.; Sperandeo, M.; Pellegrini, F.; Frusciante, V.; Maiello, E.; et al. Gene Expression of Somatostatin Receptor Subtypes SSTR2a, SSTR3 and SSTR5 in Peripheral Blood of Neuroendocrine Lung Cancer Affected Patients. Cell. Oncol. 2011, 34, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, W.; Jin, K.; Fang, C.; Lin, Y.; Xue, L.; Feng, S.; Zhou, Z.; Shao, C.; Chen, M.; et al. Somatostatin Receptor Expression Indicates Improved Prognosis in Gastroenteropancreatic Neuroendocrine Neoplasm, and Octreotide Long-Acting Release Is Effective and Safe in Chinese Patients with Advanced Gastroenteropancreatic Neuroendocrine Tumors. Oncol. Lett. 2017, 13, 1165–1174. [Google Scholar] [CrossRef] [PubMed]
- Lapa, C.; Hänscheid, H.; Wild, V.; Pelzer, T.; Schirbel, A.; Werner, R.A.; Droll, S.; Herrmann, K.; Buck, A.K.; Lückerath, K. Somatostatin Receptor Expression in Small Cell Lung Cancer as a Prognostic Marker and a Target for Peptide Receptor Radionuclide Therapy. Oncotarget 2016, 7, 20033–20040. [Google Scholar] [CrossRef] [PubMed]
Patient | Age | Sex | Octreoscan (111In-Pentetreotide Scintigraphy) (Planar) or Gallium-PET (68Ga-Edotreotide PET) | Primary Tumor Localization | Stage | Tumor Grade | Ki67 | Treatment | Treatment Response (RECIST 1.1) |
---|---|---|---|---|---|---|---|---|---|
1 | 59 | F | Negative * | Lung NEC | IV | G3 (large cell) | Unknown | QT | PR |
2 | 53 | M | Positive * | Pancreas NEC | IV | G3 (small cell) + G1 (differentiated focuses) | 1–20% | Lanreotide | CR |
3 | 75 | F | Positive * | Gallbladder NEC | IV | G3 (small cell) | 70% | Palliative | Unknown |
4 | 58 | F | Positive (weak positivity) * | Breast NEC | IV | G3 (small cell) | 80–90% | QT | PD |
5 | 54 | F | Positive * | Cervix NET | IV | G3 | 90% | 177Lu-DOTATATE | SD |
6 | 81 | F | Negative * | Cervix NEC | IV | G3 (large cell) | Unknown | Palliative | Unknown |
7 | 79 | M | Positive ** | Cervical NEC | III | G3 (large cell) | 90% | QT + radiotherapy | CR |
8 | 78 | M | Negative * | Colon NET | IV | G3 | 80% | QT | PD |
9 | 76 | F | Negative * | Pancreas NET | IV | G3 | 40% | QT | PR |
10 | 61 | F | Positive * | Rectum NEC | IV | G3 (small cell) | 80% | QT + Lanreotide | PD |
11 | 51 | M | Negative * | Retroperitoneal NEC | IV | G3 (small cell) | 60–70% | QT | PD |
12 | 54 | F | Negative * | Cervix NET | IV | G3 | 80% | QT | CR |
13 | 65 | M | Positive * | Lung NET | IV | G3 | Unknown | QT + Octreotide | PD |
14 | 69 | F | Positive * | Breast NET | IV | G3 | 70–80% | Lanreotide | PD |
15 | 78 | M | Positive (weak positivity) * | Microcytic lung cancer (NEC) | wd | G3 (small cell) | Unknown | Octreotide | PD |
16 | 70 | M | Positive (weak positivity) * | Microcytic lung cancer (NEC) | wd | G3 (small cell) | >20% | QT + octreotide | PR |
17 | 70 | M | Negative * | Microcytic lung cancer (NEC) | wd | G3 (small cell) | Unknown | QT | PR |
18 | 65 | F | Positive * | Breast NET | IV | G3 | 35% | Octreotide | PD |
19 | 56 | M | Positive * | Pancreas NET | IV | G3 | Unknown | QT + Lanreotide | SD |
20 | 80 | M | Negative * | Ampulla of vater NET | IV | G3 | >40% | QT | PR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doello, K.; Chico, M.A.; Quiñonero, F.; Ortiz, R.; Prados, J.; Mesas, C.; Melguizo, C. Clinical Evaluation of Response to Octreotide and Chemotherapy in High-Grade Malignant Neuroendocrine Tumors and Promising In Vitro Preclinical Results with Pasireotide. Medicina 2024, 60, 1039. https://doi.org/10.3390/medicina60071039
Doello K, Chico MA, Quiñonero F, Ortiz R, Prados J, Mesas C, Melguizo C. Clinical Evaluation of Response to Octreotide and Chemotherapy in High-Grade Malignant Neuroendocrine Tumors and Promising In Vitro Preclinical Results with Pasireotide. Medicina. 2024; 60(7):1039. https://doi.org/10.3390/medicina60071039
Chicago/Turabian StyleDoello, Kevin, Maria Angeles Chico, Francisco Quiñonero, Raúl Ortiz, Jose Prados, Cristina Mesas, and Consolación Melguizo. 2024. "Clinical Evaluation of Response to Octreotide and Chemotherapy in High-Grade Malignant Neuroendocrine Tumors and Promising In Vitro Preclinical Results with Pasireotide" Medicina 60, no. 7: 1039. https://doi.org/10.3390/medicina60071039
APA StyleDoello, K., Chico, M. A., Quiñonero, F., Ortiz, R., Prados, J., Mesas, C., & Melguizo, C. (2024). Clinical Evaluation of Response to Octreotide and Chemotherapy in High-Grade Malignant Neuroendocrine Tumors and Promising In Vitro Preclinical Results with Pasireotide. Medicina, 60(7), 1039. https://doi.org/10.3390/medicina60071039