Does the Effect of Mental Fatigue Created by Motor Imagery on Upper Extremity Functions Change with Diaphragmatic Breathing Exercises? A Randomized, Controlled, Single-Blinded Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessments
2.3. Upper Extremity Performance Tests
- (1)
- Inability to hold/maintain the arm at 90° in the horizontal plane.
- (2)
- Failure of the metronome to maintain its rhythm.
- (3)
- Compensatory movement made by the scapula.
- (4)
- Inability of the glenohumeral joint to maintain lateral rotation position.
- (5)
- Use of trunk rotation to achieve the required range/position.
- (6)
- Use of lower limbs to provide lifting.
- (7)
- Raising the other arm.
- (8)
- The subject stated that they could not continue [32].
2.4. Interventions
2.5. Sample Size
2.6. Statistical Analysis
3. Results
4. Discussion
Limitations and Further Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marcora, S.M.; Staiano, W.; Manning, V. Mental Fatigue Impairs Physical Performance in Humans. J. Appl. Physiol. 2009, 106, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.; Meeusen, R.; Thompson, K.G.; Keegan, R.; Rattray, B. Mental Fatigue Impairs Endurance Performance: A Physiological Explanation. Sports Med. 2018, 48, 2041–2051. [Google Scholar] [CrossRef]
- Sasahara, I.; Fujimura, N.; Nozawa, Y.; Furuhata, Y.; Sato, H. The Effect of Histidine on Mental Fatigue and Cognitive Performance in Subjects with High Fatigue and Sleep Disruption Scores. Physiol Behav. 2015, 147, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Boksem, M.A.S.; Meijman, T.F.; Lorist, M.M. Effects of Mental Fatigue on Attention: An ERP Study. Cogn. Brain Res. 2005, 25, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Hopstaken, J.F.; Van Der Linden, D.; Bakker, A.B.; Kompier, M.A.J.; Leung, Y.K. Shifts in Attention during Mental Fatigue: Evidence from Subjective, Behavioral, Physiological, and Eye-Tracking Data. J. Exp. Psychol. Hum. Percept. Perform. 2016, 42, 878–889. [Google Scholar] [CrossRef]
- Langner, R.; Steinborn, M.B.; Chatterjee, A.; Sturm, W.; Willmes, K. Mental Fatigue and Temporal Preparation in Simple Reaction-Time Performance. Acta Psychol. 2010, 133, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Habay, J.; Van Cutsem, J.; Verschueren, J.; De Bock, S.; Proost, M.; De Wachter, J.; Tassignon, B.; Meeusen, R.; Roelands, B. Mental Fatigue and Sport-Specific Psychomotor Performance: A Systematic Review. Sports Med. 2021, 51, 1527–1548. [Google Scholar] [CrossRef]
- Van Cutsem, J.; Marcora, S.; De Pauw, K.; Bailey, S.; Meeusen, R.; Roelands, B. The Effects of Mental Fatigue on Physical Performance: A Systematic Review. Sports Med. 2017, 47, 1569–1588. [Google Scholar] [CrossRef]
- Habay, J.; Uylenbroeck, R.; Van Droogenbroeck, R.; De Wachter, J.; Proost, M.; Tassignon, B.; De Pauw, K.; Meeusen, R.; Pattyn, N.; Van Cutsem, J.; et al. Interindividual Variability in Mental Fatigue-Related Impairments in Endurance Performance: A Systematic Review and Multiple Meta-Regression. Sports Med. Open 2023, 9, 14. [Google Scholar] [CrossRef]
- Budini, F.; Labanca, L.; Scholz, M.; Macaluso, A. Tremor, Finger and Hand Dexterity and Force Steadiness, Do Not Change after Mental Fatigue in Healthy Humans. PLoS ONE 2022, 17, e0272033. [Google Scholar] [CrossRef]
- Duncan, M.J.; Fowler, N.; George, O.; Joyce, S.; Hankey, J. Mental Fatigue Negatively Influences Manual Dexterity and Anticipation Timing but Not Repeated High-Intensity Exercise Performance in Trained Adults. Res. Sports Med. 2015, 23, 975811. [Google Scholar] [CrossRef] [PubMed]
- Head, J.; Tenan, M.S.; Tweedell, A.J.; LaFiandra, M.E.; Morelli, F.; Wilson, K.M.; Ortega, S.V.; Helton, W.S. Prior Mental Fatigue Impairs Marksmanship Decision Performance. Front. Physiol. 2017, 8, 680. [Google Scholar] [CrossRef] [PubMed]
- Le Mansec, Y.; Pageaux, B.; Nordez, A.; Dorel, S.; Jubeau, M. Mental Fatigue Alters the Speed and the Accuracy of the Ball in Table Tennis. J. Sports Sci. 2018, 36, 2751–2759. [Google Scholar] [CrossRef] [PubMed]
- Veness, D.; Patterson, S.D.; Jeffries, O.; Waldron, M. The Effects of Mental Fatigue on Cricket-Relevant Performance among Elite Players. J. Sports Sci. 2017, 35, 2461–2467. [Google Scholar] [CrossRef] [PubMed]
- Valenza, A.; Charlier, H.; Bianco, A.; Filingeri, D. Independent and Interactive Effects of Thermal Stress and Mental Fatigue on Manual Dexterity. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2020, 319, R703–R711. [Google Scholar] [CrossRef] [PubMed]
- Rozand, V.; Lebon, F.; Papaxanthis, C.; Lepers, R. Effect of Mental Fatigue on Speed–Accuracy Trade-Off. Neuroscience 2015, 297, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yue, Z.-Q.; Gong, Z.-Q.; Zhang, H.; Duan, N.-Y.; Shi, Y.-T.; Wei, G.-X.; Li, Y.-F. The Effect of Diaphragmatic Breathing on Attention, Negative Affect and Stress in Healthy Adults. Front. Psychol. 2017, 8, 874. [Google Scholar] [CrossRef] [PubMed]
- Stromberg, S.E.; Russell, M.E.; Carlson, C.R. Diaphragmatic Breathing and Its Effectiveness for the Management of Motion Sickness. Aerosp. Med. Hum. Perform. 2015, 86, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Bhavanani, A.B.; Madanmohan, T.; Udupa, K. Acute effect of Mukh bhastrika (a yogic bellows type breathing) on reaction time. Indian J. Physiol. Pharmacol. 2003, 47, 297–300. [Google Scholar]
- Telles, S.; Yadav, A.; Gupta, R.K.; Balkrishna, A. Reaction Time Following Yoga Bellows-Type Breathing and Breath Awareness. Percept. Mot. Skills 2013, 117, 89–98. [Google Scholar] [CrossRef]
- Jacquet, T.; Lepers, R.; Poulin-Charronnat, B.; Bard, P.; Pfister, P.; Pageaux, B. Mental Fatigue Induced by Prolonged Motor Imagery Increases Perception of Effort and the Activity of Motor Areas. Neuropsychologia 2021, 150, 107701. [Google Scholar] [CrossRef] [PubMed]
- Uysal, S.A.; Ekinci, Y.; Çoban, F.; Yakut, Y. Investigation of Turkish reliability of the Edinburgh Hand Preference Questionnaire. J. Exerc. Ther. Rehabil. 2019, 2, 112–118. [Google Scholar]
- Andrews, A.W.; Thomas, M.W.; Bohannon, R.W. Normative Values for Isometric Muscle Force Measurements Obtained with Hand-Held Dynamometers. Phys.Ther. 1996, 76, 248–259. [Google Scholar] [CrossRef] [PubMed]
- de-Oliveira, L.A.; Matos, M.V.; Fernandes, I.G.S.; Nascimento, D.A.; Da Silva-Grigoletto, M.E. Test-Retest Reliability of a Visual-Cognitive Technology (BlazePodTM) to Measure Response Time. J. Sport Sci. Med. 2021, 20, 179–180. [Google Scholar] [CrossRef] [PubMed]
- Friebe, D.; Engeroff, T.; Giesche, F.; Niederer, D. Effects of Open Skill Visuomotor Choice Reaction Time Training on Unanticipated Jump-Landing Stability and Quality: A Randomized Controlled Trial. Front. Hum. Neurosci. 2021, 15, 683909. [Google Scholar] [CrossRef]
- Badau, D.; Baydil, B.; Badau, A. Differences among Three Measures of Reaction Time Based on Hand Laterality in Individual Sports. Sports 2018, 6, 45. [Google Scholar] [CrossRef]
- Lord, S.R.; Menz, H.B.; Tiedemann, A. A Physiological Profile Approach to Falls Risk Assessment and Prevention. Phys. Ther. 2003, 83, 237–252. [Google Scholar] [CrossRef]
- Smith, Y.A.; Hong, E.; Presson, C. Normative and Validation Studies of the Nine-Hole Peg Test with Children. Percept. Mot. Skills 2000, 90, 823–843. [Google Scholar] [CrossRef]
- Haik, M.N.; Camargo, P.R.; Zanca, G.G.; Alburquerque-Sendín, F.; Salvini, T.F.; Mattiello-Rosa, S.M. Joint Position Sense Is Not Altered during Shoulder Medial and Lateral Rotations in Female Assembly Line Workers with Shoulder Impingement Syndrome. Physiother. Theory Pract. 2013, 29, 41–50. [Google Scholar] [CrossRef]
- Bulut, T.; Tahta, M.; Sener, U.; Sener, M. Inter- and Intra-Tester Reliability of Sensibility Testing in Healthy Individuals. J. Plast. Surg. Hand Surg. 2018, 52, 189–192. [Google Scholar] [CrossRef]
- Bowden, J.L.; McNulty, P.A. The Magnitude and Rate of Reduction in Strength, Dexterity and Sensation in the Human Hand Vary with Ageing. Exp. Gerontol. 2013, 48, 756–765. [Google Scholar] [CrossRef]
- Moore, S.D.; Uhl, T.L.; Kibler, W.B. Improvements in Shoulder Endurance Following a Baseball-Specific Strengthening Program in High School Baseball Players. Sports Health 2013, 5, 233–238. [Google Scholar] [CrossRef]
- Rozand, V.; Lebon, F.; Stapley, P.J.; Papaxanthis, C.; Lepers, R. A Prolonged Motor Imagery Session Alter Imagined and Actual Movement Durations: Potential Implications for Neurorehabilitation. Behav. Brain Res. 2016, 297, 67–75. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, T.; Shi, T.; Liu, Y.; Liu, X.; Xu, G.; Li, F.; Wang, Y.; Wu, X. The Effectiveness of Diaphragmatic Breathing Relaxation Training for Improving Sleep Quality among Nursing Staff during the COVID-19 Outbreak: A before and after Study. Sleep Med. 2021, 78, 8–14. [Google Scholar] [CrossRef]
- Pageaux, B.; Marcora, S.M.; Lepers, R. Prolonged Mental Exertion Does Not Alter Neuromuscular Function of the Knee Extensors. Med. Sci. Sports Exerc. 2013, 45, 2254–2264. [Google Scholar] [CrossRef]
- Decety, J. The Neurophysiological Basis of Motor Imagery. Behav. Brain Res. 1996, 77, 45–52. [Google Scholar] [CrossRef]
- Nakashima, A.; Moriuchi, T.; Matsuda, D.; Hasegawa, T.; Nakamura, J.; Anan, K.; Satoh, K.; Suzuki, T.; Higashi, T.; Sugawara, K. Corticospinal Excitability during Motor Imagery Is Diminished by Continuous Repetition-Induced Fatigue. Neural Regen. Res. 2021, 16, 1031. [Google Scholar] [CrossRef]
- Nakashima, A.; Moriuchi, T.; Matsuda, D.; Nakamura, J.; Fujiwara, K.; Ikio, Y.; Hasegawa, T.; Mitunaga, W.; Higashi, T. Continuous Repetition Motor Imagery Training and Physical Practice Training Exert the Growth of Fatigue and Its Effect on Performance. Brain Sci. 2022, 12, 1087. [Google Scholar] [CrossRef]
- Dallaway, N.; Lucas, S.J.E.; Ring, C. Cognitive Tasks Elicit Mental Fatigue and Impair Subsequent Physical Task Endurance: Effects of Task Duration and Type. Psychophysiology 2022, 59, e14126. [Google Scholar] [CrossRef]
- Meeusen, R.; Van Cutsem, J.; Roelands, B. Endurance Exercise-induced and Mental Fatigue and the Brain. Exp. Physiol. 2021, 106, 2294–2298. [Google Scholar] [CrossRef]
- Feinstein, B.; Lindegård, B.; Nyman, E.; Wohlfart, G. Morphologic studies of motor units in normal human muscles. Acta Anat. 1955, 23, 127–142. [Google Scholar] [CrossRef]
- Migliaccio, G.M.; Di Filippo, G.; Russo, L.; Orgiana, T.; Ardigò, L.P.; Casal, M.Z.; Peyré-Tartaruga, L.A.; Padulo, J. Effects of Mental Fatigue on Reaction Time in Sportsmen. Int. J. Environ. Res. Public Health 2022, 19, 14360. [Google Scholar] [CrossRef]
- Takasaki, H.; Lim, E.C.W.; Soon, B. The Effect of Shoulder Muscle Fatigue on Active Repositioning Acuity and Scapulothoracic Resting Alignment: A Systematic Review with Meta-Analysis. Phys. Ther. Sport 2016, 20, 61–78. [Google Scholar] [CrossRef]
- Tamura, Y.; Hoshiyama, M.; Inui, K.; Kakigi, R. Central Mechanisms for Two-Point Discrimination in Humans. Neurosci. Lett. 2003, 342, 187–190. [Google Scholar] [CrossRef]
- Cvejic, E.; Sandler, C.X.; Keech, A.; Barry, B.K.; Lloyd, A.R.; Vollmer-Conna, U. Autonomic Nervous System Function, Activity Patterns, and Sleep after Physical or Cognitive Challenge in People with Chronic Fatigue Syndrome. J. Psychosom. Res. 2017, 103, 91–94. [Google Scholar] [CrossRef] [PubMed]
Total (n: 30) | Intervention Group (n: 15) | Control Group (n: 15) | p Values | |
---|---|---|---|---|
Age (years) | 21.10 ± 1. 17 (20–29) | 21.20 ± 2.27 (20–29) | 21.00 ± 0.92 (20–23) | 0.500 |
Height (cm) | 168.90 ± 8.96 (155–188) | 167.86 ± 7.32 (155–184) | 169.93 ± 10.49 (155–188) | 0.755 |
Weight (kg) | 63.52 ± 12.87 (44–97) | 61.20 ± 10.79 (48–83) | 65.83 ± 14.67 (44–97) | 0.340 |
BMI (kg/cm2) | 22.12 ± 3.24 (17.00–30.10) | 28.70 ± 3.33 (17.00–28.70) | 22.56 ± 3.18 (17.90–30.10) | 0.384 |
n = 30 | Pre-Fatigue | Post-Fatigue | p |
---|---|---|---|
Isometric elbow flexion strength-D (kg) | 23.35 ± 7.68 (14.10–43.00) | 19.25 ± 6.70 (12.40–40.30) | 0.001 |
Isometric elbow flexion strength-ND (kg) | 23.45 ± 7.72 (16.20–42.10) | 19.50 ± 6.91 (12.80–38.80) | 0.000 |
Handgrip strength-D (kg) | 28.00 ± 9.53 (20.00–55.00) | 26.00 ± 10.56 (18–53) | 0.173 |
Handgrip strength-ND (kg) | 28.00 ± 10.11 (18.00–55.00) | 23.00 ± 10.58 (16.00–54.00) | 0.008 |
Upper extremity reaction time-D (ms) | 662.00 ± 74.17 (532.00–797.00) | 642.50 ± 93.66 (459–820) | 0.805 |
Upper extremity reaction time-ND (ms) | 660.00 ± 90.65 (484–817) | 631.50 ± 103.61 (489–898) | 0.910 |
Finger-press reaction time-D (ms) | 247.00 ± 36.06 (168–335) | 262.50 ± 40.90 (197–365) | 0.033 |
Finger-press reaction time-ND (ms) | 251.50 ± 33.67 (201–329) | 256.00 ± 36.28 (205–374) | 0.371 |
9-Hole peg-D | 15.89 ± 1.94 (13.24–21.98) | 15.13 ± 1.91 (11.27–20.53) | 0.070 |
9-Hole peg-ND | 17.43 ± 2.45 (14.47–24.53) | 16.78 ± 1.80 (13.21–20.61) | 0.050 |
Endurance-D (ms) | 110.03 ± 55.48 (55.50–290.60) | 89.77 ± 72.89 (53.90–345.15) | 0.349 |
Endurance-ND(ms) | 100.67 ± 55.64 (50.00–305.77) | 90.14 ± 58.62 (56.00–303.12) | 0.041 |
Tactile sensitivity-D (g) | 2.36 ± 0.26 (1.65–2.83) | 2.44 ± 0.21 (1.65–2.83) | 0.083 |
Tactile sensitivity-ND (g) | 2.36 ± 0.30 (1.65–2.83) | 2.44 ± 0.24 (1.65–2.83) | 0.009 |
Two-point discrimination-D (mm) | 3.00 ± 0.90 (1.00–4.00) | 3.00 ± 0.94(1.00–4.00) | 0.837 |
Two-point discrimination-ND (mm) | 2.00 ± 0.73 (1.00–4.00) | 3.00 ± 0.72(1.00–4.00) | 0.132 |
Position sense 125°-D | 6.00 ± 3.02 (1.65–14.45) | 5.07 ± 3.81 (0.80–15.85) | 0.213 |
Position sense 125°-ND | 5.87 ± 3.81 (1.80–15.30) | 6.10 ± 3.79 (2.05–16.25) | 0.713 |
Position sense 90°-D | 3.02 ± 1.81 (0.80–7.25) | 3.07 ± 1.76 (0.75–7.05) | 0.931 |
Position sense 90°-ND | 3.10 ± 1.74 (0.80–7.55) | 3.42 ± 2.19 (1.35–10.80) | 0.504 |
Position sense 55°-D | 5.57 ± 3.58 (1.20–12.15) | 5.25 ± 3.65 (1.25–14.80) | 0.992 |
Position sense 55°-ND | 5.15 ± 3.33 (1.45–12.35) | 4.87 ± 3.39 (0.95–15.40) | 0.213 |
Intervention | Control | ||||
---|---|---|---|---|---|
Baseline | 4 Weeks Later | Baseline | 4 Weeks Later | ||
Isometric elbow flexion strength-D (kg) | PrF PsF | 27.34 ± 6.32 (16.40–38.60) 21.33 ± 4.09 (15.20–29.10) | 19.21 ± 6.77 (13.00–36.00) 18.19 ± 5.62 (10.90–32.60) | 24.33 ± 8.79 (14.10–43.00) 22.46 ± 8.69 (12.40–40.30) | 19.25 ± 7.61 (11.80–34.90) 20.81 ± 7.85 (10.40–34.60) |
Isometric elbow flexion strength-ND (kg) | PrF PsF | 26.54 ± 5.50 (18.30–38.80) 20.76 ± 3.38 (13.90–25.40) | 19.47 ± 5.97 (14.30–34.00) 18.78 ± 6.02 (11.20–32.70) | 25.05 ± 9.59 (16.20–42.10) 21.65 ± 9.32 (12.80–38.80) | 19.80 ± 7.75 (11.80–34.10) 20.50 ± 8.74 (11.10–40.20) |
Handgrip strength-D (kg) | PrF PsF | 29.33 ± 6.70 (21.00–48.00) 27.93 ± 6.31 (21.00–44.00) | 29.00 ± 6.19 (22.00–48.00) 28.33 ± 8.63 (18.00–48.00)) | 31.53 ± 11.85 (20.00–55.00) 31.23 ± 13.60 (18.00–53.00) | 31.33 ± 12.92 (18.00–56.00) 31.45 ± 13.99 (15.00–56.00) |
Handgrip strength-ND (kg) | PrF PsF | 28.33 ± 6.88 (20.00–48.00) 24.20 ± 6.83 (16.00–42.00) | 26.33 ± 6.27 (19.00–45.00) 26.86 ± 8.30 (17.00–49.00) | 30.66 ± 12.70 (18.00–55.00) 29.20 ± 13.10 (16.00–54.00) | 31.46 ± 14.07 (19.00–58.00) 30.62 ± 13.43 (16.60–57.00) |
Upper extremity reaction time-D (ms) | PrF PsF | 669.26 ± 74.77 (544–797) 675.33 ± 83.67 (566–820) | 580.33 ± 97.14 (455–806) 586.33 ± 90.23 (414–775) | 638.20 ± 72.72 (532–760) 618.00 ± 97.00 (459–752) | 602.20 ± 111.14 (441–779) 581.04 ± 82.18 (165–761) |
Upper extremity reaction time-ND (ms) | PrF PsF | 677.06 ± 74.77 (484–817) 674.20 ± 118.30 (490–898) | 634.13 ± 109.07 (473–827) 638.66 ± 109.92 (408–787) | 630.46 ± 63.58 (530–770) 619.66 ± 81.54 (489–831) | 650.60 ± 103.38 (446–797) 608.50 ± 92.95 (459–770) |
Finger-press reaction time-D (ms) | PrF PsF | 244.93 ± 38.94 (168–335) 258.00 ± 26.83 (207–295) | 256.26 ± 32.97 (216–323) 264.93 ± 53.91 (198–375) | 252.06 ± 33.91 (195–317) 279.86 ± 49.89 (197–365) | 266.33 ± 46.52 (177–357) 268.92 ± 33.93 (210–336) |
Finger-press reaction time-ND (ms) | PrF PsF | 251.20 ± 35.30 (201–329) 262.73 ± 40.29 (205–374) | 256.40 ± 28.93 (206–319) 274.66 ± 68.71 (208–459) | 262.73 ± 32.09 (216–323) 258.40 ± 33.06 (214–316) | −245.60 ± 35.69 (187–324) 259.54 ± 23.00 (210–336) |
Endurance-D(ms) | PrF PsF | 112.05 ± 35.92 (55.50–176.00) 127.23 ± 74.90 (82.22–329.49) | 119.18 ± 51.50 (61.53–270.00) 103.39 ± 47.76 (45.14–241.23) | 133.94 ± 69.48 (67.00–290.60) 11.38 ± 72.52 (53.90–345.15) | 129.30 ± 69.01 (61.20–302.03) 121.03 ± 89.28 (50.90–428.00) |
Endurance-ND (ms) | PrF PsF | 103.04 ± 27.83 (72.69–173.94) 106.36 ± 59.22 (67.40–303.12) | 92.58 ± 27.01 (65.00–168.40) 97.99 ± 36.42 (57.00–189.74) | 134.05 ± 71.57 (50.00–305.77) 108.71 ± 60.07 (53.90–345.15) | 102.58 ± 53.27 (55.43–264.40) 119.35 ± 95.78 (43.18–423) |
Tactile sensitivity-D (g) | PrF PsF | 2.32 ± 0.39 (1.65–2.83) 2.44 ± 0.28 (1.65–2.83) | 2.49 ± 0.22 (2.36–3.22) 2.62 ± 0.34 (2.36–3.22) | 2.36 ± 0.32 (1.65–2.83) 2.44 ± 0.11 (2.36–2.83) | 2.43 ± 0.40 (1.65–3.22) 2.52 ± 0.28 (2.36–3.22) |
Tactile sensitivity-ND (g) | PrF PsF | 2.21 ± 0.37 (1.65–2.83) 2.39 ± 0.23 (1.65–2.83) | 2.54 ± 0.25 (2.36–3.22) 2.62 ± 0.34 (2.36–3.22) | 2.33 ± 0.19 (1.65–2.44) 2.41 ± 0.26 (1.65–2.83) | 2.43 ± 0.40 (1.65–3.22) 2.54 ± 0.29 (2.36–3.22) |
Two-point discrimination-D (mm) | PrF PsF | 2.40 ± 0.98 (1–4) 2.26 ± 0.88 (1–4) | 1.93 ± 0.73 (1–3) 2.00 ± 0.65 (1–3) | 2.46 ± 0.83 (1–4) 2.66 ± 0.97 (1–4) | 2.13 ± 0.74 (1–4) 2.06 ± 0.45 (1–3) |
Two-point discrimination-ND (mm) | PrF PsF | 2.33 ± 0.48 (2–3) 2.60 ± 0.50 (2–3) | 2.13 ± 0.74 (1–3) 2.26 ± 0.59 (1–3) | 2.60 ± 0.91 (1–4) 2.66 ± 0.89 (1–4) | 2.20 ± 0.77 (1–4) 2.07 ± 0.70 (1–4) |
Position sense 125°-D | PrF PsF | 6.40 ± 3.25 (2.25–14.45) 6.07 ± 3.42 (2.50–15.85) | 5.98 ± 3.16 (1.90–13.95) 5.80 ± 3.23 (2.35–14.05) | 6.96 ± 2.85 (1.65–11.65) 6.00 ± 4.28 (0.80–14.35) | 5.62 ± 4.01 (0.70–15.30) 5.04 ± 2.95 (1.90–12.90) |
Position sense 125°-ND | PrF PsF | 7.01 ± 4.09 (2.85–15.30) 7.06 ± 3.35 (2.05–13.40) | 5.40 ± 2.73 (2.15–12.85) 5.40 ± 2.02 (2.20–10.75) | 6.68 ± 3.63 (1.80–13.85) 6.49 ± 4.27 (2.15–16.25) | 5.50 ± 3.17 (1.60–12.60) 5.52 ± 4.38 (1.60–18.80) |
Position sense 90°-D | PrF PsF | 3.30 ± 1.91 (0.95–6.90) 3.33 ± 1.69 (0.75–6.60) | 3.58 ± 3.00 (0.95–11.95) 2.60 ± 1.04 (0.65–4.30) | 3.61 ± 1.76 (0.80–7.25) 3.51 ± 1.87 (0.80–7.05) | 3.13 ± 2.23 (0.50–8.15) 3.39 ± 2.85 (0.35–11.35) |
Position sense 90°-ND | PrF PsF | 3.68 ± 1.65 (1.60–7.55) 4.27 ± 2.06 (1.35–8.75) | 3.57 ± 1.92 (1.40–8.80) 3.28 ± 2.37 (0.50–8.25) | 3.10 ± 1.82 (0.80–7.10) 3.51 ± 2.30 (1.45–10.80) | 3.03 ± 2.20 (0.50–8.70) 2.79 ± 1.42 (1.35–5.90)) |
Position sense 55°-D | PrF PsF | 5.52 ± 3.85 (1.20–12.15) 6.01 ± 2.67 (1.85–11.00) | 5.15 ± 2.79 (1.40–8.95) 5.34 ± 3.23 (2.05–14.30) | 7.01 ± 3.23 (1.90–11.75) 6.18 ± 4.51 (1.25–14.80) | 5.73 ± 3.68 (2.10–15.30) 4.60 ± 2.39 (0.85–9.10) |
Position sense 55°-ND | PrF PsF | 6.63 ± 3.34 (3.00–12.35) 5.13 ± 2.62 (1.40–9.15) | 7.39 ± 4.75 (2.00–20.10) 6.68 ± 3.69 (1.75–13.85) | 6.35 ± 3.41 (1.45–11.85) 5.82 ± 4.08 (0.95–15.40) | 5.23 ± 3.46 (1.60–13.75) 4.16 ± 3.69 (0.65–15.60) |
9-Hole peg-D | PrF PsF | 16.40 ± 1.64 (13.24–19.63) 15.45 ± 2.33 (11.27–20.53) | 14.30 ± 2.15 (10.71–17.54) 14.58 ± 2.09 (11.22–18.28) | 15.75 ± 2.22 (13.39–21.98) 14.83 ± 1.40 (11.57–17.40) | 14.44 ± 1.37 (11.95–16.47) 14.63 ± 1.82 (11.88–18.08) |
9-Hole peg-ND | PrF PsF | 17.59 ± 1.78 (14.9–22.11) 16.91 ± 1.66 (13.9–19.86) | 16.31 ± 1.95 (12.32–19.20) 15.47 ± 1.39 (13.50–1749) | 18.06 ± 3.02 (14.47–24.53) 16.82 ± 1.99 (13.21–20.65) | 16.26 ± 2.99 (10.22–20.60) 16.15 ± 2.05 (12.98–20.72) |
Time | Intervention Group (n:15) | p Values | Control Group (n:15) | p Values | p Values | |
---|---|---|---|---|---|---|
Isometric elbow flexion strength-D(kg) | 1 2 | −6.00 ± 6.67 (−23.40–1.10) −1.02 ± 2.80 (−10.20–1.70) | 0.008 b | −1.87 ± 4.89 (−12.90–8.80) 1.56 ± 2.62 (−1.40–7.70) | 0.033 a | 0.093 d 0.018 d |
Isometric elbow flexion strength-ND (kg) | 1 2 | −5.78 ± 4.23 (−15.30–0.70) −0.68 ± 1.56 (−3.40–1.60) | 0.000 a | −3.40 ± 4.07 (−13.00–5.80) 0.70 ± 4.76 (−2.90–13.90) | 0.006 b | 0.065 d 0.983 d |
Handgrip strength-D (kg) | 1 2 | −1.40 ± 3.68 (−10.00–4.00) −0.66 ± 5.09 (−8.00–12.00) | 0.687 a | −0.30 ± 5.81 (−8.00–13.00) −0.87 ± 4.76 (−10.00–7.00) | 0.695 a | 0.541 c 0.909 c |
Handgrip strength-ND (kg) | 1 2 | −4.13 ± 4.64 (−13.00–3.00) 0.53 ± 3.41 (−9.00–6.00) | 0.001 b | −1.46 ± 6.09 (−12.00–10.00) −0.84 ± 2.73 (−5.40–4.74) | 0.684 a | 0.519 d 0.143 d |
Upper extremity reaction time-D (ms) | 1 2 | 6.06 ± 95.38 (−179.00–174.00) 6.00 ± 82.28 (−146–164) | 0.998 a | −20.20 ± 123.25 (−234.00–144.00) −21.15 ± 108.72 (−245–182) | 0.982 a | 0.843 c 0.447 c |
Upper extremity reaction time-ND (ms) | 1 2 | −2.86 ± 131.93 (−327.00–164.00) 4.53 ± 129.13 (−201–208) | 0.882 a | −10.80 ± 79.05 (−138.00–103.00) −42.09 ± 88.12 (−185–109) | 0.312 a | 0.409 c 0.258 c |
Finger-press reaction time-D (ms) | 1 2 | 13.06 ± 40.27 (−54.00–86.00) 8.66 ± 52.30 (−60–116) | 0.825 a | 27.80 ± 54.88 (−76.00–112.00) 2.59 ± 50.50 (−103–100) | 0.094 a | 0.241 c 0.749 c |
Finger-press reaction time-ND (ms) | 1 2 | 11.53 ± 35.40 (−92.00–57.00) 18.26 ± 64.26 (−36.00–187.00) | 0.650 b | −4.33 ± 37.12 (−65.00–70.00) 13.94 ± 32.08 (−58.00–62.00) | 0.189 a | 0.130 c 0.245 c |
Endurance-D(ms) | 1 2 | 15.17 ± 67.35 (−53.17–170.17) −15.78 ± 38.76 (−112.86–41.95) | 0.184 a | −22.55 ± 59.42 (−175.39–72.37) −8.26 ± 54.55 (−103.00–123.97) | 0.233b | 0.272 c 0.787 c |
Endurance-ND (ms) | 1 2 | 3.32 ± 40.55 (−38.50–129.18) 5.41 ± 21.17 (−26.89–57.86) | 0.105 b | −25.33 ± 51.83 (−197.94–14.22) 16.76 ± 64.65 (−46.75–176.38) | 0.088 b | 0.254 d 0.395 d |
Tactile sensitivity-D (g) | 1 2 | 0.12 ± 0.30 (−0.39–0.79) 0.12 ± 0.32 (−0.39–0.78) | 0.976 a | 0.08 ± 0.34 (−0.47–0.79) −0.08 ± 0.36 (−0.47–0.92) | 0.980 a | 0.762 c 0.775 c |
Tactile sensitivity-ND (g) | 1 2 | 0.17 ± 0.41 (−0.71–0.79) 0.07 ± 0.30 (−0.39–0.78) | 0.471 a | 0.08 ± 0.16 (−0.08–0.47) 0.10 ± 0.44 (−0.47–0.93) | 0.722 b | 0.635 d 0.850 d |
Two-point discrimination-D (mm) | 1 2 | −0.13 ± 0.83 (−2.00–1.00) 0.06 ± 0.59 (−1.00–1.00) | 0.458 a | 0.20 ± 0.94 (−1–2) −0.06 ± 0.59 (−1.00–1.03) | 0.309 a | 0.313c 0.585 c |
Two-point discrimination-ND (mm) | 1 2 | 0.26 ± 0.45 (0–1.00) 0.13 ± 0.63 (−1.00–1.00) | 0.582 a | 0.06 ± 0.70 (−1–1) −0.12 ± 0.64 (−1–1) | 0.453 a | 0.364 c 0.367 c |
Position sense 125°-D | 1 2 | −0.33 ± 3.07 (−5.25–6.50) −0.18 ± 4.29 (−5.90–9.65) | 0.922 a | −0.96 ± 4.88 (−8.15–8.45) −0.58 ± 4.11 (−9.55–6.55) | 0.816 a | 0.677 c 0.798 c |
Position sense 125°-ND | 1 2 | 0.04 ± 4.85 (−12.00–9.70) −0.003 ± 3.79 (−8.60–5.80) | 1 b | −0.18 ± 4.84 (−9.30–10.50) 0.02 ± 2.99 (−7.15–3.25) | 0.889 a | 0.468 d 0.917 d |
Position sense 90°-D | 1 2 | 0.003 ± 2.68 (−4.85–4.40) −0.97 ± 2.79 (−8.15–1.80) | 0.415 a | −0.09 ± 2.59 (−5.10–4.35) 0.26 ± 2.69 (−3.05–6.95) | 0.738 a | 0.918 c 0.228 c |
Position sense 90°-ND | 1 2 | 0.58 ± 2.49 (−2.60–5.70) −0.29 ± 3.36 (−6.40–6.15) | 0.341 a | 0.41 ± 2.89 (−3.55–8.30) −0.24 ± 2.59 (−7.15–3.25) | 1 b | 0.787 c 0.803 c |
Position sense 55°-D | 1 2 | 0.49 ± 5.21 (−9.15–8.95) 0.18 ± 3.90 (−5.75–9.95) | 0.843 a | −0.83 ± 5.43 (−8.85–8.95) −1.13 ± 4.51 (−13.10–5.45) | 0.820 b | 0.443 d 0.407 d |
Position sense 55°-ND | 1 2 | −1.50 ± 4.49 (−8.25–5.50) −0.71 ± 4.08 (−10.50–3.65) | 0.607 a | −0.53 ± 4.85 (−7.40–7.35) −1.06 ± 2.94 (−5.75–4.50) | 0.742 a | 0.576 c 0.789 c |
9-Hole Peg-D | 1 2 | −0.95 ± 2.90 (−4.93–5.29) 0.23 ± 1.80(−3.88–3.54) | 0.974 b | −0.92 ± 2.16 (−7.06–1.15) 0.18 ± 1.41(−2.04–2.25) | 0.941 b | 0.787 c 0.633 c |
9-Hole Peg-ND | 1 2 | −0.68 ± 1.80(−3.75–2.97) −0.85 ± 1.39(−2.88–2.24) | 0.534 b | −1.23 ± 2.86(−7.84–3.58) −0.11 ± 2.68(−4.11–6.17) | 0.357 b | 0.443 c 0.407 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Türkmen, O.B.; Akçay, B.; Demir, C.; Kurtoğlu, A.; Alotaibi, M.H.; Elkholi, S.M. Does the Effect of Mental Fatigue Created by Motor Imagery on Upper Extremity Functions Change with Diaphragmatic Breathing Exercises? A Randomized, Controlled, Single-Blinded Trial. Medicina 2024, 60, 1069. https://doi.org/10.3390/medicina60071069
Türkmen OB, Akçay B, Demir C, Kurtoğlu A, Alotaibi MH, Elkholi SM. Does the Effect of Mental Fatigue Created by Motor Imagery on Upper Extremity Functions Change with Diaphragmatic Breathing Exercises? A Randomized, Controlled, Single-Blinded Trial. Medicina. 2024; 60(7):1069. https://doi.org/10.3390/medicina60071069
Chicago/Turabian StyleTürkmen, Ozan Bahadır, Burçin Akçay, Canan Demir, Ahmet Kurtoğlu, Madawi H. Alotaibi, and Safaa M. Elkholi. 2024. "Does the Effect of Mental Fatigue Created by Motor Imagery on Upper Extremity Functions Change with Diaphragmatic Breathing Exercises? A Randomized, Controlled, Single-Blinded Trial" Medicina 60, no. 7: 1069. https://doi.org/10.3390/medicina60071069
APA StyleTürkmen, O. B., Akçay, B., Demir, C., Kurtoğlu, A., Alotaibi, M. H., & Elkholi, S. M. (2024). Does the Effect of Mental Fatigue Created by Motor Imagery on Upper Extremity Functions Change with Diaphragmatic Breathing Exercises? A Randomized, Controlled, Single-Blinded Trial. Medicina, 60(7), 1069. https://doi.org/10.3390/medicina60071069