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Abstract: Background and Objectives: The impact of anesthetic agents on memory and cognitive
function following general anesthesia is of great interest, particularly regarding their effects on
the developing pediatric brain. While numerous studies have examined the relationship between
anesthetic drugs and brain function, research focusing on early cognitive function following sedation
remains limited. Materials and Methods: This study was a prospective, randomized controlled trial
involving 148 pediatric patients scheduled for hematological procedures, specifically bone marrow
aspiration (BMA) and intrathecal chemotherapy (ITC). Patients were divided into two groups based
on the primary anesthetic used: the inhalational sedation group (IHG), in which sevoflurane was
used, and the intravenous sedation group (IVG), which received propofol infusion. Apart from the
main anesthetic agent, all sedation methods were consistent across both groups. A cognitive function
test administered before sedation involved memorizing four distinct images, each associated with a
different number. Then, the patients were asked to identify the omitted image upon awakening in the
recovery room. Herein, this pre- vs. post-sedation test is called the early recognition assessment (ERA)
tool. The primary outcome was the correct response rate after sedation for the two groups. Secondary
outcomes included the sedation score, the behavior response score, and the correct response rates
according to the number of sedation procedures. Results: This study included 130 patients in the
final analysis, with 74 originally assigned to each group. The initial cognitive assessment revealed no
significant difference in performance between the anesthetic agents. In addition, no differences were
observed in the rates of correct responses or post-sedation scores after repeated procedures. However,
the IVG demonstrated higher behavior response scores compared to the IHG. Conclusions: There
were no significant differences in the rates of correct responses using the ERA tool between the two
groups, irrespective of the number of sedation procedures performed. While some differences were
noted in preoperative, intraoperative, and post-anesthesia care, these did not significantly impact the
cognitive outcomes measured.

Keywords: anesthetic agent; cognitive function; inhalation; intravenous; pediatrics; sedation

1. Introduction

Concerns persist regarding the potential decline in memory function following gen-
eral anesthesia, with numerous studies indicating that anesthesia may impact cognitive
capabilities across various populations [1–3]. These concerns are particularly relevant in
pediatric and elderly populations, where cognitive impairments linked to anesthesia have
been well documented [3–7]. The increasing need for anesthesia in both age groups, driven
by the growing number of surgical and diagnostic procedures, underscores the importance
of understanding these potential cognitive effects.

The demand for pediatric anesthesia has risen significantly, primarily due to the neces-
sity of diagnostic and therapeutic procedures that require sedation or general anesthesia.
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Children with conditions such as hematologic malignancies often require repeated exposure
to anesthetic agents over many years for follow-up examinations or treatments, making
it crucial to understand the long-term impact of these agents on cognitive and memory
functions. Unlike adults, children’s brains are still developing, and the effects of anesthetic
agents on brain function during these critical periods of cognitive development could have
profound implications. In contrast, elderly patients may experience anesthesia-related
cognitive decline, where age-related cognitive function decline and memory loss might
confound the effects of anesthesia.

Several studies have suggested that inhaled anesthetics (IHs) might influence brain
development, potentially leading to cognitive impairments [8–11]. Additionally, there is
growing concern on cognitive function in children regarding the impact of intravenous
anesthetic agents such as midazolam [12–15], propofol [16–19], and ketamine [20–22].

Cognitive function in pediatric sedation is a concern and has been reported in some
cases [23,24]. However, despite these concerns, there is a scarcity of conclusive evidence
supporting the impact of various anesthetic agents on cognitive functions during brain
development, particularly regarding the immediate cognitive effects following sedation in
pediatric patients. The timing of cognitive function assessments post-anesthesia has varied
across studies, with differences in assessment time potentially influencing the reported
outcomes. This variability has raised questions about the preservation of pre-anesthetic
memory after anesthesia and whether early cognitive function of post-anesthesia can be a
predictor of long-term cognitive capabilities or memory.

Given these uncertainties, this study aims to investigate whether the choice of anes-
thetic agents influences early memory function and to identify related factors in children
during critical periods of cognitive development. Specifically, this research focuses on
pediatric patients with hematologic malignancies, who are frequently exposed to anesthetic
agents for sedation due to the necessity of regular follow-up examinations and treatments.
This study hypothesizes that the type of anesthetics used may significantly impact early
memory function in these patients, which could have implications for their long-term
cognitive development.

2. Materials and Methods
2.1. Ethical Considerations

Approval for this prospective, randomized controlled trial was granted by the Ethics
Committee of Seoul St. Mary’s Hospital (KC21OISI0896) on 24 November 2021, adhering
to the Declaration of Helsinki principles. This study was registered with the Clinical
Research Information Service, Republic of Korea (http://cris.nih.go.kr, KCT0007121) on
25 March 2022. Consent was obtained from all participants through written informed
consent prior to enrollment, with participant recruitment occurring between 2 January
2022 and 27 February 2023. The reporting of this study adheres to the CONSORT 2010
Statement and the CONSORT PRO Extension guidelines, with additional details available
in the Supplementary Materials.

2.2. Study Population

This study included pediatric patients aged 6 to 13 years with hematological malig-
nancies who were undergoing procedural sedation for bone marrow aspiration (BMA) or
intrathecal chemotherapy (ITC). Most of them regularly underwent these procedures every
three months. Each patient provided informed consent for this study with their guardian
before the procedure. Patients who participated in this study must have been literate, have
had accurate language skills, and been able to calculate the number. Exclusion criteria
included patients with congenital cognitive dysfunction or developmental disabilities, with
a history of anaphylaxis or allergies to sedatives, and who were unable to communicate or
cooperate due to fear or anxiety before the procedure.

http://cris.nih.go.kr
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2.3. Randomization and Blinding

Patients were randomly assigned to either the inhalational sedation group (IH-G)
or the intravenous sedation group (IV-G) through a stratified block randomization pro-
cess using a web-based random number generator (www.random.org). A research nurse,
uninvolved in the patients’ treatment, oversaw the randomization process. Group as-
signments were disclosed by opening sequentially numbered, opaque envelopes. Both
patients and surgeons were blinded to the group assignments throughout this study. In
addition, the medical staff responsible for postoperative care and outcome assessments in
the post-anesthesia care unit (PACU) and ward were also blinded to the assignments. The
anesthesiologist administering the sedation was informed of the group assignments but
did not participate in the postoperative care or outcome evaluations (Figure 1).

Medicina 2024, 60, x FOR PEER REVIEW 3 of 11 
 

 

disabilities, with a history of anaphylaxis or allergies to sedatives, and who were unable 
to communicate or cooperate due to fear or anxiety before the procedure. 

2.3. Randomization and Blinding 
Patients were randomly assigned to either the inhalational sedation group (IH-G) or 

the intravenous sedation group (IV-G) through a stratified block randomization process 
using a web-based random number generator (www.random.org). A research nurse, un-
involved in the patients’ treatment, oversaw the randomization process. Group assign-
ments were disclosed by opening sequentially numbered, opaque envelopes. Both pa-
tients and surgeons were blinded to the group assignments throughout this study. In ad-
dition, the medical staff responsible for postoperative care and outcome assessments in 
the post-anesthesia care unit (PACU) and ward were also blinded to the assignments. The 
anesthesiologist administering the sedation was informed of the group assignments but 
did not participate in the postoperative care or outcome evaluations (Figure 1). 

 
Figure 1. Flow diagram. 

2.4. Study Protocol 
Prior to the procedure, in the preoperating preparation room, a pre-sedation picture 

card (Figure 2A) displaying four different fruit images, each with a varying number of 
fruits, was shown to the patients by medical staff. Each child was asked to name the fruits 
and count the quantities. They were registered as subjects in this study only after success-
fully recalling and correctly identifying all images and their corresponding numbers. Fol-
lowing the pre-sedation picture test, patients were transferred to the procedural room. 
Each patient received 1 mg/kg ketamine for induction and then was maintained on light 
sedation with mask ventilation. The IHG received 2.5 vol% sevoflurane, while the IVG 
was administered continuous propofol at a rate of 100 mcg/kg/min. Pain management 
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2.4. Study Protocol

Prior to the procedure, in the preoperating preparation room, a pre-sedation picture
card (Figure 2A) displaying four different fruit images, each with a varying number of
fruits, was shown to the patients by medical staff. Each child was asked to name the
fruits and count the quantities. They were registered as subjects in this study only after
successfully recalling and correctly identifying all images and their corresponding numbers.
Following the pre-sedation picture test, patients were transferred to the procedural room.
Each patient received 1 mg/kg ketamine for induction and then was maintained on light
sedation with mask ventilation. The IHG received 2.5 vol% sevoflurane, while the IVG
was administered continuous propofol at a rate of 100 mcg/kg/min. Pain management

www.random.org
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included administering fentanyl at 1.5 µg/kg for BMA and 1 µg/kg for ITC at the start of
the procedures. In cases of movement, the IHG dosage was adjusted to 3.5 vol% sevoflurane
with an additional 0.5 µg/kg fentanyl, and for the IVG, propofol was increased to 0.5 mg/kg
with 0.5 µg/kg fentanyl. After the procedures, patients were moved to the recovery room
and maintained on an oxygen mask until fully awake. In the recovery room, sedation
scores (Table 1) and behavioral response scores (Table 2) were evaluated. Upon awakening,
a post-sedation test picture (Figure 2B) showing a single omitted fruit was presented to see
if patients could recall the missing fruit and its count. A successful recall was marked as
a ‘Pass’. Herein, this pre- vs. post-sedation test is called the early recognition assessment
(ERA) tool.
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Table 1. Sedation score in PACU.

Sedation Score

1. no response to light tapping or shaking

2. slight response to light tapping or shaking

3. only response when their name is called loudly or repeatedly

4. response by blinking eyes when one’s name is called in normal tone

5. response and goes back to sleep when one’s name is called in normal tone

6. response immediately when one’s name is called in anormal tone. They are alert and can make
clear decisions

Abbreviations: PACU, post-anesthetic care unit.

Table 2. Behavior response score in PACU.

Behavior Response Score

1. Stay calm, cooperate, and follow instructions

2. Anxious, but if you advise and comfort them, they will remain calm

3. Anxious, and even when calmed down, they are on the verge of crying, looking for one’s mother

4. Crying, blowing, making a fuss, not staying still, and constantly moving with resistance

2.5. Clinical Variables

Preoperative data collected included the age, type of procedure (BMA or spinal tapping
with intrathecal chemotherapy [ST-ITX]), body mass index (BMI), ASA physical class, and
number of sedation procedures received. Additional variables included the sedation score
and the behavior response score. Intraoperative data included the duration of sedation and
the duration of the procedure. Postoperative outcomes measured in the PACU included
the sedation score, behavior response score, and time to awaken.

2.6. Statistical Analyses and Sample Size

In a preliminary study, the success rates of the ERA tool were 81% for the IVG and
59% for the IHG. To achieve a statistical power of 80%, with a type I error rate < 0.05, and
maintaining a 1:1 sample size ratio, our sample size calculation determined that a minimum
of 67 patients would be required in each group. Considering an anticipated dropout rate of
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~20%, as suggested by preliminary findings, 80 patients per group were enrolled to ensure
the reliability and robustness of our trial results.

Continuous variables were assessed for normality using the Shapiro–Wilk test. Data
are expressed as means ± standard deviations for normally distributed variables, and as
medians with interquartile ranges for non-normally distributed variables. For the analysis,
Student’s t-tests were used for normally distributed data, while Mann–Whitney U tests
were applied to non-normally distributed data. Categorical variables are presented as
frequencies and percentages, and comparisons were made using Pearson’s chi-square
test or Fisher’s exact test as appropriate. A two-sided p value < 0.05 was considered
statistically significant. All statistical analyses were conducted using SPSS for Windows
(version 24.0; SPSS Inc., Chicago, IL, USA), and graphical representations were created
with Microsoft Excel.

3. Results
3.1. Flow Diagram

Initially, 160 patients were assessed to be eligible for participation. Prior to randomiza-
tion, 12 were excluded due to their legal guardians’ refusal to participate. Consequently,
148 patients were enrolled and randomized into two groups (IHG: n = 74, IVG: n = 74).
During follow-up, due to anxiety-related non-cooperation, the IHG experienced 5 dropouts
and the IVG had 13. Ultimately, 61 patients in the IVG and 69 in the IHG were analyzed
(Figure 1).

3.2. Comparisons in Preoperative, Intraoperative, and PACU Variables between IVG and IHG
(Table 3)

A comparison of preoperative, intraoperative, and PACU variables between IV and
IH sedation agents for pediatric procedures is summarized in Table 1. Demographic
characteristics, including sex distribution (male and female participants were included in
this study, with females comprising 37.7% in the IVG vs. 46.4% in the IHG, p = 0.318), were
similar between the two groups. No statistically significant difference in sex distribution
was found between the two groups. The median age was also comparable, 8.0 years in the
IVG and 10.0 years in the IVG (p = 0.342), between the two groups. The distribution of
procedure types was also comparable, with a bone marrow transplant (57.4% IV vs. 60.9%
IH, p = 0.686) and intrathecal therapy (42.6% IV vs. 39.1% IH) being the most common.
There were no significant differences in etiology between the groups (p = 0.974).

Intraoperative variables revealed significant differences in the number of sedation
procedures received (p < 0.001), with a higher proportion of first-time procedures in the
IHG (94.2%) compared to the IVG (63.9%). The durations of sedation and procedures
were similar between the groups (p = 0.811 and p = 0.884, respectively). Sedation mainte-
nance methods varied, with the IVG primarily receiving propofol, ketamine, midazolam,
and dexmedetomidine, while the IHG received sevoflurane. There were no significant
differences in analgesic opioid consumption between the groups (p = 0.187).

PACU variables showed that the median cognitive assessment time was longer in
the IHG (9.0 min) than in the IVG (5.0 min, p = 0.013). In addition, there were significant
differences in the sedation and behavior scores at evaluation (p = 0.049 and p < 0.001,
respectively), with higher sedation and lower behavior scores observed in the IHG.
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Table 3. Comparisons of preoperative, intraoperative, and PACU variables between IV and IH
sedation agents for pediatric procedures.

Group Intravenous Sedation Inhalational Sedation
p Value

n 61 69

Preoperative variables

Sex (female) 23 (37.7%) 32 (46.4%) 0.318

Age (years) 8.0 (6.5–11.0) 10.0 (6.5–13.0) 0.342

Procedure types

Bone marrow transplant 35 (57.4%) 42 (60.9%) 0.686

Intrathecal therapy 26 (42.6%) 27 (39.1%)

Etiology

Acute lymphoblastic leukemia 40 (65.6%) 44 (63.8%) 0.974

Acute myeloid leukemia 12 (19.7%) 14 (20.3%)

Others 9 (14.8%) 11 (15.9%)

Height (cm) 136.9 (121.8–150.9) 143.5 (121.1–157.1) 0.412

Weight (kg) 36.5 (25.0–50.6) 40.2 (24.0–52.8) 0.755

Body mass index (kg/m2) 18.6 (15.9–22.0) 18.8 (16.4–20.9) 0.928

Intraoperative variables

Number of sedation procedures received

First time 39 (63.9%) 65 (94.2%) <0.001

Second time 11 (18.0%) 4 (5.8%)

Third time 11 (18.0%) 0 (0.0%)

Sedation duration (min) 15.0 (12.0–20.0) 15.0 (11.5–19.5) 0.811

Procedure duration (min) 7.0 (5.0–13.5) 8.0 (5.0–12.0) 0.884

Sedation maintenance during procedures

Intravenous sedative dosage (mg)

Propofol 90.0 (60.0–120.0) N/A

Inhalational sedative dosage (MAC)

Sevoflurane N/A 2.0 (2.0–3.0)

Analgesic opioid consumption (mcg)

Fentanyl 30.0 (16.9–50.0) 20.0 (7.5–50.0) 0.187

Post-anesthesia care unit variables

* Cognitive assessment time (min) 5.0 (2.0–15.0) 9.0 (5.0–17.0) 0.013

Sedation score at evaluation (points) 6.0 (6.0–6.0) 6.0 (5.0–6.0) 0.049

Behavior score at evaluation (points) 4.0 (3.0–4.0) 1.0 (1.0–1.0) <0.001

Abbreviations: N/A, non-applicable; MAC, minimum alveolar concentration. The cognitive assessment time is
defined as the duration from the arrival in the post-anesthesia care unit to the awakening. Values are expressed as
the median (interquartile range) and numbers (proportion). * time to awaken after entering PACU

3.3. Comparisons of Correct Response Rates for the ERA Tool between IVG and IHG

Table 4 and Figure 3 detail the correct response rates for the ERA tool between the two
groups. The rates for accurately naming images were marginally higher in the IHG (88.4%)
compared to the IVG (85.2%) but this difference was not statistically significant (p = 0.594).
Similarly, the correct response rates for the number of images (87.0% IHG vs. 82.0% IVG,
p = 0.431) and for both aspects combined (85.5% IHG vs. 80.3% IVG, p = 0.432) showed no
significant differences.
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Table 4. Correct response rates for ERA tool between IVG and IHG in pediatric procedures.

Group Intravenous Sedation Inhalational Sedation
p Value

n 61 69

The correct response rate for the early recognition assessment tool

The names of the images 52 (85.2%) 61 (88.4%) 0.594

The number of images 50 (82.0%) 60 (87.0%) 0.431

* Both perspectives 49 (80.3%) 59 (85.5%) 0.432
* Both perspectives are defined as all correct responses of the name and the number of images. Values are expressed
as numbers (proportion).
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3.4. Comparisons in the Effect of the Number of Sedation Procedures on Correct Response Rates
between IVG and IHG

The impact of the number of sedation procedures on correct response rates is detailed
in Tables 5 and 6. For the IVG (Table 5 and Figure 4), correct response rates for naming im-
ages initially increased from 82.1% in the first procedure to 100.0% in the second procedure,
then slightly decreased to 81.8% in the third. This trend was not statistically significant
(p = 0.313). Similarly, the rates for the number of images and both perspectives showed
no significant changes across the different procedural exposures (p = 0.685 and p = 0.976,
respectively).

In the IHG (Table 6 and Figure 5), the rates for naming images were higher for first-
time procedures (89.2%) than for second-time procedures (75.0%), although this difference
was not statistically significant (p = 0.396). The same trend was observed for counting the
number of images (87.7% first time vs. 75.0% second time, p = 0.436) and for both aspects
combined (86.2% first time vs. 75.0% second time, p = 0.474).
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Table 5. Correct response rates for ERA tool by number of IV sedation procedures received.

Number of IV Sedation Procedures Received
First Time Second Time Third Time

p Value
n = 39 n = 11 n = 11

Correct response rate for the ERA tool

Names of images 32 (82.1%) 11 (100.0%) 9 (81.8%) 0.313

Number of images 31 (79.5%) 10 (90.9%) 9 (81.8%) 0.685

* Both perspectives 31 (79.5%) 9 (81.8%) 9 (81.8%) 0.976

* Both perspectives are defined as having correct responses for both the name and number of images. Values are
expressed as numbers (proportion).

Table 6. Correct response rates for ERA tool by number of IH sedation procedures received.

Number of IH Sedation Procedures Received
First Time Second Time

p Value
65 4

Correct response rate for the ERA tool

Names of images 58 (89.2%) 3 (75.0%) 0.396

Number of images 57 (87.7%) 3 (75.0%) 0.436

* Both perspectives 56 (86.2%) 3 (75.0%) 0.474

* Both perspectives are defined as having correct responses for both the name and number of images. Values are
expressed as numbers (proportion).
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4. Discussions

This study did not find significant differences in the correct response rates for the ERA
tool between IVG and IHG, irrespective of the number of sedation procedures received.
While there were some differences in preoperative, intraoperative, and PACU variables
(i.e., number of sedation procedures, behavior response scores, and cognitive assessment
times post-anesthesia), these did not translate into significant differences in the cognitive
outcomes measured using the assessment tool.

The impact of IH anesthetic agents such as sevoflurane on cognitive function has been
demonstrated in animal studies. For instance, neonatal exposure to sevoflurane has been
shown to affect learning and memory by changing hippocampal DNA methylation [25].
Given that sevoflurane can induce neurotoxicity in various ways within the developing
brain, the careful consideration of its usage period and dosage is recommended [11]. In
addition, this compound can impair learning and memory by reducing neuronal glucose
transporter activity, thus affecting glucose metabolism [10].

However, these effects on neuronal activity have predominantly been studied in non-
human animals, and applying these findings to humans, who have different developmental
trajectories, is challenging. In our study, sevoflurane did not adversely affect early memory
function in children, indicating a departure from the patterns observed in animal studies
concerning the impact of inhaled anesthetics on the developing brain.

Propofol, a widely used anesthetic for procedural sedation in pediatric patients, has
also been scrutinized for its potential effects on brain cells, depending on the dosage and
duration of exposure [16,26–29]. Some studies suggest that while a single, short exposure
to propofol has minimal impact on cognitive function, prolonged or recurrent exposures
could impair memory or cognitive function, potentially leading to long-term cognitive
deficits in humans and other animals [30]. High doses may mitigate the development
of postoperative cognitive dysfunction [31]. However, our findings indicate that neither
single nor recurrent exposures to propofol resulted in early memory impairment. Although
long-term effects were not assessed, our results suggest minimal short-term impact on
cognitive abilities from propofol exposure.
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Many studies have highlighted the importance of the timing of exposure. The pediatric
patients involved in this study were not at the stage of primary brain structure formation,
but rather in a phase during which growth of white and gray matter, which governs physical
functions and basic behavior patterns, is prevalent. As indicated by our results, short-term
exposure to anesthetics in this age group did not significantly affect cognitive function.

Neither IH nor IV anesthetic agents impacted early cognitive function. In addition,
despite concerns that inhaled anesthetics might frequently cause emergence hyperactiv-
ity [32–35], we found that the use of IV anesthetics resulted in a higher degree of alertness
and greater behavioral response upon awakening. However, these factors did not affect
early cognitive function. The differences in behavioral response at awakening seem to be
related to the longer awakening times associated with IH anesthetics, although the precise
reasons for this remain unclear. Nevertheless, both groups demonstrated a high level of
alertness during the ERA test.

There were no differences in early memory impairment with different anesthetics
during recurrent exposure. Future studies should explore whether cognitive function
changes over time with increased frequency of anesthetic exposure.

This study had some limitations. First, as not all patients underwent the same pro-
cedure, variation in the procedure type (BMA or ITC) could influence sedation duration
and awakening times. Although the amount and duration of the procedures did not signifi-
cantly impact the study outcomes, ensuring a uniform patient group undergoing the same
procedures would be ideal for future research. Second, the number of subjects undergoing
repeat procedures varied between the two groups, limiting the accuracy of the analysis
due to differences in exposure frequency. Future studies should analyze equal numbers
of exposures and subjects across groups. Third, although we evaluated early cognitive
function, assessments were only conducted immediately after the first awakening. To
provide a comprehensive evaluation, future research should assess cognitive function at
various time points through regular intervals in the early postoperative period.

5. Conclusions

There were no significant differences in response results for the ERA tool between
the IVG and IHG, irrespective of the number of sedation procedures received. Since no
differences in early memory function were observed depending on anesthetic agents, pedi-
atric patients may be free to choose anesthetic agents compared to before; further research
involving a larger cohort is needed to thoroughly investigate the effects of anesthetics on
cognitive function.
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