The Neuroprotective Role of Indole-3-Propionic Acid in Migraine Pathophysiology
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Participants
2.3. Data Collection
2.4. Blood Sample Collection
2.5. Biochemical Analysis
2.5.1. Measurement of Indole-3-Propionic Acid (IPA)
2.5.2. Determination of Nitric Oxide (NO•) Level
2.5.3. Determination of Peroxynitrite (ONOO−) Level
2.5.4. Nitric Oxide Synthase (NOS) Activity Assay
2.6. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259, Erratum in: Lancet 2017, 390, e38. https://doi.org/10.1016/S0140-6736(17)32647-8. [Google Scholar] [CrossRef] [PubMed]
- Silberstein, S.D.; Olesen, J.; Bousser, M.G.; Diener, H.C.; Dodick, D.; First, M.; Goadsby, P.J.; Göbel, H.; Lainez, M.J.; Lance, J.W.; et al. The International Classification of Headache Disorders, 2nd Edition (ICHD-II)—Revision of criteria for 8.2 Medication-overuse headache. Cephalalgia 2005, 25, 460–465, Erratum in: Cephalalgia 2006, 26, 360. [Google Scholar] [CrossRef]
- Serrano, D.; Manack, A.N.; Reed, M.L.; Buse, D.C.; Varon, S.F.; Lipton, R.B. Cost and predictors of lost productive time in chronic migraine and episodic migraine: Results from the American Migraine Prevalence and Prevention (AMPP) Study. Value Health 2013, 16, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Katsarava, Z.; Schneeweiss, S.; Kurth, T.; Kroener, U.; Fritsche, G.; Eikermann, A.; Diener, H.C.; Limmroth, V. Incidence and predictors for chronicity of headache in patients with episodic migraine. Neurology 2004, 62, 788–790. [Google Scholar] [CrossRef] [PubMed]
- Charles, A. Migraine: A brain state. Curr. Opin. Neurol. 2013, 26, 235–239. [Google Scholar] [CrossRef]
- Biswas, S.K. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid. Med. Cell Longev. 2016, 2016, 5698931. [Google Scholar] [CrossRef]
- Da Costa, S.C.; Passos, I.C.; Réus, G.Z.; Carvalho, A.F.; Soares, J.C.; Quevedo, J. The Comorbidity of Bipolar Disorder and Migraine: The Role of Inflammation and Oxidative and Nitrosative Stress. Curr. Mol. Med. 2016, 16, 179–186. [Google Scholar] [CrossRef]
- Yilmaz, G.; Sürer, H.; Inan, L.E.; Coskun, O.; Yücel, D. Increased nitrosative and oxidative stress in platelets of migraine patients. Tohoku J. Exp. Med. 2007, 211, 23–30. [Google Scholar] [CrossRef]
- Islam, M. The Significance of Nitrosative Pressure in Underlying Pathophysiology and The Pharmacologic Therapy of Non-Communicable Disease with Fessional and Antioxidant Potential. Adv. Neur. Neur. Sci. 2022, 5, 34. [Google Scholar]
- Körtési, T.; Spekker, E.; Vécsei, L. Exploring the Tryptophan Metabolic Pathways in Migraine-Related Mechanisms. Cells 2022, 11, 3795. [Google Scholar] [CrossRef]
- Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host. Microbe. 2018, 23, 716–724. [Google Scholar] [CrossRef]
- Muneer, A. Kynurenine Pathway of Tryptophan Metabolism in Neuropsychiatric Disorders: Pathophysiologic and Therapeutic Considerations. Clin. Psychopharmacol. Neurosci. 2020, 18, 507–526. [Google Scholar] [CrossRef] [PubMed]
- Richard, D.M.; Dawes, M.A.; Mathias, C.W.; Acheson, A.; Hill-Kapturczak, N.; Dougherty, D.M. L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications. Int. J. Tryptophan Res. 2009, 2, 45–60. [Google Scholar] [CrossRef]
- Powell, D.N.; Swimm, A.; Sonowal, R.; Bretin, A.; Gewirtz, A.T.; Jones, R.M.; Kalman, D. Indoles from the commensal microbiota act via the AHR and IL-10 to tune the cellular composition of the colonic epithelium during aging. Proc. Natl. Acad. Sci. USA 2020, 117, 21519–21526. [Google Scholar] [CrossRef]
- Chimerel, C.; Emery, E.; Summers, D.K.; Keyser, U.; Gribble, F.M.; Reimann, F. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 2014, 9, 1202–1208. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.K.; Yoo, K.Y.; Li, H.; Park, O.K.; Lee, C.H.; Choi, J.H.; Jeong, Y.G.; Lee, Y.L.; Kim, Y.M.; Kwon, Y.G.; et al. Indole-3-propionic acid attenuates neuronal damage and oxidative stress in the ischemic hippocampus. J. Neurosci. Res. 2009, 87, 2126–2137. [Google Scholar] [CrossRef] [PubMed]
- Yisireyili, M.; Takeshita, K.; Saito, S.; Murohara, T.; Niwa, T. Indole-3-propionic acid suppresses indoxyl sulfate-induced expression of fibrotic and inflammatory genes in proximal tubular cells. Nagoya J. Med. Sci. 2017, 79, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Garcez, M.L.; Tan, V.X.; Heng, B.; Guillemin, G.J. Sodium Butyrate and Indole-3-propionic Acid Prevent the Increase of Cytokines and Kynurenine Levels in LPS-induced Human Primary Astrocytes. Int. J. Tryptophan Res. 2020, 13, 1178646920978404. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, T.; Ni, C.; Hu, Y.; Nan, Y.; Lin, W.; Liu, Y.; Zheng, F.; Shi, X.; Lin, Z.; et al. Indole-3-propionic Acid Attenuates HI-Related Blood-Brain Barrier Injury in Neonatal Rats by Modulating the PXR Signaling Pathway. ACS Chem Neurosci. 2022, 13, 2897–2912. [Google Scholar] [CrossRef]
- Geddo, F.; Antoniotti, S.; Gallo, M.P.; Querio, G. Indole-3-Propionic Acid, a Gut Microbiota-Derived Tryptophan Metabolite, Promotes Endothelial Dysfunction Impairing Purinergic-Induced Nitric Oxide Release in Endothelial Cells. Int. J. Mol. Sci. 2024, 25, 3389. [Google Scholar] [CrossRef]
- Headache Classification Committee of the International Headache Society. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 2018, 38, 1–211. [Google Scholar] [CrossRef] [PubMed]
- Heller, G.Z.; Manuguerra, M.; Chow, R. How to analyze the Visual Analogue Scale: Myths, truths and clinical relevance. Scand. J. Pain. 2016, 13, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Dikmen, P.Y.; Bozdağ, M.; Güneş, M.; Koşak, S.; Taşdelen, B.; Uluduz, D.; Ozge, A. Reliability and Validity of Turkish Version of Headache Impact Test (HIT-6) in Patients with Migraine. Noro Psikiyatr. Ars. 2020, 58, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Ertaş, M.; Siva, A.; Dalkara, T.; Uzuner, N.; Dora, B.; Inan, L.; Idiman, F.; Sarica, Y.; Selçuki, D.; Turkish MIDAS Group; et al. Validity and reliability of the Turkish Migraine Disability Assessment (MIDAS) questionnaire. Headache 2004, 44, 786–793. [Google Scholar] [CrossRef]
- İltuş, F. The Reliability and Validity of Turkish form of The 24-Hour Migraine Quality of Life Questionnaire. Master’s Thesis, Ege University Institute of Health Sciences, Izmir, Turkey, 2007. [Google Scholar]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Polat, B.; Özge, A.; Yılmaz Helvaci, N.; Taşdelen, B.; Düz Arici, Ö.; Kılı, S.; Sarı, S. Validity and Reliability of the Turkish Version of the Mig-Scog Scale in Migraine Patients. Neurol. Sci. Neurophysiol. 2020, 37, 29–35. [Google Scholar] [CrossRef]
- Tsikas, D. Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: Appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 851, 51–70. [Google Scholar] [CrossRef]
- Cortas, N.K.; Wakid, N.W. Determination of inorganic nitrate in serum and urine by a kinetic cadmium-reduction method. Clin. Chem. 1990, 36 Pt 1, 1440–1443. [Google Scholar] [CrossRef]
- Al-Nimer, M.S.; Al-Ani, F.S.; Ali, F.S. Role of nitrosative and oxidative stress in neuropathy in patients with type 2 diabetes mellitus. J. Neurosci. Rural Pract. 2012, 3, 41–44. [Google Scholar] [CrossRef]
- Vanuffelen, B.E.; Van Der Zee, J.; De Koster, B.M.; Vansteveninck, J.; Elferink, J.G. Intracellular but not extracellular conversion of nitroxyl anion into nitric oxide leads to stimulation of human neutrophil migration. Biochem. J. 1998, 330 Pt 2, 719–722. [Google Scholar] [CrossRef]
- Beckman, J.S.; Ischiropoulos, H.; Zhu, L.; van der Woerd, M.; Smith, C.; Chen, J.; Harrison, J.; Martin, J.C.; Tsai, M. Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys. 1992, 298, 438–445. [Google Scholar] [CrossRef]
- Durak, I.; Kavutcu, M.; Kaçmaz, M.; Avci, A.; Horasanli, E.; Dikmen, B.; Cimen, M.Y.; Oztürk, H.S. Effects of isoflurane on nitric oxide metabolism and oxidant status of guinea pig myocardium. Acta Anaesthesiol Scand. 2001, 45, 119–122. [Google Scholar] [CrossRef]
- Ignarro, L.J.; Buga, G.M.; Wood, K.S.; Byrns, R.E.; Chaudhuri, G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA 1987, 84, 9265–9269. [Google Scholar] [CrossRef]
- Togha, M.; Razeghi Jahromi, S.; Ghorbani, Z.; Ghaemi, A.; Rafiee, P. Evaluation of Inflammatory State in Migraineurs: A Case-control Study. Iran J. Allergy Asthma Immunol. 2020, 19, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, A.; Nakhaee, A.; Ghoreishi, A.; Arefpoor, Z.; Sadeghi, M. Impaired oxidative-antioxidative balance during migraine attack. BioMed. Res. Ther. 2019, 6, 2996–3002. [Google Scholar] [CrossRef]
- Fila, M.; Jablkowska, A.; Pawlowska, E.; Blasiak, J. DNA Damage and Repair in Migraine: Oxidative Stress and Beyond. Neuroscientist 2023, 29, 277–286. [Google Scholar] [CrossRef]
- Goschorska, M.; Gutowska, I.; Baranowska-Bosiacka, I.; Barczak, K.; Chlubek, D. The Use of Antioxidants in the Treatment of Migraine. Antioxidants 2020, 9, 116. [Google Scholar] [CrossRef]
- Yazğan, Y.; Nazıroğlu, M. Involvement of TRPM2 in the Neurobiology of Experimental Migraine: Focus on Oxidative Stress and Apoptosis. Mol. Neurobiol. 2021, 58, 5581–5601. [Google Scholar] [CrossRef]
- Neri, M.; Frustaci, A.; Milic, M.; Valdiglesias, V.; Fini, M.; Bonassi, S.; Barbanti, P. A meta-analysis of biomarkers related to oxidative stress and nitric oxide pathway in migraine. Cephalalgia 2015, 35, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Gruber, H.J.; Bernecker, C.; Lechner, A.; Weiss, S.; Wallner-Blazek, M.; Meinitzer, A.; Höbarth, G.; Renner, W.; Fauler, G.; Horejsi, R.; et al. Increased nitric oxide stress is associated with migraine. Cephalalgia 2010, 30, 486–492. [Google Scholar] [CrossRef]
- Togha, M.; Razeghi Jahromi, S.; Ghorbani, Z.; Ghaemi, A.; Rafiee, P. An investigation of oxidant/antioxidant balance in patients with migraine: A case-control study. BMC Neurol. 2019, 19, 323. [Google Scholar] [CrossRef] [PubMed]
- Bendheim, P.E.; Poeggeler, B.; Neria, E.; Ziv, V.; Pappolla, M.A.; Chain, D.G. Development of indole-3-propionic acid (OXIGON) for Alzheimer’s disease. J. Mol. Neurosci. 2002, 19, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Poeggeler, B.; Pappolla, M.A.; Hardeland, R.; Rassoulpour, A.; Hodgkins, P.S.; Guidetti, P.; Schwarcz, R. Indole-3-propionate: A potent hydroxyl radical scavenger in rat brain. Brain Res. 1999, 815, 382–388. [Google Scholar] [CrossRef]
- Chyan, Y.J.; Poeggeler, B.; Omar, R.A.; Chain, D.G.; Frangione, B.; Ghiso, J.; Pappolla, M.A. Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid. J. Biol. Chem. 1999, 274, 21937–21942. [Google Scholar] [CrossRef]
- Chen, S.J.; Chen, C.C.; Liao, H.Y.; Wu, Y.W.; Liou, J.M.; Wu, M.S.; Kuo, C.H.; Lin, C.H. Alteration of Gut Microbial Metabolites in the Systemic Circulation of Patients with Parkinson’s Disease. J. Parkinsons Dis. 2022, 12, 1219–1230. [Google Scholar] [CrossRef]
- Gaetani, L.; Boscaro, F.; Pieraccini, G.; Calabresi, P.; Romani, L.; Di Filippo, M.; Zelante, T. Host and Microbial Tryptophan Metabolic Profiling in Multiple Sclerosis. Front. Immunol. 2020, 11, 157. [Google Scholar] [CrossRef]
- Li, X.; Chen, D.; Chen, X.; Jiang, C.; Guo, Y.; Hang, J.; Tao, L.; Li, Y.; Yu, H. Study on the correlation between serum indole-3-propionic acid levels and the progression and prognosis of acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 2024, 33, 107680. [Google Scholar] [CrossRef]
- Serger, E.; Luengo-Gutierrez, L.; Chadwick, J.S.; Kong, G.; Zhou, L.; Crawford, G.; Danzi, M.C.; Myridakis, A.; Brandis, A.; Bello, A.T.; et al. The gut metabolite indole-3 propionate promotes nerve regeneration and repair. Nature 2022, 607, 585–592. [Google Scholar] [CrossRef]
- Rothhammer, V.; Mascanfroni, I.D.; Bunse, L.; Takenaka, M.C.; Kenison, J.E.; Mayo, L.; Chao, C.C.; Patel, B.; Yan, R.; Blain, M.; et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 2016, 22, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Konopelski, P.; Chabowski, D.; Aleksandrowicz, M.; Kozniewska, E.; Podsadni, P.; Szczepanska, A.; Ufnal, M. Indole-3-propionic acid, a tryptophan-derived bacterial metabolite, increases blood pressure via cardiac and vascular mechanisms in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 321, R969–R981. [Google Scholar] [CrossRef] [PubMed]
- Sathyasaikumar, K.V.; Blanco-Ayala, T.; Zheng, Y.; Schwieler, L.; Erhardt, S.; Tufvesson-Alm, M.; Poeggeler, B.; Schwarcz, R. The Tryptophan Metabolite Indole-3-Propionic Acid Raises Kynurenic Acid Levels in the Rat Brain In Vivo. Int. J. Tryptophan. Res. 2024, 17, 11786469241262876. [Google Scholar] [CrossRef] [PubMed]
- Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C.; Traverso, N. Hormesis and Oxidative Distress: Pathophysiology of Reactive Oxygen Species and the Open Question of Antioxidant Modulation and Supplementation. Antioxidants 2022, 11, 1613. [Google Scholar] [CrossRef]
Control | Patient | p | |
---|---|---|---|
(n = 30) | (n = 57) | ||
Age, years | 29 (8) | 33 (18.5) | 0.555 |
Gender (F), n, (%) | 24 (32.9) | 49 (67.1) | 0.544 |
BMI | 24.15 (5.7) | 26.23 (7.85) | 0.565 |
IPA, ng/mL | 7.4 ± 1.41 | 8.39 ± 1.66 | 0.007 |
NO•, umol/L | 15 (2.68) | 14.67 (3.68) | 0.968 |
NOS, U/mL | 35.81 ± 7.32 | 37.57 ± 8.77 | 0.353 |
ONOO−, umol/L | 200.64 (17.27) | 205.04 (28.93) | 0.038 |
Control | EM | CM | p | |
---|---|---|---|---|
(n = 30) | (n = 28) | (n = 29) | ||
Age, | 29 (8) | 32 (19.25) | 33 (18.5) | 0.824 |
Gender (F), n (%) | 24 (32.9) | 22 (30.1) | 27 (37) | 0.253 |
BMI | 24.15 (5.7) | 26.25 (7.8) | 25.48 (7.82) | 0.645 |
IPA, ng/mL | 7.4 ± 1.41 | 8.91 ± 1.63 | 7.88 ± 1.56 | 0.001 |
NO•, umol/L | 15 (2.68) | 13.7 (3.22) | 16.61 (5.07) | 0.001 |
NOS, U/mL | 35.81 ± 7.32 | 35.91 ± 9.3 | 39.17 ± 8.07 | 0.225 |
ONOO−, umol/L | 200.64 (17.27) | 204.6 (34.43) | 206.36 (24.31) | 0.102 |
EM | CM | p | |
---|---|---|---|
(n = 28) | (n = 29) | ||
Age, years | 32 (19.25) | 33 (18.5) | 0.774 |
Gender (F), n (%) | 22 (44.9) | 27 (55.1) | 0.144 |
BMI | 26.43 ± 5.19 | 25.36 ± 4.35 | 0.401 |
Attack Frequency (monthly) | 1 (0) | 7 (3) | <0.001 |
Painful Days (monthly) | 2 (2) | 15 (1) | <0.001 |
Number of NSAIDs (monthly) | 1 (2) | 10 (5) | <0.001 |
VAS | 6 (2) | 7 (1) | 0.008 |
HIT-6 | 60.5 (5.75) | 65 (6.5) | 0.019 |
MIDAS | 1 (1) | 4 (0) | <0.001 |
24 h QoL | 76.5 (6) | 41 (14) | <0.001 |
MMSE | 29 (2.75) | 28 (2.5) | 0.063 |
Mig-SCog | 4.64 ± 2.75 | 6.62 ± 2.29 | 0.005 |
IPA, ng/mL | 8.91 ± 1.63 | 7.88 ± 1.56 | 0.018 |
NO•, umol/L | 13.7 (3.22) | 16.61 (5.07) | <0.001 |
NOS, U/mL | 35.91 ± 9.3 | 39.17 ± 8.07 | 0.170 |
ONOO−, umol/L | 204.6 (34.43) | 206.36 (24.31) | 0.523 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agircan, D.; Taskin, S.; Cekic, M.; Celik, H. The Neuroprotective Role of Indole-3-Propionic Acid in Migraine Pathophysiology. Medicina 2024, 60, 1417. https://doi.org/10.3390/medicina60091417
Agircan D, Taskin S, Cekic M, Celik H. The Neuroprotective Role of Indole-3-Propionic Acid in Migraine Pathophysiology. Medicina. 2024; 60(9):1417. https://doi.org/10.3390/medicina60091417
Chicago/Turabian StyleAgircan, Dilek, Seyhan Taskin, Murat Cekic, and Hakim Celik. 2024. "The Neuroprotective Role of Indole-3-Propionic Acid in Migraine Pathophysiology" Medicina 60, no. 9: 1417. https://doi.org/10.3390/medicina60091417
APA StyleAgircan, D., Taskin, S., Cekic, M., & Celik, H. (2024). The Neuroprotective Role of Indole-3-Propionic Acid in Migraine Pathophysiology. Medicina, 60(9), 1417. https://doi.org/10.3390/medicina60091417