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Abstract: The gastrointestinal and respiratory systems are closely linked in different ways, including
from the embryological, anatomical, cellular, and physiological angles. The highest number (and
various types) of microorganisms live in the large intestine/colon, and constitute the normal mi-
crobiota in healthy people. Adverse alterations of the microbiota or dysbiosis can lead to chronic
inflammation. If this detrimental condition persists, a sequence of pathological events can occur,
such as inflammatory bowel disease, dysplasia or premalignant changes, and finally, cancer. One
of the most commonly identified bacteria in both inflammatory bowel disease and colon cancer is
Escherichia coli. On the other hand, patients with inflammatory bowel disease are at risk of several
other diseases—both intestinal (such as malnutrition and intestinal obstruction, besides cancer) and
extraintestinal (such as arthritis, bronchiectasis, and cancer risk). Cancers of the lung and colon
are the two most common malignancies occurring worldwide (except for female breast cancer).
Like the bacterial role in colon cancer, many studies have shown a link between chronic Chlamydia
pneumoniae infection and lung cancer. However, in colon cancer, genotoxic colibactin-producing E.
coli belonging to the B2 phylogroup may promote tumorigenesis. Furthermore, E. coli is believed to
play an important role in the dissemination of cancer cells from the primary colonic site. Currently,
seven enteric pathogenic E. coli subtypes have been described. Conversely, three Chlamydiae can
cause infections in humans (C. trachomatis may increase the risk of cervical and ovarian cancers).
Nonetheless, striking genomic plasticity and genetic modifications allow E. coli to constantly adjust
to the surrounding environment. Consequently, E. coli becomes resistant to antibiotics and difficult
to manage. To solve this problem, scientists are thinking of utilizing suitable lytic bacteriophages
(viruses that infect and kill bacteria). Several bacteriophages of E. coli and Chlamydia species are being
evaluated for this purpose.
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1. Introduction

The gastrointestinal and respiratory systems are closely connected anatomically and
physiologically. Our respiratory system develops about the third week of embryonic
life, when an outgrowth appears from the ventral wall of the primitive foregut. The
endodermal cells of the foregut invade the surrounding mesenchyme and sequentially form
the trachea, bronchial tree, and lobules [1]. Therefore, one can observe many similarities and
cooperation between the respiratory and gastrointestinal systems. Apart from the pharynx,
which belongs to both systems, other essential functions include the maintenance of cellular
metabolism and survival by the constant supply of oxygen and nutrients, participation in
the elimination of waste products such as carbon dioxide and undigested food materials,
and support in the immune response. Of note, the gut-associated lymphatic tissue (GALT),
including Peyer’s patches of the ileum, as well as the bronchus-associated lymphatic tissue
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(BALT) and other lymphatic tissue of the respiratory system, are located in the lamina
propria and submucosa, in both diffuse and nodular forms. Histologically, a sizable portion
of both gastrointestinal and respiratory tracts are lined by columnar cells and mucous-
secreting cells/Goblet cells. Interestingly, a small proportion of the cell population (less
than 1%) are neuroendocrine cells, such as small granule cells (Kulchitsky cells) of the
respiratory system and enteroendocrine cells of the gastrointestinal system, which are
present individually all over the gastrointestinal epithelium and in accumulations in the
pancreatic islets of Langerhans [2]. Neoplastic transformation of these cells could release
hormonal substances and result in distinct clinical syndromes.

The majority of neuroendocrine neoplasms originate from the gastrointestinal (~70%)
and respiratory (~20%) systems; hence, these neoplasms from the two sites account for
roughly 90% of all neuroendocrine neoplasms, which overall represent about 0.5% of all
malignancies [3,4]. However, aggressive malignancies are more common in the respiratory
system [4]. Among pulmonary neuroendocrine neoplasms, small-cell lung carcinoma
accounts for approximately 15% of lung primary cancers [5]. Like the association between
cigarette smoking and small-cell lung carcinoma, recent reports have shown a connection
between gastrointestinal neuroendocrine neoplasms and inflammatory bowel disease [6–9].

Inflammatory bowel disease, which primarily refers to ulcerative colitis and Crohn’s
disease, is a chronic inflammatory disorder of idiopathic origin. Many investigators have
reported that patients with inflammatory bowel disease are at risk of the development of
malignancies in several sites—both intestinal and extraintestinal, e.g., the colon (colorectal),
oral cavity, breast, uterine cervix, skin, and lung [10–13]. It is worth mentioning that in in-
flammatory bowel disease, other non-cancerous extraintestinal manifestations may include
respiratory tract involvement, such as bronchiectasis, chronic bronchitis, and interstitial
pneumonia [14]. Nevertheless, it is believed that inflammatory bowel disease has a link
to a number of pathological factors—for instance, genetic susceptibility, environmental
elements, abnormal immune response, and alterations in intestinal microbiota (dysbiosis).
From this perspective, researchers have categorized several suspected bacterial species,
including Clostridium difficile, Mycobacterium avium paratuberculosis, Escherichia coli, Klebsiella
pneumoniae, Campylobacter spp., and Chlamydia spp. [15,16].

The prevalence of inflammatory bowel disease is increasing worldwide, particularly in
newly industrialized nations [10]. Similarly, an increasing incidence rate is observed glob-
ally for another condition, i.e., proctitis/proctocolitis due to lymphogranuloma venereum,
which may mimic inflammatory bowel disease [17–19]. Lymphogranuloma venereum,
caused by Chlamydia trachomatis, is a sexually transmitted disease, and relevant proctocolitis
is diagnosed specifically in homosexual patients. In a study in Switzerland, the investiga-
tors analyzed inflamed biopsy specimens from patients with Crohn’s disease (n = 39) and
ulcerative colitis (n = 13) [20]. In Crohn’s disease-inflamed tissue specimens, significantly
more Chlamydia pneumoniae DNA was detected compared with specimens from unaffected
areas. A study from New Zealand identified C. pneumoniae DNA from 21.4% of biopsy
specimens from Crohn’s disease (9/42), 15.3% of biopsies from ulcerative colitis (9/59), and
11.4% of biopsies from subjects without inflammatory bowel disease (control, 14/122) [21].
Interestingly, Chlamydiae in humans and many animals colonize the gastrointestinal tract,
which could be a reservoir for reinfection [22,23].

As mentioned earlier, inflammatory bowel disease is linked to several pathophysio-
logical events, e.g., dietary factors, the compromise of gut mucus tissue integrity, and host
immune responses, as well as alterations in microbial diversity and their metabolites [24,25]
(Table 1 [26–33]). Among the pathogenic bacteria in this dysbiosis–inflammation–dysplasia–
carcinogenesis process, E. coli perhaps plays an important role [24,34]. A recent report,
which analyzed E. coli genomes from patients with Crohn’s disease, ulcerative colitis, a
pouch (caused by ileoanal anastomosis in ulcerative colitis), and healthy persons, observed
that no strains were unique to inflammatory bowel disease, while E. coli B2 phylogenetic
group/lineage was more prevalent in ulcerative colitis than in other subjects [35]. Fur-
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thermore, E. coli strains isolated from ulcerative colitis encoded more genotoxic colibactin,
which could increase cancer risk.

Table 1. Results of different clinical trials that showed the plausible role of probiotics (mainly
Lactobacilli and Bifidobacterium) in the modification of gut microbiota and overall disease course
among patients with inflammatory bowel disease.

Investigators Study Design Findings

Bengtsson et al., 2016 (Sweden) [26]

Patients with poor pouch function after
restorative operative procedure for
ulcerative colitis: probiotic group (n = 17,
Lactobacillus plantarum and Bifidobacterium
infantis) and placebo (n = 16).

There was no statistically significant
difference between the two
groups—probiotics did not improve
pouch-associated dysfunction.

Fan et al., 2019 (China) [27]

40 patients with IBD: control group
(n = 19, treatment with mesalazine) and
probiotic group (n = 21,
mesalazine + probiotics).

After treatment, fecal bacterial counts
decreased significantly in both groups,
but the number of Lactobacilli and
Bifidobacterium increased significantly
only in the probiotic group, which also
showed lower levels of inflammatory
markers (IL-6 and hs-CRP).

Fedorak et al., 2015 (Canada) [28]

Patients with Crohn’s disease within
1 month of ileocolonic resection and
re-anastomosis: probiotic group (n = 59;
received Lactobacillus—4 strains,
Bifidobacterium—3 strains, and
Streptococcus salivarius—thermophilus),
and placebo (n = 60).

At day 90, there were no statistical
differences between the probiotic and
placebo groups. However, lower mucosal
levels of inflammatory cytokines (e.g.,
IL-1β and IL-8) and a lower rate of
recurrence in the probiotic group were
noted.

Groeger et al., 2013 (Ireland) [29]

Probiotic feeding: ulcerative colitis
(n = 22) for 6 weeks; psoriasis (n = 26),
chronic fatigue syndrome (n = 48),
healthy subjects with probiotic intake
(n = 10), and healthy subjects with
placebo (n = 12) for 8 weeks.

Probiotic consumption (Bifidobacterium
infantis) resulted in diminished blood
CRP levels in all disorders compared to
placebo. Blood levels of IL-6 were
decreased in ulcerative colitis.

Matsuoka et al., 2018 (Japan) [30]

195 patients with ulcerative colitis:
placebo (n = 97) and probiotic group
(n = 98, Bifidobacterium breve and
Lactobacillus acidophilus).

There were no significant differences
between the two groups. However,
regardless of treatment, there was a
significant reduction in Bifidobacterium
species before relapse.

Palumbo et al., 2016 (Italy) [31]

Ulcerative colitis:
30 patients—mesalazine treatment,
30 patients—mesalazine + probiotics
(Lactobacillus acidophilus, Lactobacillus
salivarius, and Bifidobacterium bifidus). The
treatment was continued for 2 years.

Patients with combination treatment
displayed better improvement in
comparison with the mesalazine group.

Shadnoush et al., 2015 (Iran) [32]

105 IBD patients with probiotic yogurt,
105 IBD patients with placebo, and 95
healthy persons with yogurt
(intervention for 8 weeks).

The mean numbers of Lactobacillus,
Bifidobacterium, and Bacteroides in the stool
specimens among IBD patients receiving
yogurt were significantly increased.

Tamaki et al., 2016 (Japan) [33]

Patients with active ulcerative colitis:
probiotic group (n = 24, Bifidobacterium
longum) and placebo (n = 23)—clinical
trial for 8 weeks.

Probiotic supplementation decreased
UCDAI scores.

IBD: Inflammatory bowel disease, Mesalazine (5-aminosalicylic acid): anti-inflammatory drug primarily used in
ulcerative colitis, IL: Interleukin, hs-CRP: high-sensitivity–C-reactive protein, UCDAI: Ulcerative Colitis Disease
Activity Index, which considers stool frequency, rectal bleeding, mucosal appearance, and clinical assessment
(higher scores → severe disease).
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In this review, an attempt has been made to discuss the pathological impacts of
E. coli and Chlamydia in two major neoplastic diseases—colon cancer and lung cancer,
respectively (Figure 1). As stated before, tissues of these two sites share the same embryonic
origin. Of note, the colon originates from the middle (midgut) and caudal (hindgut)
segments of the primitive gut. In addition, relevant antimicrobial resistance and the
prospect of phage therapy will be addressed briefly. Unlike E. coli, which is a common
Gram-negative bacillus and can survive in an open environment, Chlamydia is deficient in
several biosynthetic/metabolic components, which must be acquired from the host cell.
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tube. * Source: The World Health Organization (News release: 1 February 2024). The midgut-hindgut
junction is situated between the right two-thirds and the left third of the transverse colon (which
extends from the hepatic or right colic flexure to the left colic flexure).

In this review, an electronic literature search was carried out primarily using PubMed,
and, initially, papers published between 2000 and the current year (i.e., 2024) were consid-
ered. However, during our comprehensive search and examination of cross-references, we
found a few interesting articles that were either published before 2000 or not in English. We
utilized the Google system to translate those articles into English. In this process, we also
included information from two books and an article that was identified through a Google
search. Two authors independently screened the articles/studies, assessed their quality,
and extracted the necessary information. The majority of the articles cited in this review
were published within the last five years, constituting roughly 59% of the references. This
review comprises four main sections: Introduction, E. coli-related pathologies, Chlamydial
infections, and Bacteriophage aspects. We selected relevant articles for each section to
ensure a coherent and rational discussion. Overall, our study on both lung and colon
cancers has found that microbiota communities play a significant role in human health,
including homeostasis and immune function.

2. The Large Intestine: E. coli and Cancer

E. coli is a highly diverse bacterial species—from a commensal organism (without
causing any harm to its hosts) to a pathogen for a range of diseases, e.g., infections of the
gastrointestinal tract, urinary tract, central nervous system, and bloodstream (Figure 2). Of
note, E. coli is the most common cause of urinary tract infections. The organism has striking
genomic plasticity, which is responsible for its large variability [36]. Genetic modifications



Medicina 2024, 60, 1515 5 of 20

such as horizontal gene transfer, point mutations, and DNA rearrangements allow the
bacterium to continually adapt to the surrounding environment. Interestingly, within the
classical E. coli, hybrid- and hetero-pathogenic E. coli have been described as indicating a
unique arrangement of virulence factors; for instance, Shiga toxin-producing E. coli (STEC,
which was traditionally not documented) [37]. It may be worth mentioning that multidrug-
resistant E. coli strains are prevalent in different parts of the world. For example, in Asia,
CTX-M-producing and New Delhi metallo-β-lactamase (NDM)-producing E. coli strains
become a serious concern [38]. Notably, CTX-M is an enzyme under the extended-spectrum
β-lactamases (ESBLs), which can hydrolyze β-lactam antibiotics such as cephalosporins
and monobactams. On the other hand, many investigators believe that E. coli could play a
significant role in colon cancer [39–41]. Several bacterial characteristics, e.g., induction of
chronic inflammation, intracellular parasitism, and production of colibactin, as well as the
ability to cause DNA damage and accumulate mutations in host cells, may promote cancer
development [34,41,42].
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It is commonly mentioned that colibactin-producing E. coli can incite carcinogenesis in
the colon. Colibactin can cause DNA damage, and this genotoxic metabolite is encoded by
19 genes in a 54 kb polyketide synthase (pks) pathogenicity island frequently harbored by E.
coli from the B2 phylogroup. A Japanese study on 413 patients with colon cancer showed
that pks+ E. coli was more pronounced in tumor tissue from early disease stages [43]. The
investigators concluded that pks+ E. coli may participate in the initial tumor development,
but not in tumor progression. In the same manner, the results of the study conducted by
Chen et al. have supported the role of pks+ E. coli in early tumorigenesis [44]. Further-
more, they noticed that their findings might denote additional contributing factors for
colon carcinogenesis. It is notable that the development of colon cancer is influenced by
a number of risk factors, including some modifiable/lifestyle-related factors, for exam-
ple, consumption of red meats and processed meats, saturated fat, and alcohol, smoking,
insulin resistance/hyperinsulinemia, obesity, and medical interventions such as cholecys-
tectomy [45,46]. A recent study in China documented the fact that pks+ E. coli was enhanced
in patients with cholelithiasis or cholecystectomy [47]. Another study in France showed



Medicina 2024, 60, 1515 6 of 20

that colibactin-producing E. coli was linked to alterations in the lipid metabolism of cancer
cells, which could create an immune-suppressive tumor microenvironment and disease
recurrence [48]. The accumulation of lipids in the tumor region might change the intracel-
lular signaling systems, leading to cell proliferation and resistance to chemotherapeutic
agents. Interestingly, colibactin-producing E. coli has been reported to display resistance
to different antibiotics and induce the emergence of tumor cells that exhibit resistance to
chemotherapeutic drugs [49,50].

A study that analyzed mucosal E. coli isolates from 61 colon cancer patients, along with
20 healthy controls, noticed a trend of a higher rate of colibactin-producing E. coli among
cancer patients in comparison with controls, but the significance was borderline [51]. How-
ever, the investigators of this study observed a higher prevalence of other genes that encode
virulence factors such as S-fimbriae, siderophore receptor, invasin, and uropathogenic-
specific protein/genotoxin in E. coli from cancer patients’ mucosal biopsies. It may be
noteworthy that phylogroup B2 E. coli also releases other virulence factors collectively
called cyclomodulins, which include cytotoxic necrotizing factor, cytolethal distending
toxin, and cycle inhibiting factor (apart from colibactin), as well as cyclooxygenase–2 [52,53].
On the other hand, in an in vitro study using colorectal adenocarcinoma Caco-2 cells, the
investigators found that oxidative DNA lesions could be triggered by enterohemorrhagic
E. coli (EHEC or STEC) [54]. Of note, E. coli strains such as enterohemorrhagic E. coli
and enteropathogenic E. coli can cause the formation of attaching and effacing (A/E) in-
testinal lesions, which is dependent on the bacterial type III secretion system (T3SS), and
the development of DNA lesions. In a recent report, a significantly higher prevalence of
enteropathogenic E. coli was detected among colon cancer patients compared to healthy
participants [55]. Intriguingly, it is believed that E. coli might be involved in impairing
the gut–vascular barrier at the site of neoplastic lesions, which could create a favorable
condition for disseminating cancer cells or distant metastasis [56]. It is worth noting that
E. coli was one of the initial bacteria that were thought to be connected with colon cancer
pathology [Table 2].

Table 2. Selected recent studies that showed a link between E. coli infections and colon cancer
development or associated clinicopathologic events.

Investigators, Place of Study, and Study Plan Results in Brief

Butt et al., 2021 (6 Western European countries) [57]
The European Prospective Investigation into Nutrition and
Cancer (EPIC) study—pre-diagnostic serum samples from
incident colon cancer cases and matched controls (n = 442 pairs).

Immunoglobulin A (IgA) seropositivity to E. coli protein Ag43
and IgG seropositivity to enterotoxigenic Bacteroides fragilis
toxin BFT-1 were significantly associated with higher odds of
developing cancer.

He et al., 2021 (China) [58]
Fecal samples from 61 colon cancer patients and 72 normal
persons were analyzed to evaluate the microbial diversity and
composition.

In comparison to the normal control group, the numbers of E.
coli, along with Prevetella copri, were significantly higher among
cancer patients.

Iwasaki et al., 2022 (Japan) [59]
543 participants with colonic growth (22 cancer and
521 adenomas) and 425 participants with normal colon
(controls). The study aimed to assess the prevalence of E. coli
containing polyketide synthase (pks).

The percentage of pks+ E coli was 32.6% among cases (cancer
and adenoma) and 30.8% among controls. There was no
statistically significant association between pks+ E coli and
colonic lesions.

Iyadorai et al., 2020 (Malaysia) [60]
Fresh tissue samples from 48 colon cancer patients (both
malignant and nearby non-malignant tissues) and 23 healthy
controls (normal colon tissues) were collected for the detection
of pks+ E coli.

8 colon cancer patients (16.7%) and 1 healthy control (4.3%)
were found to be positive for pks+ E. coli.
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Table 2. Cont.

Investigators, Place of Study, and Study Plan Results in Brief

Kamali Dolatabadi et al., 2022 (Iran) [61]
Colorectal tissue samples were collected from 150 subjects
during colonoscopy: 30 subjects with normal results, 30 subjects
with normal results but a positive family history of colon cancer,
30 subjects with normal results but a history of colon cancer,
30 patients with adenocarcinoma-in-situ, and 30 patients
with adenocarcinoma.

74 intracellular E. coli were isolated from all subjects (among
them, there were 24 adherent-invasive E. coli/AIEC strains).
The majority were isolated from rectal specimens (31/74). AIEC
strains generally belonged to B2 and D phylogenetic groups.

López-Siles et al., 2022 (Spain) [62]
AIEC phenotype was examined in 4233 E. coli isolated from the
ileum and colon biopsy samples from 14 ulcerative colitis and
15 colon cancer patients.

Regarding the prevalence of AIEC, one cancer patient had
AIEC-like isolates (6.7%), whereas 5 patients with ulcerative
colitis harbored AIEC-like isolates (35.7%). All AIEC-like strains
belonged to the B1 phylogroup except one, which was isolated
from an ulcerative colitis patient.

Messaritakis et al., 2020 (Greece) [63]
Microbial DNA fragments in peripheral blood were analyzed
for the β-galactosidase gene of E. coli (along with the glutamine
synthase gene of B. fragilis and DNA coding for 5.8S rRNA of
Candida albicans) from 397 colon cancer patients and 32 healthy
blood donors.

E. coli β-galactosidase gene was detected in 104 patients (26.2%).
Detection of these microbial fragments was significantly
associated with metastatic disease and prognosis.

Mirzarazi et al., 2022 (Iran) [64]
Fecal samples were collected from 20 newly diagnosed colon
cancer patients (before treatment) and 50 healthy persons.

55% of E.coli isolates from patients’ samples, and 26% of E. coli
from healthy persons belonged to the B2 phylogenetic group.
Moreover, the outer membrane protein A (OmpA) was
overexpressed in the E. coli B2 phylogenetic group isolated from
cancer patients, compared to the control group. The protein
significantly decreased the expression of pro-apoptotic genes
(Bax and Bak) and p53.

Rondepierre et al., 2024 (France) [65]
Patients with colon cancer were evaluated for present and
lifetime psychiatric problems. Out of 64 suitable patients, 12
participated. In this limited cohort, patients were followed up
after surgery.

All patients with colonization by colibactin-producing E. coli
presented with psychiatric disorders several years before cancer
diagnosis.

Wachsmannova et al., 2018 (Slovakia) [66]
Analysis was performed to identify the presence of intracellular
bacteria in colorectal biopsy samples that were collected from
10 colon cancer patients, 10 cases with adenomas, and 9
healthy controls.

The noticeable increase in intracellular E. coli in patients with
carcinoma and colorectal adenomas was statistically significant
in comparison to biopsy tissue samples from controls.

3. Challenges with E. coli Management

Regarding the global antimicrobial resistance problem, the World Health Organization
has specifically listed certain drug-resistant bacteria as serious public health threats; one of
them is E. coli. Obviously, the epidemiology of the human–animal antimicrobial resistance
relationship is exceptionally intricate. In the environment, antibiotic residues and E. coli,
along with other bacteria, are commonly spread primarily with manure from food-animal
production industrial farms. Logically, these byproducts affect the environmental bacteria,
including microorganisms in wild fauna, which can be a source (or reservoirs) of drug-
resistant bacteria [67]. In a study conducted in Italy, the investigators collected ESBL-
producing E. coli isolates from humans and food-producing animals [68]. They observed
that CTX-M was the most common type in human and animal isolates. Nevertheless, they
concluded that ESBL gene transfer is possible from animals to humans. Another study
in Tanzania analyzed the samples of feces from households and adjacent livestock, as
well as soil and water in urban and peri-urban areas [69]. In 52% of household–livestock
clusters, ampicillin- and tetracycline-resistant E. coli isolates were detected. The transfer of
fecal bacteria among humans, cattle, soil, and water near livestock farms might happen
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frequently. Similarly, a study in Ethiopia found genetically similar E. coli (O157, a Shiga
toxin-producing strain) in cattle, beef, and humans [70].

A research group in India collected samples from poultry farms (fecal matter, litter, and
neighboring agricultural soil) and patients with urinary tract infections [71]. Interestingly,
E. coli isolates from patients and poultry environments showed a similar resistance pattern
for antibiotics such as amikacin, amoxicillin, ampicillin, and ofloxacin. Another study in
the Netherlands, which analyzed ESBL E. coli isolates from broilers and staff of broiler
farms, observed the transmission of bacterial strains, along with horizontal plasmid and
gene transfer among broilers, workers, and their family members [72]. On the other hand, a
study in New Zealand revealed that transmission within the same household (persons and
pets) might contribute to the spread of ESBL- or AmpC beta-lactamase (ACBL)-producing
E. coli in the community [73]. Moreover, Marchetti et al. concluded that E. coli isolates from
dogs in Argentina could be a potential source of antibiotic resistance [74].

For the features mentioned above, it is evident that E. coli has highly complex cellular
mechanisms and a great capacity for adaptation. Consequently, antimicrobial stewardship
programs (ASPs) in certain places showed mixed results [75,76]. Wang et al. evaluated
bacterial resistance data from 350,699 patients during the 2011–2016 period, and they ob-
served that the resistance rates of E. coli to fluoroquinolones (levofloxacin and ciprofloxacin)
declined as a result of antimicrobial stewardship, while the resistance rates to carbapenems
(imipenem and meropenem) increased [75]. However, in an ASP on ESBL-producing E.
coli, conducted in 214 primary health centers in Spain during 2012–2017, the intervention
revealed a significant decrease in ESBL-producing E. coli infections along with an improve-
ment in the use of antibiotics [77]. Similarly, another ASP in Spain, in 104 cases, recorded a
favorable clinical outcome in urinary tract infections caused by ESBL-producing E. coli [78].
Furthermore, a study in Israel that included 6001 patients showed that ASP positively
affected the antibiotic resistance rates of E. coli [79].

E. coli is widely present in the environment and in all mammals. Therefore, the ‘One
Health’ approach is required for an effective ASP. With regard to this connection, functional
cooperation is needed between several experts and regulatory bodies, e.g., veterinarians,
physicians, pharmacists, food safety professionals, farmers, and environment/wildlife
experts, as well as the relevant legal authorities at the national and international levels.

4. Link between Chlamydia and Lung Cancer Risk

Chlamydiae are Gram-negative obligate intracellular bacteria that maintain their life
cycle in two phases: the infectious extracellular elementary body and the non-infectious
intracellular reticulate body, which is a metabolically active replicative form (Figure 3).
Chlamydia was initially thought of as a member of protozoa, subsequently a virus, and
finally, it was discovered to be more analogous to Rickettsia, another Gram-negative obligate
intracellular bacterium [80]. Although Chlamydia and Rickettsia are phylogenetically differ-
ent, both share certain lifestyle characteristics, e.g., their intracellular survival, and have a
wide range of hosts such as reptiles, birds, and mammals, which may result in zoonoses
(Table 3). For this reason, many authors have tried to correlate these two groups of bacteria
in different manners—for instance, genetic makeup, functions of a specific molecule, and
utilization of cholesterol/lipids [81–83]. Nevertheless, Chlamydiae are unable to produce
several essential biomolecules including ATP and components of nucleic acid and amino
acid biosynthesis pathways; but a number of bacteria-associated molecules function as
virulence factors, such as major outer membrane protein, polymorphic membrane proteins,
lipopolysaccharide, and type III secretion systems [84]. In addition, Chlamydia infections
can cause activation of various molecules/pathways, e.g., epidermal growth factor receptor,
NF-κB pathway, IL-6 phosphatidylinositol 3-kinase, and mitogen-activated protein kinase,
which are also connected with neoplastic pathological processes.
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Early studies documented a connection between chronic C. pneumoniae infection and
lung cancer [85–87]. In the cohort of Alpha-Tocopherol, Beta-Carotene Cancer Prevention
Study, two serum samples were collected at a 3-year interval to detect C. pneumoniae
infection before the diagnosis of lung cancer [85]. In this study, 230 male smokers with
lung cancer, along with matched controls, were selected. The presence of chronic C.
pneumoniae infection was detected in 52% of cases and 45% of controls. The incidence was
specifically noticed in subjects younger than 60 years of age [85]. In the pathogenesis of lung
cancer, smoking and chronic C. pneumoniae infection possibly act collaboratively [87–90].
On the other hand, a study on non-smoking women in China recorded that nearly 62%
of patients with lung cancer (n = 192) and around 29% of healthy controls (n = 90) were
immunoglobulin G (IgG) seropositive for C. pneumoniae [91]. In general, it has been
observed that IgG and/or IgA seropositive titers against C. pneumoniae are a risk factor for
lung cancer [92,93]. Interestingly, a case-control study in the USA on 593 lung cancer cases
and 671 controls showed that elevated antibody titers for Chlamydial heat shock protein-60
(hsp60) were associated with an increased risk of lung cancer [94].

In a study in Austria, Aigelsreiter et al. examined the presence of Chlamydiae in five
cases of lymphoma of mucosa-associated lymphoid tissue (MALT lymphomas) of the
lung; all cases were positive for Chlamydia psittaci [95]. In another study in Greece, the
investigators assessed surgically removed lung cancer tissue samples from 32 cases for
the presence of Chlamydia muridarum and C. trachomatis [96]. In this study, 12.5% of cases
were positive for Chlamydia. Of note, C. muridarum is a pathogen for mice. Interestingly,
in a recent study on C. muridarum infection in knockout mice (Il12rb2 KO and STAT1 KO),
a urothelial papilloma was developed in connection with this pathogen [97]. In another
in vivo study, Wistar rats were divided into four groups; excepting the control group
(n = 40) and carcinogenic benzo[a]pyrene group (BP, n = 46), the other two groups received
repeated intratracheal administration of C. pneumoniae (only bacteria- n = 48, and with
BP- n = 43) [98]. Incidences of lung cancer in the latter two groups were 14.6% and 44.2%,
respectively, and 10.9% in the BP group. On the other hand, C. pneumoniae infection in
pulmonary mesothelial cells (Mes1 cells) revealed induction of different cancer-linked
genes, such as calretinin, Wilms tumor 1, and matrix metalloproteinase-2 [99]. Therefore, C.
pneumoniae infection may favor the transformation of cells.
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Table 3. Two extensively studied Gram-negative obligate intracellular bacteria and associated diseases.

Bacteria Species Diseases

C
hl

am
yd

ia
e

Chlamydia trachomatis

Trachoma biovar (serovars- A, B,
Ba, C)

Trachoma: chronic conjunctivitis,
visual impairment, blindness

Genital tract biovar (serovars- D,
E, F, G, H, I, J, K)

Non-specific urethritis, prostatitis,
epididymitis, infertility, cervicitis,
pelvic inflammatory disease,
ectopic pregnancy, premature
delivery, inclusion conjunctivitis,
neonatal pneumonia; can promote
HIV infection and cervical cancer
pathogenesis

LGV biovar
(serovars- L1, L2, L3) Lymphogranuloma venereum

Chlamydia pneumoniae

Pharyngitis, sinusitis, ear infection,
laryngitis, bronchitis, pneumonia;
may contribute to asthma, arthritis,
atherosclerosis, myocarditis
and encephalitis

Chlamydia psittaci

Respiratory infection (psittacosis),
pneumonia; can initiate
complications such as hepatitis,
endocarditis, and inflammation of
the nerves/brain

Spread by (vectors)

R
ic

ke
tt

si
ae

Rickettsia rickettsii Ticks Rocky Mountain spotted fever

Rickettsia akari Mouse mite Rickettsialpox

Rickettsia conorii Ticks

Mediterranean spotted fever or
Boutonneuse fever (ssp. Conorii,
spread by dog tick); Indian tick
typhus (ssp. Indica); Israeli spotted
fever (ssp. Israelensis)

Rickettsia sibirica Ticks North Asian or Siberian tick typhus

Rickettsia australis Ticks Australian tick typhus or
Queensland tick typhus

Rickettsia felis Flea Pseudotyphus of California

Rickettsia japonica Ticks Japanese spotted fever

Rickettsia africae Ticks African tick bite fever

Rickettsia prowazekii Body lice Epidemic typhus or sylvatic typhus
(contact with flying squirrels)

Rickettsia typhi Fleas Endemic typhus or murine typhus

Orientia tsutsugamushi
(family Rickettsiaceae) Mites Scrub typhus

HIV: human immunodeficiency virus; ssp.: subspecies. Musca flies can be a vector for trachoma (due to their
capability to spread Chlamydia trachomatis). The trachoma biovar remains at the mucosal surface, whereas LGV
infects the lymphatic system. Psittacosis is a zoonotic disease.

It is believed that the proliferation of C. pneumoniae in monocytes and macrophages
in the lungs initiates pathogenesis by releasing elevated concentrations of different pro-
inflammatory cytokines such as tumor necrosis factor-α (TNF-α), IL-1β, IL-8, as well as
reactive oxygen species (ROS) [92,93]. For this reason, chronic C. pneumoniae infection
and tobacco smoking could act synergistically to increase cancer risk. Nevertheless, pro-
inflammatory cytokines and ROS can bring about chronic inflammation, which leads to cell
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injury and DNA damage. As a result, defects in the repairing process of cells might enhance
the risk of mutation, which could also aggravate the risk of cancer [92,93]. In addition to
the plausible role in tumorigenesis, C. pneumoniae perhaps affects the disease course. A
study on patients with advanced non-small-cell lung cancer (stages III and IV) showed
favorable results when treated with azithromycin in addition to chemotherapeutic agents,
viz. paclitaxel and cisplatin [100]. Azithromycin is one of the commonly used antibiotics
for the management of Chlamydial infections. A prospective hospital-based study evaluated
82 patients with primary lung cancer [101]. In this study, 75.6% of patients were positive
for IgG antibodies against C. pneumoniae, 45.1% were positive for IgA, and seropositivity
for both IgG and IgA was detected in 41.5% of cases. However, the study concluded that
pre-treatment for C. pneumoniae infection may modify the health-related quality of life.
On the other hand, a report demonstrated alterations in the levels of cytokines during
treatment, depending on the status of C. pneumoniae infection [102]. For instance, there
was a gradual increase in the concentration of transforming growth factor beta (TGF-β)
during radiotherapy. Finally, after radiotherapy, TGF-β displayed a significantly higher
concentration among C. pneumoniae IgG-positive patients with lung cancer, compared to
the IgG-negative group.

5. Antimicrobial Issues with Chlamydia

Chlamydial infection is associated with the highest incidence of sexually transmitted
bacterial disease worldwide. The World Health Organization estimated 128.5 million new
infections with the Chlamydial pathogen in 2020 among adults (15–49 years). In addition, a
high recurrence rate has been observed in cases of Chlamydial infection [103]. However, it is
not clear whether this high rate of recurrence is caused by reinfection or persistent infection
by antibiotic-resistant bacteria. In a report from China, higher rates of 23S rRNA gene
mutations were found in the azithromycin treatment-failure group [104]. In addition, recent
studies indicated antimicrobial resistance in C. psittaci and C. trachomatis (lymphogranuloma
venereum) strains [105,106]. In contrast, several observations were not able to detect any
treatment-resistant Chlamydial strains in clinical samples [107–110]. In a recent study from
Thailand, a group of researchers identified antimicrobial resistance genes from Chlamydia
in semiaquatic reptiles [111]. Specifically, there are a number of reports on the tetracycline-
resistant Chlamydia suis in pigs and the possible horizontal transfer of resistance genes to
other Chlamydial species [112–114]. In pig farms, tetracycline is used routinely, and this
practice is responsible for the homotypic resistance to tetracycline (homotypic: where most
organisms display resistance). Nevertheless, this type of resistance gene transmission was
either undetected or inconclusive in wild boar populations [115,116].

In general, the determination of antibiotic resistance and the identification of relevant
genes are performed in the laboratory/in vitro by serial passage of Chlamydial strains in sub-
inhibitory (i.e., lower) concentrations of antibiotics. Nonetheless, the clinical implications
of these in vitro findings are not clear [103]. Among patients, the variations in clinical
outcomes could be due to other factors that are unrelated to antimicrobial resistance, such
as hypoxia, interferon-gamma (INF-γ), IL-8, and macrophages [117–119].

Due to obligate intracellular parasitism, Chlamydial infections are generally diagnosed
by certain complex methods such as cell culture, antigen-based detection techniques, or
nucleic acid amplification tests (NAATs) [108]. However, there is no uniform methodology
for antimicrobial susceptibility testing for Chlamydiae. Different laboratories use various
cell lines, e.g., McCoy, HeLa (cervical cancer cells), and HEp-2, as well as BGMK and Vero
(monkey kidney) cell lines. Although the McCoy cell line is commonly used, a number of
these cells in many laboratories are mouse fibroblasts, not the original McCoy cells derived
from human synovial tissue [120]. Similarly, the HEp-2 cell line which originally derived
from laryngeal cancer cells was reported to be contaminated by HeLa cells [121]. It may be
worth mentioning that there are cell line-dependent differences in in vitro antimicrobial
susceptibility [122]. Nevertheless, the Chlamydial genes, which are linked with antimicrobial
resistance in vitro, have been summarized in Table 4 [123,124].
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Table 4. Chlamydial genes that may negatively influence the effectiveness of antibiotic treatment.

Antimicrobial Agents Chlamydia Species Mutated Genes

Macrolides (azithromycin, erythromycin)
C. trachomatis 23S rRNA, rplD, rplV

C. psittaci 23S rRNA

Tetracyclines (tetracycline, doxycycline, minocycline) C. trachomatis tetA, tetR, rpoB

Fluoroquinolone (ciprofloxacin, ofloxain, sparfloxacin)
C. trachomatis gyrA, parC, ygeD

C. pneumoniae gyrA

Rifamycins (rifampin) C. trachomatis, C. pneumoniae rpoB

Aminoglycosides (gentamicin, streptomycin, kasugamycin)
C. trachomatis ksgA

C. psittaci 16S rRNA, rpoB

Lincomycin C. trachomatis 23S rRNA

Fosfomycin C. trachomatis murA

Trimethoprim C. trachomatis folA

6. Potential Prevention Aspect: Bacteriophages

Evidence suggests that C. trachomatis may increase the risk of cervical and ovarian
cancers, in addition to causing other sexually transmitted diseases [125–127]. The situa-
tion has become more complicated due to the emergence of multidrug-resistant sexually
transmitted infections all over the world. Along with Neisseria gonorrhea, growing antibiotic
resistance problems have also been documented for other bacteria such as Haemophilus
ducreyi, Mycoplasma genitalium, Treponema pallidum, and C. trachomatis [128]. Interestingly,
both in vitro (using McCoy cells) and in vivo (in female BALB/c mice) studies showed
an inhibitory effect of capsid protein Vp1 of chlamydiaphage φCPG1 on C. trachomatis
serovar E strain [129]. Of note, φCPG1 is a lytic bacteriophage for Chlamydia caviae, which
primarily causes inclusion conjunctivitis in guinea pigs. Currently, there are six known
bacteriophages for different Chlamydia species, and they belong to the Microviridae family
(chlamydiaphages Chp1–4, φCPG1, and ϕCPAR39—under the subfamily Gokushovirinae,
and distantly related to E. coli bacteriophage ϕX174) [130]. These phages may have an
extended host range; for example, ϕCPAR39 can infect C. pneumoniae, C. caviae, C. abor-
tus (which causes miscarriages in ewes), and C. pecorum (which causes a wide variety of
diseases in various animals) [130,131]. In one study, C. pneumoniae was grown in HeLa
cells and infected with ϕCPAR39 [132]. The study recorded that ϕCPAR39 infection sup-
pressed various protein syntheses of C. pneumoniae. In the same way, bacterial cell lysis was
observed when C. abortus was cultured in BGMK cells and infected by chlamydiaphage
Chp2 [133]. In another study, HeLa cells were used to grow C. trachomatis, which was
subsequently infected with φCPG1 [134]. As expected, φCPG1 was able to inhibit the
growth of C. trachomatis in a dose-dependent manner. These findings are fascinating, and
perhaps the use of bacteriophages could be a potential method for future antimicrobial
therapeutic strategies.

Since the initial discoveries around the early 1900s by Ernest H. Hankin (1865–1939),
Frederick W. Twort (1877–1950), and Felix d’Herelle (1873–1949), scientists are now again
thinking seriously about the issues of bacteriophages and methods to utilize them, either
in combination with currently available antibiotics or alone, to manage the problem of
multidrug-resistant bacterial infections. The first field trials of phage therapy were con-
ducted in rural France against fowl typhoid, caused by Gram-negative Salmonella gallinarum,
in 1919, as prophylactic measures [135]. Subsequently, phage therapy became popular
during the 1930s, i.e., before the clinical use of penicillin among the masses. Although the
discovery of antibiotics and their accessibility for people halted the interest in bacteriophage
research and relevant therapeutic use, the study of bacteriophages and phage therapy was
started in the Soviet Union when Felix d’Herelle moved to Tbilisi in 1934 and worked with
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his friend George Eliava (1892–1937) [135]. In the 1930s and 1940s, many research papers
from the Soviet Union were dedicated to the topic of phage therapy in a wide variety of
bacterial infections [136]. However, these studies were generally not accepted appropriately
by the Western world. In recent times, particularly in the last decade, the situation has
changed rapidly, due to the speedy emergence of multidrug-resistant bacteria across the
globe, along with a decline in the process of new antibacterial discovery [137].

With regard to phage therapy, bacteriophages should have certain specific characteris-
tics [138]. For example, only lytic bacteriophages can be considered in treating bacterial
infections. Of note, in the case of a lytic (or virulent) group, new virions are released with
the lysis of bacterial cells, whereas in the lysogenic (or temperate) group, viral genetic
material is integrated with the host genome. On the other hand, unlike antibiotics, bacterio-
phages are able to kill only the specific bacteria that they recognize (i.e., without damaging
commensal/symbiotic microorganisms). Lastly, administration of bacteriophages is easy,
and only a few doses are needed, due to virus proliferation after the initial administration.
However, it is necessary to resolve some important issues, e.g., proper identification of
a useful bacteriophage for treatment, prevention of possible bacterial resistance against
bacteriophages or phage-mediated antibiotic resistance (i.e., for lysogenic phages), and
avoidance of an immune response against therapeutic bacteriophages [138,139]. Neverthe-
less, phage therapy could be an important component of ASPs in the near future.

Perhaps bacteriophages can efficiently kill bacteria in easily accessible zones, such as
the body surface. In a recent study in a mouse model, lytic phage Tequatrovirus YZ2 therapy
has been shown to significantly enhance the healing of E. coli-infected skin wounds [140].
The study also noticed that the phage’s action was helpful in creating a favorable environ-
ment of cytokines, such as a decrease in IL-1β and TNF-α and an increase in the level of
vascular endothelial growth factor. In an experiment during milk fermentation, coliphages
DT1 and DT6, either individually or in combination, effectively reduced Shiga toxigenic E.
coli without compromising lactic starter Streptococcus thermophilus [141]. On the other hand,
the bactericidal effects of phages inside the body systems are not satisfactory thus far, pos-
sibly due to shortcomings in delivery techniques. An oral coliphage clinical trial using a T4
phage cocktail in acute bacterial diarrhea did not demonstrate any positive results, although
there were no noticeable adverse effects [142]. The study included 11 T4-like phages, and
60% of the cases suffered from E. coli infections—the most common was enterotoxigenic E.
coli. Of note, the group of T4 and related phages is considered a potential candidate in the
treatment of infections with various E. coli strains [143]. Currently, seven enteric pathogenic
E. coli have been described: enteroinvasive E. coli, enteropathogenic E. coli, enterohemor-
rhagic E. coli, enterotoxigenic E. coli, enteroaggregative E. coli, diffusely adherent E. coli,
and adherent-invasive E. coli (AIEC) [144].

In the CEABAC10 transgenic mice whose intestine was colonized with the AIEC strain
LF82, oral administration of the cocktail of three bacteriophages (LF82_P2, LF82_P6, and
LF82_P8) significantly reduced the quantity of AIEC from the intestine [145]. Enterocytes
of this transgenic mouse express CEACAM6 glycoprotein, and LF82 can bind with it. In
another study, the investigators induced colitis with the AIEC strain LF82 in BALB/cYJ
mice [146]. The investigators collected AIEC strains from clinical samples, as well as non-E.
coli bacteria that are associated with a healthy microbiome. In this study, a cocktail of seven
phages (LF82_P2, LF82_P8, ECML-119, ECML-123-2, ECML-359, ECML-363, and CLB_P2)
was administered twice a day for 15 days, and the regimen prevented inflammation. It is
worth mentioning that AIEC is frequently associated with inflammatory bowel disease.

7. Conclusions

Primitive gut-derived structures are the sites for a number of important cancers, and a
few of them are thought to be connected with bacterial pathologies. For instance, among
the derivatives of the primitive foregut, Helicobacter pylori is often associated with gastric
pre-cancerous changes, and plays an etiological role in both adenocarcinomas and MALT
lymphomas. In addition, except for a supposed relationship between chronic C. pneumoniae
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infection and lung cancer, Salmonella typhi may promote the risk of gallbladder cancer. In
recent times, several lytic phages have been isolated against the abovementioned bacteria.
The suitable therapeutic use of these bacteriophages, which may include appropriate
genetic modifications, could be a promising strategy in preventive medicine/oncology. On
the other hand, the situation in inflammatory bowel disease or colon cancer development
is more intricate, due to the possible involvement of several bacterial species, e.g., C.
difficile, E. coli, Campylobacter spp., Chlamydia spp., B. fragilis, and Fusobacterium spp. In
this type of condition, perhaps the cocktail of various suitable bacteriophages could be
evaluated for efficacy. Furthermore, as per the concept of the gut–lung axis, this kind of
biological (nonantibiotic) therapeutic approach may confer the necessary requirements for
a healthy lung. Of note, the gut–lung axis concept proposes a significantly influential role of
intestinal microbiota communities and their alterations on pulmonary conditions, possibly
through different immune cells and relevant cytokines. For the same reason, there is a
need to develop prebiotics (such as inulin and pectin) and probiotics (such as Lactobacillus
and Bifidobacterium) appropriately, i.e., other biological methods for disease prevention.
Nevertheless, proper lifestyle changes such as healthy diets and avoiding tobacco use,
along with the reduction in harmful bacterial growth by a nonantibiotic strategy, might be
useful in lowering the incidences and management of a sizable number of cancers.
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