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Abstract: Background and Objectives: Immune checkpoint inhibitors such as PD-1 and TIM-
3 play an important role in regulating the host immune response and are proposed as
potential prognostic markers and therapeutic targets in severe cases of COVID-19. We
evaluated the expression of PD-1 and TIM-3 on T cells, as well as the concentration of
sPD-1 in plasma, to clarify the role of these molecules in patients infected with SARS-
CoV-2. Materials and Methods: In this retrospective observational study, we analysed the
expression of PD-1 and TIM-3 on CD4+ and CD8+ T cells upon admission and after 7 days
of hospitalisation in 770 adult patients. We also evaluated sPD-1 levels in the plasma of
145 patients at different stages of COVID-19 and of 11 control subjects. Molecules were
determined using conventional flow cytometry and ELISA and the data were statistically
processed. Results: We observed a significantly higher expression of PD-1 on CD4+ cells in
deceased patients than in those with mild-to-moderate disease. All patients with COVID-
19 exhibited a significantly higher expression of TIM-3 on both CD4+ and CD8+ T cells
compared to controls. After 1 week of hospitalisation, there was no significant change
in PD-1 or TIM-3 expression on CD4+ or CD8+ T cells across the studied groups. sPD-
1 concentrations were not significantly different between survivors and non-survivors.
Plasma sPD-1 levels did not correlate with PD-1 expression on T cells, but a significant
correlation was observed between CD4+ PD-1 and CD8+ PD-1. Using machine-learning
algorithms, we supported our observations and confirmed immunological variables capable
of predicting survival, with AUC = 0.786. Conclusions: Analysis of the immune response
may be useful for monitoring and predicting the course of COVID-19 upon admission.
However, it is essential to evaluate complex immune parameters in conjunction with other
key clinical and laboratory indicators.

Keywords: immune checkpoint inhibitors; immune predictors; COVID-19; machine-
learning algorithm
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1. Introduction
The infection caused by the novel coronavirus [coronavirus disease 2019 (COVID-19)]

became a global pandemic lasting more than 3 years and had an unprecedented impact on
the quality of daily life. The immune response in patients with a critical-to-fatal disease
course comprises three stages: a normal or hypofunctional immune response, excessive
activation, and a state of immune anergy and/or exhaustion [1]. As a result of excessive
activation and antigenic stimulation of T-cell receptors, exhaustion of T cells occurs due to
robust co-inhibitory molecular signalling or the limited presence of co-stimulatory receptors
such as CD28. Exhausted T cells express co-inhibitory receptors on their membranes,
such as programmed cell death receptor 1 (PD-1), T-cell immunoglobulin and mucin-
domain containing-3 (TIM-3), cytotoxic T lymphocyte protein 4 (CTLA-4), and lymphocyte
activation gene 3 (LAG-3). The expression of these receptors increases significantly during
the progression from asymptomatic to symptomatic stages and potentially from mild-
to-critical stages of infection [2]. A severe course of COVID-19 displays dysregulated
expression of checkpoint molecules, mainly PD-1 and its ligand PD-L1, as well as TIM-3,
suggesting these checkpoint molecules could serve as prognostic markers and therapeutic
targets in severe cases of COVID-19 [3].

Monitoring selected immune parameters could help in understanding the dynamics
of immune system activation and in identifying suitable prognostic markers with regard
to the clinical progression of the disease and unforeseen complications. However, despite
considerable effort, it remains unclear whether the observed changes in immune parameters
are a direct consequence of COVID-19 or predisposing factors in the development of the
disease and its critical course. Several questions regarding the regulation and dynamics of
the immune response remain unanswered and should be the subject of future research [4].

2. Materials and Methods
In this single-centre retrospective observational study, we analysed the expression of

immune checkpoint inhibitors PD-1 and TIM-3 on CD4+ and CD8+ T cells upon admission
and after 7 days of hospitalisation in 770 adult patients with COVID-19 at Martin University
Hospital between March 2020 and August 2021. We evaluated the level of soluble PD-1
in the plasma of 145 patients at different stages of COVID-19 infection (Groups A, B, C,
and D) and of 11 control subjects. For a comprehensive view of the immune system, we also
analysed the expression and absolute number of lymphocyte subsets (CD3+, CD4+, CD8+,
CD19+, and NK), the immunoregulatory index (IRI, calculated as the CD4+/CD8+ ratio),
and the absolute number of leucocytes and lymphocytes. Each parameter was analysed in
relation to disease course, healthy controls, and survivor status.

2.1. Study Participants (Basic Characteristics)

In total, 770 participants unaware of previous exposure to severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) met the inclusion criteria, namely, a laboratory-
confirmed SARS-CoV-2 infection by quantitative reverse transcription polymerase chain
reaction from a nasopharyngeal swab or antigen test along with typical symptoms. The
patients were divided into four groups according to severity of COVID-19 infection [5].
Group A (n = 100) comprised patients with a mild-to-moderate course of COVID-19
(without the need for oxygen supplementation). Group B (n = 378) comprised patients
with severe COVID-19 (bilateral pneumonia with hypoxemic respiratory failure). Group C
(n = 90) comprised patients with a critical course of COVID-19 (hospitalised in the intensive
care unit with invasive or non-invasive ventilation support). Deceased patients were
assigned to Group D (n = 201), median time to death from admission to the hospital in
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group D was 10 days with interquartile range (IQR 7, 15). Recruitment exclusion criteria
included participants who disagreed to take part in our biomedical research study.

The control cohort (Group K) comprised 30 blood donors from the National Blood
Transfusion Service in Martin (January 2022). Only healthy controls without previously con-
firmed COVID-19 and at least 2 weeks after vaccination were included. The characteristics
of the participants are shown in Tables 1 and 2.

Table 1. Characteristics of the patients included in the COVID-19 study.

Group Quantity Age (Years) Hospitalisation (Days) Female Male

K 25 5
Mean 43.8 0 83.3% 16.7%

SD 13.6 0
Median 44 0

A 51 49
Mean 64.2 8.6 51.0% 49.0%

SD 13.6 5.33
Median 67 7

B 168 210
Mean 64.2 10.7 44.4% 55.6%

SD 14.4 5.7
Median 65 9

C 30 60
Mean 61.4 21.7 33.3% 66.7%

SD 13.7 13.4
Median 63.5 18.1

D 86 115
Mean 75.8 12.3 42.8% 57.2%

SD 11.1 8.1
Median 76 10.1

Table 2. Clinical characteristics and therapeutic approaches of the patients included in the COVID-19 study.

A (n = 100) B (n = 378) C (n = 90) D (n = 201)

Chronic ischaemic heart disease 30 (30.0%) 156 (41.3%) 23 (25.6%) 139 (69.2%)
Hypertension 62 (62.0%) 265 (70.1%) 63 (70.0%) 174 (86.6%)
Obesity 17 (17.0%) 135 (35.7%) 42 (46.7%) 58 (28.8%)
Arrhythmia 12 (12.0%) 65 (17.2%) 6 (6.7%) 57 (28.3%)
Chronic obstructive pulmonary disease 8 (8.0%) 39 (10.3%) 8 (8.9%) 28 (13.9%)
Stroke history 6 (6.0%) 22 (5.8%) 9 (10.0%) 38 (18.9%)
Cancer 12 (12.0%) 16 (4.2%) 5 (5.6%) 25 (12.4%)
Immunodeficiency 1 (1.0%) 1 (0.26%) 5 (5.6%) 3 (1.5%)
Pregnancy 0 (0.0%) 2 (0.52%) 3 (3.3%) 0 (0.0%)
Systemic corticosteroids 42 (42.0%) 339 (89.7%) 86 (95.6%) 172 (85.6%)
Antivirals (remdesivir, favipiravir) 10 (10.0%) 141 (37.3%) 38 (42.2%) 68 (33.8%)

The study was approved by the local ethics committee (decision no. EK UNM 77/2020,
dated 15 June 2020; EK JLF UK 74/2021, dated 16 December 2021).

2.2. Multiparametric Flow Cytometry

Blood samples were collected in BD Vacutainer® tubes (Becton, Dickinson, and Com-
pany, Franklin Lakes, NJ, USA). For immunophenotyping, we used the fluorescently la-
belled monoclonal antibodies tetraCHROME 1 (CD45-FITC/CD56-RD1/CD19-ECD/CD3-
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PC5), tetraCHROME 2 (CD45-FITC/CD4-RD1/CD8-ECD/CD3-PC5), CD279-PC7 (PD-1),
and CD366-PE/Cy7 (TIM-3) (Beckman Coulter, Brea, CA, USA; SONY Biotechnology,
San Jose, CA, USA) at a volume of 5 µL, to which we added 50 µL of whole blood. Spe-
cific isotype controls were used as negative controls. After 30 min of incubation in the
dark at room temperature, the cell suspensions were lysed with 500 µL of lysis solution
and incubated for 10 min in the dark at room temperature. Analysis was performed using
CytExpert software version 2.0.2.18 and a DxFLEX flow cytometer (Beckman Coulter). Pe-
ripheral mononuclear cells were defined by forward scattering and side scattering. Using
manual gating, we defined the population of all haematopoietic cells expressing the CD45+

marker. Subsequently, we identified populations of T cells (CD45+CD3+), B lymphocytes
(CD45+CD19+), and NK cells (CD45+CD3−CD16+CD56+). Within the T cells, we determined
subpopulations of cytotoxic T cells (CD3+CD8+) and helper T cells (CD3+CD4+) (Figure 1).
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Figure 1. The hierarchical gating strategy used for immunophenotyping immune cells in patients
with COVID-19. The immune cells were labelled with a multi-coloured combination of monoclonal
antibodies analysed in a flow cytometer, and evaluated based on positivity for a given characteristic.
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Exhausted T cell populations were defined based on the following phenotypes:
CD3+CD4+CD279+ for helper T cells, CD3+CD8+CD279+ for cytotoxic T cells, and
CD3+CD4+CD366+ and CD3+CD8+CD366+ for TIM-3 expression (Figure 2).
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Figure 2. Immunophenotypic analysis of immune inhibitory receptors on T lymphocytes. The
population of cells that express CD4+ and CD8+ surface inhibitory receptors was visualized by
separate multicolour labelling for panels CD3+CD4+CD8+CD279+ and CD3+CD4+CD8+CD366+.

2.3. Enzyme-Linked Immunosorbent Assay (ELISA)

Soluble PD-1 in plasma was determined from frozen plasma samples (−80 ◦C) using
the Human PD-1 ELISA Kit (ab252360) (Abcam, Cambridge, UK) according to the manu-
facturer’s protocol. We evaluated the level of soluble PD-1 in the plasma of 145 patients at
different stages of COVID-19 infection (Groups A, B, C, and D) and of 11 control subjects.
A detailed description of the participants is provided in Table 3.

Table 3. Clinical characteristics of the patients (Groups A, B, C, and D) and controls (Group K)
included in the analysis of soluble PD-1.

Group Quantity N Age (Years) Female Male

K 11 4 (36.0%) 7 (63.0%)
Mean 41

SD 11.89
Median 38

A
Mean 36 63.61 18 (50.0%) 18 (50.0%)

SD 14.88
Median 63.5
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Table 3. Cont.

Group Quantity N Age (Years) Female Male

B
Mean 38 66.31 19 (50.0%) 19 (50.0%)

SD 14.61
Median 69.5

C 36
Mean 63.97 11 (30.6%) 25 (69.4%)

SD 12.42
Median 64

D 35
Mean 77.37 13 (37.1%) 22 (62.9%)

SD 10.81
Median 77

2.4. Data Analysis

Data were explored and analysed using R [R Core Team (2021); R: a language and
environment for statistical computing; R Foundation for Statistical Computing, Vienna,
Austria. URL: https://www.R-project.org/, ver. 4.0.5 (accessed on 31 March 2021)]. Contin-
uous variables were summarised as mean, standard deviation, and median. Associations
between variables were visualised using a pairs plot. The multivariate linear regression
model was used to model the association between an immunological variable and age,
gender, length of hospital stay and group. Box–Cox transformation was applied to trans-
form the response variable closer to normality. Based on the fitted multivariate regression
model, marginal means and post hoc tests were performed using the obtain estimated
marginal means (EMMs) library, and the estimates were back-transformed. The estimated
marginal means, together with their 95% confidence intervals, were visualised using a
marginal means plot. For immunological variables measured at two points in time (time 0
and time 1), difference (dif = time 0 − time 1) was computed and summarised by mean,
median, and standard deviation. The distribution of differences was explored using a
histogram, density plot, and boxplot, and overlaid with a swarm plot. Median regression
was used to model associations between the difference in immunological variables and
age, gender, length of hospital stay, and group (A, B, C, and D). Based on the fitted model,
marginal means were computed and post hoc pairwise comparisons were performed us-
ing the Benjamini–Hochberg adjustment of p values. An imbalanced random forest (RF)
machine-learning algorithm was trained to predict survivors (Groups A, B, and C) versus
non-survivors (Group D) using immunological variables as predictors. Predictors were
ranked by variable importance (VIMP) as well as graph depth. A receiver operating char-
acteristic (ROC) curve, based on out-of-bag data, was used to quantify predictive power.
Spearman’s correlation coefficient was used with logarithmic transformation applied to the
data. The correlation coefficient between the level of soluble PD-1 (sPD-1) and laboratory
parameters was calculated using Spearman’s rank correlation coefficient. Spearman’s rho
(ρ) and p values were calculated as well.

3. Results
3.1. Expression of PD-1 and TIM-3 in Patients with COVID-19 upon Hospital Admission

We observed a significantly higher expression of PD-1 on CD4+ cells upon hospital
admission in deceased patients (Group D) than in patients with mild-to-moderate disease
(Group A). There was no significant difference in PD-1 expression on CD8+ cells between
groups. All COVID-19 groups (A, B, C, and D) showed a significantly higher expression of

https://www.R-project.org/
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TIM-3 on both CD4+ and CD8+ T cells than the controls (Figure 3, Table 4). Immunological
parameters, including lymphocyte subsets (CD3+, CD4+, CD8+, CD19+, and NK), the IRI
(CD4+/CD8+), and the absolute number of leucocytes and lymphocytes, correlated with
severity of infection and were summarised by mean, standard deviation, and median in an
exploratory data analysis (Table S1).
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Figure 3. Marginal means plots showing the estimated marginal means (back-transformed) for the
percentage of inhibitory molecules PD-1 and TIM-3 upon hospital admission.

Table 4. The estimated marginal means of inhibitory molecules PD-1 and TIM-3 (%) in all analysed
COVID-19 groups and the control group upon hospital admission.

Group PD-1
CD4+

PD-1
CD8+

TIM-3
CD4+

TIM-3
CD8+

K 7.5 6.6 56.7 59.2
A 5.9 4.9 69.2 70.6
B 7.0 5.2 69.6 72.1
C 7.2 5.6 75.0 76.6
D 8.4 5.2 71.9 74.1

Post hoc pairwise comparisons revealed statistically significant differences in inhibitor
expression between Groups A and D for PD-1 on CD4+ cells and between the control group
and COVID-19 groups for TIM-3 (Table 5).

Similarly, comparisons between COVID-19 survivors (Groups A, B, and C) and non-
survivors (Group D) revealed a significantly lower expression of PD-1 on CD4+ T cells
(p = 0.007) in survivors. No significant difference was found in PD-1 expression on CD8+ T
cells between survivors and non-survivors. Although the differences in TIM-3 expression
on CD4+ and CD8+ T cells were not statistically significant, a mild trend toward higher
expression was observed in non-survivors. Immunological parameters (CD3+, CD4+,
CD8+, CD19+, and NK), the IRI (CD4+/CD8+), and the absolute number of leucocytes and
lymphocytes, summarised by mean, standard deviation, and median, between survivors
(Groups A, B, C) and non-survivors (Group D) upon admission to the hospital are listed in
the Supplementary Material (Table S2).
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Table 5. Significant post hoc pairwise comparisons between Groups K and D for PD-1 and TIM-3 on
CD4+ and CD8+ T cells (%), showing marginal mean differences (estimates) with lower and upper
95% confidence intervals (CI) and p values.

Variable Contrast Estimate p Value Lower CI Upper CI

PD-1 CD4+ A vs. D −2.441 0.003 −4.310 −0.571

TIM-3 CD4+ K vs. A −12.472 0.006 −22.393 −2.550
K vs. B −12.890 0.002 −22.391 −3.389
K vs. C −18.369 0.000 −29.278 −7.460
K vs. D −15.295 0.001 −25.572 −5.017
B vs. C −5.479 0.039 −10.788 −0.171

TIM-3 CD8+ K vs. A −11.151 0.022 −21.270 −1.032
K vs. B −12.710 0.003 −22.369 −3.051
K vs. C −17.250 0.000 −28.363 −6.137
K vs. D −14.681 0.001 −25.134 −4.227

We also determined the area under the curve (AUC) value for all immune parameters
(leucocytes/nL, lymphocytes/nL, CD3+ %, CD3+ cells/µL, CD19+ %, CD19+ cells/µL,
CD4+ %, CD4+ cells/µL, CD8+ %, CD8+ cells/µL, NK %, NK cells/µL, IRI, PD-1 CD4+ %,
PD-1 CD8+ %, TIM-3 CD4+ %, and TIM-3 CD8+ %). A 70% sensitivity and 70% specificity
for predicting COVID-19 mortality was captured, with an AUC value of 0.729 (Figure 4).

Medicina 2025, 61, x FOR PEER REVIEW 8 of 19 
 

 

 B vs. C −5.479 0.039 −10.788 −0.171 
TIM-3 CD8+ K vs. A −11.151 0.022 −21.270 −1.032 

 K vs. B −12.710 0.003 −22.369 −3.051 
 K vs. C −17.250 0.000 −28.363 −6.137 
 K vs. D −14.681 0.001 −25.134 −4.227 

Similarly, comparisons between COVID-19 survivors (Groups A, B, and C) and non-sur-
vivors (Group D) revealed a significantly lower expression of PD-1 on CD4+ T cells (p = 0.007) 
in survivors. No significant difference was found in PD-1 expression on CD8+ T cells between 
survivors and non-survivors. Although the differences in TIM-3 expression on CD4+ and CD8+ 
T cells were not statistically significant, a mild trend toward higher expression was observed 
in non-survivors. Immunological parameters (CD3+, CD4+, CD8+, CD19+, and NK), the IRI 
(CD4+/CD8+), and the absolute number of leucocytes and lymphocytes, summarised by mean, 
standard deviation, and median, between survivors (Groups A, B, C) and non-survivors 
(Group D) upon admission to the hospital are listed in the supplementary material (Table S2). 

We also determined the area under the curve (AUC) value for all immune parameters 
(leucocytes/nL, lymphocytes/nL, CD3+ %, CD3+ cells/µL, CD19+ %, CD19+ cells/µL, CD4+ %, 
CD4+ cells/µL, CD8+ %, CD8+ cells/µL, NK %, NK cells/µL, IRI, PD-1 CD4+ %, PD-1 CD8+ %, 
TIM-3 CD4+ %, and TIM-3 CD8+ %). A 70% sensitivity and 70% specificity for predicting 
COVID-19 mortality was captured, with an AUC value of 0.729 (Figure 4). 

 

Figure 4. ROC curve with AUC values of all immune parameters between survivors and non-survivors. 

3.2. Expression of PD-1 and TIM-3 in Patients with COVID-19 After 1 Week 

We also evaluated the changes in inhibitory molecules during the first week of hospital-
isation. After 1 week, there was no significant change in the expression of PD-1 or TIM-3 on 
CD4+ and CD8+ T cells across the studied groups. For the immunological variables measured 
at two points in time—upon hospital admission (time 0) and after 1 week of hospitalisation 
(time 1)—the difference (dif = time 0 − time 1) was calculated and summarised by mean, stand-
ard deviation, and median. Patient characteristics are also provided in Table S3. In general, we 
observed a significant increase in the counts of all basic lymphocyte subsets during the first 
week of hospitalisation, except in NK cells, which significantly decreased in non-survivors 
compared to survivors. 

Figure 4. ROC curve with AUC values of all immune parameters between survivors and non-survivors.

3.2. Expression of PD-1 and TIM-3 in Patients with COVID-19 After 1 Week

We also evaluated the changes in inhibitory molecules during the first week of hospi-
talisation. After 1 week, there was no significant change in the expression of PD-1 or TIM-3
on CD4+ and CD8+ T cells across the studied groups. For the immunological variables
measured at two points in time—upon hospital admission (time 0) and after 1 week of
hospitalisation (time 1)—the difference (dif = time 0 − time 1) was calculated and sum-
marised by mean, standard deviation, and median. Patient characteristics are also provided
in Table S3. In general, we observed a significant increase in the counts of all basic lympho-
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cyte subsets during the first week of hospitalisation, except in NK cells, which significantly
decreased in non-survivors compared to survivors.

The AUC value (AUC = 0.66), derived from the difference between time 0 and time 1,
for all immune parameters (leucocytes/nL, lymphocytes/nL, CD3+ %, CD3+ cells/µL,
CD19+ %, CD19+ cells/µL, CD4+ %, CD4+ cells/µL, CD8+ %, CD8+ cells/µL, NK %, NK
cells/µL, IRI, PD-1 CD4+ %, PD-1 CD8+ %, TIM-3 CD4+ %, and TIM-3 CD8+ %) did not
provide a reliable discriminating factor for stratifying survivors and non-survivors based
on the difference (Figure 5).
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3.3. Immune Parameters as Predictors of COVID-19 Outcome

An imbalanced RF machine-learning algorithm was trained on the study’s immuno-
logical data to predict survivors versus non-survivors using immunological variables as
predictors (Figure 4). Predictors were ranked based on VIMP, minimal graph depth, and
elastic net. In this analysis, in addition to examining absolute counts of parameters, we
also focused on percentages of individual subsets and absolute counts of leucocytes and
lymphocytes. These parameters, which are part of conventional flow cytometry, provide a
comprehensive view of a patient’s immune response. Variable importance was determined
in all examined variables to be positive, whereas the most important were the absolute
number of NK cells and the percentage of CD8+ and CD19+ T lymphocytes. Among the
confounders, the age composition of individuals turned out to be the most important
(Figure 6). Selected variables can be potentially helpful to distinguish between survivors
and non-survivors with a predictive ability of AUC = 0.786 (Figure 7).
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Figure 7. ROC curve with AUC values for immunological variables and confounders (age, gender,
and length of hospital stay) in order to predict survival status in COVID-19 infections.

3.4. Soluble PD-1 as a Predictor of COVID-19

While similar levels of sPD-1 were detected in the control group, Group A, and
Group C, lower concentrations were measured in Group B and non-survivors. Statistically
significant differences were observed between Groups A and B (p = 0.000), A and D
(p = 0.002), B and C (p = 0.000), and C and D (p = 0.006). When comparing survivors
(Groups A, B, C) with non-survivors (Group D), no statistically significant difference was
observed (Figure 8). The marginal means of the sPD-1 concentration in all analysed groups
are presented in Table 6. A detailed analysis of sPD-1 is provided in the Supplementary
Material (Table S4).
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Table 6. Estimated marginal means of soluble PD-1 concentration upon hospital admission for all
analysed COVID-19 groups.

Parameters K A B C D

sPD-1 [pg/mL] 567.6 610.1 317.4 613.1 490.2

We also examined the correlation between the concentration of sPD-1 and the expres-
sion of membrane-bound PD-1 on CD4+ and CD8+ T cells across all COVID-19 groups and
in comparison with the control group (Figure 9). A positive correlation was only found
between the expression of PD-1 on CD4+ and CD8+ T cells (p < 0.001).
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Figure 9. Spearman correlation between sPD-1, CD4+ PD-1, and CD8+ PD-1 for all analysed
COVID-19 groups combined and control subjects. A positive correlation was only observed be-
tween CD4+ PD-1 and CD8+ PD-1 (p < 0.001). *** p < 0.001.
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When analysed in detail, a positive correlation between CD4+ PD-1 and CD8+ PD-1
was found in all COVID-19 groups but not in the control group (Figure 10). Correlations
of sPD-1 with CD4+ PD-1 (p = 0.01) and sPD-1 with CD8+ PD-1 (p = 0.05) were only
observed in patients of Group A. Overall, these findings suggest that plasma PD-1 levels
do not correlate with PD-1 expression on T cells. However, there is a significant correlation
between CD4+ PD-1 and CD8+ PD-1 in the patients with COVID-19.
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Figure 10. Spearman correlation between sPD-1, CD4+ PD-1, and CD8+ PD-1, analysed separately for
all COVID-19 groups and control subjects. (A) In Group A a positive correlation is observed between
sPD-1 with CD4+ PD-1 (p = 0.01), sPD-1 with CD8+ PD-1 (p = 0.05) and CD4+ PD-1 with CD8+ PD-1
(p = 0.05). (B) In Group B a positive correlation is observed between CD4+ PD-1 and CD8+ PD-1
(p = 0.001). (C) In Group C a positive correlation is observed between CD4+ PD-1 and CD8+ PD-1
(p = 0.01). (D) In Group D a positive correlation is observed between CD4+ PD-1 and CD8+ PD-1
(p = 0.05). (K) In Group K no positive correlation is observed between sPD-1, CD4+ PD-1, and CD8+

PD-1. * p < 0.05; ** p < 0.01; *** p < 0.001.
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4. Discussion
The identification and logical interpretation of selected laboratory parameters is a

key step in the stratification of patients with various diseases. In addition to clinical
characteristics, a wide range of laboratory parameters—biochemical, haematological, and
immunological—are used to identify patients at a high risk for severe COVID-19 [4].

Worldwide studies have shown that SARS-CoV-2 strongly modulates the immune
response, leading to a potentially life-threatening systemic delivery of pro-inflammatory
cytokines [6,7]. One of the most frequently observed changes in the immune profile of
patients with COVID-19 is significant lymphocytopenia, a characteristic feature of severe
infection [8–11], and has been proposed as a predictive biomarker for the severity of
COVID-19 [12,13].

In line with published results, we observed a decreasing trend in all immune param-
eters, including the IRI, with increased disease severity. We also evaluated the temporal
evolution and differences in the estimated marginal means of immunological variables
after 1 week of hospitalisation in the COVID-19 groups, as well as between groups and be-
tween survivors and non-survivors. In general, the total number of all lymphocyte subsets
(CD3+, CD4+, CD8+, and CD19+) increased across all COVID-19 groups after 1 week of
hospitalisation. However, there was no difference in PD-1 and TIM-3 expression over time.
Both the decrease in absolute T cell count and the increased expression of immune check-
point inhibitors could potentially contribute to disease progression and adverse clinical
outcomes [11]. In our study, a significantly higher expression of PD-1 on CD4+ cells was
observed upon hospital admission in non-survivors than in survivors, but no significant
difference in PD-1 expression was found on CD8+ cells between these groups. Moreover,
no significant difference in PD-1 expression on CD4+ or CD8+ cells was observed when
comparing healthy controls with COVID-19 groups, which may have been influenced by
the small sample size of the control group. During the first week of hospitalisation, there
was no significant change in PD-1 expression. We observed a significantly higher expres-
sion of TIM-3 on CD4+ and CD8+ cells in all COVID-19 groups than in healthy controls;
however, only a non-significant trend toward a higher expression of TIM-3 on CD4+ and
CD8+ cells was observed in non-survivors compared to survivors. The expression of TIM-3
remained elevated during the first week of hospitalisation.

Similarly, in 2020, Wang et al. [14] described a significant increase in PD-1 expression
on CD4+ and CD8+ T cells in critically ill individuals, while only a non-significant increasing
trend was observed for TIM-3 expression, correlating with disease severity. Compared
to healthy controls, Diao et al. [11] reported increased PD-1 expression on both CD4+

and CD8+ T cells, as well as increased TIM-3 expression on CD4+ T cells. A significantly
higher proportion of PD-1 was detected in patients who succumbed to the disease than
in survivors [11]. Kuri-Cervantes et al. [15] suggested that an increased proportion of
PD-1-expressing CD4+ T cells is one of the most characteristic findings in patients with
severe COVID-19. Furthermore, upregulation of PD-1 on T cells was observed during the
progression of symptomatic stages of COVID-19 [11]. In 2022, Beserra et al. [16] reported no
difference in PD-1 expression on CD8+ T cells. However, one study suggested that CD8+ T
cells expressing PD-1 may not show dysfunction in the acute phase of the disease, indicating
that PD-1 expression in these cells is related to activation rather than the exhaustion model
of T lymphocytes in patients with COVID-19 [17].

Our preliminary study described a significantly increased expression of PD-1 on
CD4+ and CD8+ T cells in non-survivors compared to survivors. However, no significant
differences in TIM-3 expression were observed between patient groups, suggesting the
potential reversibility of immune paralysis in the most severe cases. During clinical recovery,
a significant decrease in TIM-3 expression on CD4+ and CD8+ T cells was observed [18].
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According to Martin-Quirós et al. [19], TIM-3 expression on T cells could serve as a
prognostic biomarker for patients at high risk for developing secondary bacterial infections
and eventual sepsis.

In addition to the membrane-bound checkpoint inhibitors, the concentration of their
soluble isoforms should also be considered. These isoforms—produced through membrane
cleavage or alternative mRNA splicing—play a role in the competitive regulation of their
membrane-bound counterparts [20].

PD-1/PD-L1 proteins are important immunoregulatory markers described in vari-
ous pathologies [21]. To date, only a few studies have investigated sPD-1 in infectious
diseases such as COVID-19 [16,22]. In 2022, Beserra et al. [16] analysed sPD-1 and sPD-L1
in the serum of patients with COVID-19 and found similar levels of sPD-1 across groups,
while sPD-L1 levels were elevated in patients with severe and critical symptoms relative
to healthy controls, suggesting a relationship between sPD-L1 and COVID-19 severity.
Moreover, no changes in sPD-1 or sPD-L1 levels were observed over time following a
SARS-CoV-2 diagnosis [16]. A Chinese study further investigated the relationship between
soluble checkpoint molecules and COVID-19 progression, reporting higher concentrations
of 11 molecules (sGITR, s4-1BB, sTIM-3, sCD27, sLAG-3, sPD-1, sCD28, sCTLA-4, sBTLA,
sHVEM, and sCD80) in critical patients than in moderate cases. The study also showed sim-
ilar dynamic patterns between soluble and membrane-bound counterparts in six patients
with critical COVID-19, and flow cytometry revealed higher PD-1 expression on CD4+ and
CD8+ T cells in patients with critical disease in compared to moderate state of disease.
However, its small sample size limited the conclusions that could be drawn about the asso-
ciation between soluble and cellular checkpoint molecules [22]. In 2020, Gibellini et al. [23]
reported increased concentrations of sPD-1 and sPD-L1 in COVID-19-positive patients
compared to controls, with higher levels correlating with disease severity [24]. Conversely,
a recent study suggests that higher serum sPD-L1 levels have a protective role in acute res-
piratory distress syndrome associated with COVID-19. Specifically, sPD-L1 administration
alleviated lung inflammation and improved survival in mice, indicating its potential as a
therapeutic agent in COVID-19-related acute respiratory distress syndrome [25]. However,
the link between PD-1 and poor prognosis in various diseases remains unproven [26]. In
our study, we observed similar sPD-1 levels in the control cohort, Group A, and Group C,
with lower levels in Groups B and D. When comparing survivors and non-survivors, sPD-1
concentrations were higher in survivors; these unclear results prevent us from considering
sPD-1 as a predictive biomarker for severe COVID-19. We hypothesise that sPD-1 may
reflect disease progression and immunopathophysiological mechanisms. sPD-1 levels were
lower in Group B, in which the disease did not progress, than in Group C, in which critical
events occurred, possibly independent of sPD-1. The concentration of sPD-1 detected in
Group D may indicate excessive immune hyperactivation and cytokine release leading
to death, while the low sPD-1 levels in Group B could predict the insufficient inhibition
of immune overactivation. To address this, it is essential to analyse sPD-L1; analysing
sPD-1 alone does not provide a comprehensive model of the sPD-1/PD-L1 axis, resulting
in unclear immune response interpretations.

In further analyses, we found a statistically significant correlation between the expres-
sion of CD4+ PD-1 and CD8+ PD-1 across all examined groups. Interestingly, a correlation
between sPD-1 and CD4+ or CD8+ PD-1 was observed only in patients with mild-to-
moderate disease (Group A). However, no significant correlation between the soluble and
membrane-bound forms of PD-1 was detected in the other COVID-19 groups. Based on
these results, the correlation between CD4+ and CD8+ PD-1 was not consistently observed
across all analysed groups. We hypothesise that the expression of membrane-bound PD-1
and soluble PD-1 may be driven by different underlying mechanisms.
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In our study, we used an imbalanced RF machine-learning algorithm to identify
suitable predictive markers of a severe course of COVID-19. Predictors were ranked
using VIMP, minimal graph depth, and the elastic net algorithm. However, none of these
three ML algorithms provided a clear and consistent ranking of predictors that could
reliably predict COVID-19 mortality. We determined the AUC values for all immune
parameters—leucocytes/nL, lymphocytes/nL, CD3+ %, CD3+ cells/µL, CD19+ %, CD19+

cells/µL, CD4+ %, CD4+ cells/µL, CD8+ %, CD8+ cells/µL, NK %, NK cells/µL, IRI, PD-1
CD4+ %, PD-1 CD8+ %, TIM-3 CD4+ %, and TIM-3 CD8+ %—and achieved approximately
70% sensitivity and 70% specificity with an AUC value of 0.729 for predicting COVID-19
mortality. Notably, AUC values of >0.80 are generally considered clinically useful, while
those <0.80 are of limited clinical value. In 2020, Yadaw et al. [27] evaluated four machine-
learning algorithms for predicting COVID-19 mortality, with the XGBoost model achieving
the highest performance (AUC = 0.91). A retrospective analysis of 2520 hospitalised
patients with COVID-19 showed that a neural network model outperformed the others,
achieving an AUC of 0.97 for predicting physiological deterioration and death [28]. In 2022,
Moulaei et al. [29] also predicted COVID-19 mortality using data acquisition techniques,
concluding that the RF model was the best for predicting mortality, with exceptional
performance across metrics, including ROC (1.00), precision (99.74%), specificity (99.84%),
and sensitivity (98.25%). One key obstacle in ML algorithms is the issue of imbalanced data,
where classes are unequally represented, which often lead to biased results favouring the
predominant class. This imbalance is evident in our dataset, where more outcomes were
assessed in survivors than in non-survivors, making ML models more likely to categorise
new observations in the majority class.

The limitations of this study include its retrospective clinical observational design,
unbalanced group size, absence of a non-hospitalised group of patients with COVID-19,
and a small control group compared to the COVID-19 group. Additionally, the variable
time between the onset of infection and hospital admission might have affected the results.
Many findings require further research, particularly in the case of inhibitory molecules, but
could hold promise for the targeted treatment of COVID-19.

5. Conclusions
The immune system is one of the primary regulatory systems in the human body

and plays a crucial role in ongoing SARS-CoV-2 infection. Analyses of the kinetics of
lymphocyte populations and subpopulations may serve as potential biomarkers for the
early detection of a severe disease course, which is associated with the development of
complications and organ damage. High expression of immune checkpoint molecules
(e.g., PD-1, TIM-3) has been observed in patients at high risk for a severe disease course.
These findings highlight the need for further study to precisely define the role of immune
checkpoint molecules in the immune response to SARS-CoV-2.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/medicina61020189/s1. Table S1. Exploratory data analysis of immune
parameters summarized by mean, standard deviation and median in all analysed COVID-19 groups
on admission to the hospital. Table S2. Characteristics of the groups and exploratory data analysis of
immune parameters and summarized by mean, standard deviation and median between survivors
(A, B, C) and non-survivors (D) on admission to the hospital. Table S3. Characteristics of the groups and
exploratory data of difference (time 0 − time 1) immune parameters summarized by mean, standard
deviation and median in all analysed COVID-19 groups after one week of hospitalization. Table S4.
Exploratory data analysis summarized by mean, standard deviation and median of sPD-1 (pg/mL) and
PD-1 expressed on CD4+ and CD8+ analysed in the same patients on admission.

https://www.mdpi.com/article/10.3390/medicina61020189/s1
https://www.mdpi.com/article/10.3390/medicina61020189/s1
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