Bioactive Phenylalanine Derivatives and Cytochalasins from the Soft Coral-Derived Fungus, Aspergillus elegans
Abstract
:1. Introduction
2. Results and Discussion
Position | 1H (J in Hz) | 13C | Position | 1H (J in Hz) | 13C |
---|---|---|---|---|---|
1 | - | 134.2, C | 8′ | 4.62, m | 50.4, CH |
2 | 7.23, m | 129.4, CH | 9′ | 4.52, dd (10.8, 4.2) | 65.4, CH2 |
3 | 7.38, m | 128.8, CH | 4.05, dd (10.8, 3.0) | ||
4 | 7.24, m | 127.2, CH | 10′ | 6.71, d (8.4) | - |
5 | 7.23, m | 128.8, CH | 1″ | - | 133.4, C |
6 | 7.38, m | 129.4, CH | 2″ | 7.65, m | 127.2, CH |
7 | 3.22, dd (14.4, 6.6) | 37.4, CH2 | 3″ | 7.30, m | 128.5, CH |
3.16, dd (14.4, 6.6) | 4″ | 7.50, m | 132.1, CH | ||
8 | 4.88, m | 55.2, CH | 5″ | 7.30, m | 128.5, CH |
9 | - | 172.1, C | 6″ | 7.65, m | 126.9, CH |
10 | 6.59, d (6.6) | - | 7″ | - | 167.5, C |
1′ | - | 137.3, C | 1′″ | - | 137.2, C |
2′ | 7.10, d (8.4) | 130.3, CH | 2′″ | 7.70, m | 127.1, CH |
3′ | 6.81, d (8.4) | 114.3, CH | 3′″ | 7.30, m | 128.5, CH |
4′ | - | 158.9, C | 4′″ | 7.42, m | 131.5, CH |
5′ | 6.82, d (8.4) | 114.3, CH | 5′″ | 7.30, m | 128.5, CH |
6′ | 7.12, d (8.4) | 130.3, CH | 6′″ | 7.70, m | 127.1, CH |
7′ | 3.00, dd (13.2, 6.6) | 36.7, CH2 | 7′″ | - | 166.7, C |
2.89, dd (13.2, 8.4) | 4′-OCH3 | 3.74, s | 54.6, CH3 |
Position | 3 | 4 | ||
---|---|---|---|---|
1H (J in Hz) | 13C | 1H (J in Hz) | 13C | |
1 | - | 172.0, C | - | 166.9, C |
2 | 5.93, br s | - | 6.30, br s | - |
3 | 3.00, m | 52.6, CH | 3.68, m | 53.6, CH |
4 | 2.49, dd (4.2, 3.6) | 52.6, CH | 3.04, br d (5.4) | 49.2, CH |
5 | 2.74, m | 35.1, CH | 2.22, m | 35.9, CH |
6 | - | 141.2, C | - | 57.2, C |
7 | 5.37, br s | 122.5, CH | 2.74, d (5.4) | 60.8, CH |
8 | 3.43, d (10.8) | 42.1, CH | 2.99, d (10.8, 5.4) | 47.0, CH |
9 | - | 86.8, C | - | 85.2, C |
10 | 1.96, m | 46.4, CH2 | 2.86, dd (12.6, 8.4) | 45.1, CH2 |
1.57, m | 2.77, dd (12.6, 6.6) | |||
11 | 1.21, d (6.6) | 14.3, CH3 | 0.93, d (6.6) | 12.7, CH3 |
12 | 1.78, br s | 20.3, CH3 | 1.17, br s | 19.5, CH3 |
13 | 6.00, d (10.8) | 125.6, CH | 6.03, dd (13.2, 10.8) | 124.2, CH |
14 | - | 136.2, C | 5.21, ddd (13.2, 10.8, 3.6) | 138.8, CH |
15 | 2.68, m | 37.2, CH2 | 2.11, m | 44.1, CH2 |
2.39, m | 2.08, m | |||
16 | 2.69, m | 35.5, CH2 | 1.27, m | 29.3, CH |
2.45, m | ||||
17 | - | 212.7, C | 1.76, dd (13.2, 1.8) | 53.8, CH2 |
1.68, dd (13.2, 5.4) | ||||
18 | 5.00, ddd (10.8, 3.6, 3.6) | 74.0, CH | - | 72.8, C |
19 | 2.10, m | 29.1, CH2 | 7.11, d (15.6) | 159.1, CH |
1.53, m | ||||
20 | 2.65, m | 31.4, CH2 | 5.69, d (15.6) | 119.1, CH |
2.44, m | ||||
21 | - | 171.8, C | - | 172.8, C |
22 | 1.19, m | 25.6, CH | 1.03, d (6.6) | 27.1, CH3 |
23 | 0.93, d (6.6) | 21.0, CH3 | 1.33, s | 22.0, CH3 |
24 | 0.90, d (6.6) | 23.9, CH3 | - | - |
25 | 1.80, br s | 15.9, CH3 | - | - |
1′ | - | - | - | 137.0, C |
2′/6′ | - | - | 7.15, br d (7.2) | 129.4, CH |
3′/5′ | - | - | 7.30, m | 129.0, CH |
4′ | - | - | 7.25, m | 127.1, CH |
18-OH | 3.56, d (3.6) |
Compound | MIC (μM) | |||
---|---|---|---|---|
S. epidermidis | S. aureus | E. coli | B. cereus | |
1 | 10 | >20 | >20 | >20 |
2 | 10 | >20 | >20 | >20 |
5 | 20 | 10 | >20 | >20 |
8 | 10 | 10 | 10 | 10 |
10 | 20 | >20 | >20 | >20 |
Ciprofloxacin a | 0.30 | 0.30 | 0.60 | 1.20 |
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Materials
3.3. Identification of Fungus
3.4. Extraction and Isolation
3.5. Synthesis of Compounds 14a and 14b
3.6. Absolute Configuration Determination of 1 by Marfey’s Method [22]
3.7. Biological Assays
4. Conclusions
Acknowledgements
References
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2012, 29, 144–222. [Google Scholar] [CrossRef]
- Li, D.; Xu, Y.; Shao, C.L.; Yang, R.Y.; Zheng, C.J.; Chen, Y.Y.; Fu, X.M.; Qian, P.Y.; She, Z.G.; de Voogd, N.J.; Wang, C.Y. Antibacterial bisabolane-type sesquiterpenoids from the sponge-derived fungus Aspergillus sp. Mar. Drugs 2012, 10, 234–241. [Google Scholar] [CrossRef]
- Ren, H.; Liu, R.; Chen, L.; Zhu, T.J.; Zhu, W.M.; Gu, Q.Q. Two new hetero-spirocyclic γ-lactam derivatives from marine sediment-derived fungus Aspergillus sydowi D 2–6. Arch. Pharmacal Res. 2010, 33, 499–502. [Google Scholar] [CrossRef]
- Kito, K.; Ookura, R.; Yoshida, S.; Namikoshi, M.; Ooi, T.; Kusumi, T. New cytotoxic 14-membered macrolides from marine-derived fungus Aspergillus ostianus. Org. Lett. 2008, 10, 225–228. [Google Scholar] [CrossRef]
- Du, L.; Zhu, T.J.; Fang, Y.C.; Liu, H.B.; Gu, Q.Q.; Zhu, W.M. Aspergiolide A, a novel anthraquinone derivative with naphtho [1,2,3-de] chromene-2,7-dione skeleton isolated from a marine-derived fungus Aspergillus glaucus. Tetrahedron 2008, 64. [Google Scholar] [CrossRef]
- Lin, Z.J.; Zhang, G.J.; Zhu, T.J.; Liu, R.; Wei, H.J.; Gu, Q.Q. Bioactive cytochalasins from Aspergillus flavipes, an endophytic fungus associated with the mangrove plant Acanthus ilicifolius. Helv. Chim. Acta 2009, 92, 1538–1544. [Google Scholar] [CrossRef]
- Wei, M.Y.; Wang, C.Y.; Liu, Q.A.; Shao, C.L.; She, Z.G.; Lin, Y.C. Five sesquiterpenoids from a marine-derived fungus Aspergillus sp. isolated from a gorgonian Dichotella gemmacea. Mar. Drugs 2010, 8, 941–949. [Google Scholar] [CrossRef]
- Shao, C.L.; Wang, C.Y.; Gu, Y.C.; Wei, M.Y.; Pan, J.H.; Deng, D.S.; She, Z.G.; Lin, Y.C. Penicinoline, a new pyrrolyl 4-quinolinone alkaloid with an unprecedented ring system from an endophytic fungus Penicillium sp. Bioorg. Med. Chem. Lett. 2010, 20, 3284–3286. [Google Scholar]
- Shao, C.L.; Wang, C.Y.; Wei, M.Y.; Gu, Y.C.; She, Z.G.; Qian, P.Y.; Lin, Y.C. Aspergilones A and B, two benzylazaphilones with an unprecedented carbon skeleton from the gorgonian-derived fungus Aspergillus sp. Bioorg. Med. Chem. Lett. 2011, 21, 690–693. [Google Scholar]
- Shao, C.L.; Wu, H.X.; Wang, C.Y.; Liu, Q.A.; Xu, Y.; Wei, M.Y.; Qian, P.Y.; Gu, Y.C.; Zheng, C.J.; She, Z.G.; Lin, Y.C. Potent antifouling resorcylic acid lactones from the gorgonian-derived fungus Cochliobolus lunatus. J. Nat. Prod. 2011, 74, 629–633. [Google Scholar] [CrossRef]
- Zheng, C.J.; Shao, C.L.; Guo, Z.Y.; Chen, J.F.; Deng, D.S.; Yang, K.L.; Chen, Y.Y.; Fu, X.M.; She, Z.G.; Lin, Y.C.; Wang, C.Y. Bioactive hydroanthraquinones and anthraquinone dimers from a soft coral-derived Alternaria sp. J. Nat. Prod. 2012, 75, 189–197. [Google Scholar] [CrossRef]
- Yang, K.L.; Wei, M.Y.; Shao, C.L.; Fu, X.M.; Guo, Z.Y.; Xu, R.F.; Zheng, C.J.; She, Z.G.; Lin, Y.C.; Wang, C.Y. Antibacterial anthraquinone derivatives from a sea anemone-derived fungus Nigrospora sp. J.Nat. Prod. 2012, 75, 935–941. [Google Scholar] [CrossRef]
- Catalan, C.A.; Heluani, C.S.; Kotowicz, C.; Gedris, T.E.; Herz, W. A linear sesterterpene, two squalene derivatives and two peptide derivatives from Croton hieronymi. Phytochemistry 2003, 64, 625–629. [Google Scholar] [CrossRef]
- Iapatra, S.K.; Pal, M.K.; Mallik, A.K.; Talapatra, B. Structure and synthesis of (−)-anabellamide. A new phenylalanine derived ester amide from Anaphalis subumbellata: Occurrence of 4′-hydroxydehydrokawain. J.Nat. Prod. 1983, 46, 1401–1403. [Google Scholar]
- Zhou, G.X.; Wijeratne, E.M.K.; Bigelow, D.; Pierson, L.S.I.; VanEtten, H.D.; Gunatilaka, A.A.L. Aspochalasins I, J, and K: Three new cytotoxic cytochalasans of Aspergillus flavipes from the rhizosphere of Ericameria laricifolia of the Sonoran desert. J. Nat. Prod. 2004, 67, 328–332. [Google Scholar] [CrossRef]
- Keller-Schierlein, W.; Kupfer, E. Metabolites of microorganisms. The aspochalasins A, B, C, and D. Helv. Chim. Acta 1979, 62, 1501–1524. [Google Scholar] [CrossRef]
- Gebhardt, K.; Schimana, J.; Hoeltzel, A.; Dettner, K.; Draeger, S.; Beil, W.; Rheinheimer, J.; Fiedler, H.P. Aspochalamins A–D and aspochalasin Z produced by the endosymbiotic fungus Aspergillus niveus LU 9575. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. 2004, 57, 707–714. [Google Scholar] [CrossRef]
- Tomikawa, T.; Shin-Ya, K.; Seto, H.; Okusa, N.; Kajiura, T.; Hayakawa, Y. Structure of aspochalasin H, a new member of the aspochalasin family. J. Antibiot. 2002, 55, 666–668. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Pei, Y.H.; Hua, H.M.; Feng, B.M. Aspergillin PZ, a novel isoindole-alkaloid from Aspergillus awamori. J. Antibiot. 2002, 55, 693–695. [Google Scholar] [CrossRef]
- Fujii, Y.; Tani, H.; Ichinoe, M.; Nakajima, H. Zygosporin D and two new cytochalasins produced by the fungus Metarrhizium anisopliae. J. Nat. Prod. 2000, 63, 132–135. [Google Scholar]
- Kimura, Y.; Nakajima, H.; Hamasaki, T. Structure of rosellichalasin, a new metabolite produced by Rosellinia necatrix. Agric. Biol. Chem. 1989, 53, 1699–1701. [Google Scholar] [CrossRef]
- Marfey, P. Determination of d-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg. Res. Commun 1984, 49, 591–596. [Google Scholar] [CrossRef]
- Ousmer, M.; Braun, N.A.; Bavoux, C.; Perrin, M.; Ciufolini, M.A. Total synthesis of tricyclic azaspirane derivatives of tyrosine: FR901483 and TAN1251C. J. Am. Chem. Soc. 2001, 123, 7534–7538. [Google Scholar] [CrossRef]
- Lin, Z.J.; Zhu, T.J.; Wei, H.J.; Zhang, G.J.; Wang, H.; Gu, Q.Q. Spicochalasin A and new aspochalasins from the marine-derived fungus Spicaria elegans. Eur. J. Org. Chem. 2009, 18, 3045–3051. [Google Scholar]
- Kusumi, T.; Fujita, Y.; Ohtani, I.; Kakisawa, H. Anomaly in the modified Mosher’s method: Absolute configurations of some marine cembranolides. Tetrahedron Lett. 1991, 32, 2923–2926. [Google Scholar] [CrossRef]
- Naruse, N.; Yamamoto, H.; Murata, S.; Sawada, Y.; Fukagawa, Y.; Oki, T. Aspochalasin E, a new antibiotic isolated from a fungus. J. Antibiot. 1993, 46, 679–681. [Google Scholar] [CrossRef]
- Wang, F.Z.; Wei, H.J.; Zhu, T.J.; Li, D.H.; Lin, Z.J.; Gu, Q.Q. Three new cytochalasins from the marine-derived fungus Spicaria elegans kla03 by supplementing the cultures with l- and d-tryptophan. Chem. Biodivers. 2011, 8, 887–894. [Google Scholar] [CrossRef]
- Buchanan, M.; Hashimoto, T.; Asakawa, Y. Five 10-phenyl-[11]-cytochalasans from a Daldinia fungal species. Phytochemistry 1995, 40, 135–140. [Google Scholar]
- Clark, A.M.; Hufford, C.D.; Robertson, L.W. Two metabolites from Aspergillus flavipes. Lloydia 1977, 40, 146–151. [Google Scholar]
- Nozawa, K.; Udagawa, S.; Nakajima, S.; Kawai, K. Studies on fungal products. Part 25. A dioxopiperazine derivative from Penicillium megasporum. Phytochemistry 1989, 28, 929–931. [Google Scholar] [CrossRef]
- Bird, B.A.; Campbell, I.M. Occurrence and biosynthesis of asperphenamate in solid cultures of Penicillium brevicompactum. Phytochemistry 1982, 21, 2405–2406. [Google Scholar] [CrossRef]
- McCorkindale, N.J.; Baxter, R.L.; Roy, T.P.; Shields, H.S.; Stewart, R.M.; Hutchinson, S.A. Synthesis and chemistry of N-benzoyl-O-[N′-benzoyl-l-Phenylalanyl]-l-Phenylalaninol, the major mycelial metabolite of Penicillium canadense. Tetrahedron 1978, 34, 2791–2795. [Google Scholar] [CrossRef]
- Poi, R.; Adityachoudhury, N. Occurrence of two rare amides in Medicago polymorpha. Indian J. Chem. Sec. A 1986, 25, 1245–1246. [Google Scholar]
- Jakupovic, J.; Chen, Z.L.; Bohlmann, F. Artanomaloide, a dimeric guaianolide and phenylalanine derivatives from Artemisia anomala. Phytochemistry 1987, 26, 2777–2779. [Google Scholar] [CrossRef]
- Binder, M.; Tamm, C. The cytochalasans: A new class of biologically active microbial metabolites. Angew. Chem. Int. Ed. Engl. 1973, 12, 370–380. [Google Scholar] [CrossRef]
- Schuemann, J.; Hertweck, C. Molecular basis of cytochalasan biosynthesis in fungi: Gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing. J. Am. Chem. Soc. 2007, 129, 9564–9565. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Tian, R.R.; Liu, S.C.; Chen, X.L.; Liu, X.Z.; Che, Y.S. Alachalasins A–G, new cytochalasins from the fungus Stachybotrys chartarum. Bioorg. Med. Chem. 2008, 16, 2627–2634. [Google Scholar]
- Thiyagarajan, V.; Harder, T.; Qiu, J.W.; Qian, P.Y. Energy content at metamorphosis and growth rate of the early juvenile barnacle Balanus amphitrite. Mar. Biol. (Berl.) 2003, 143, 543–554. [Google Scholar] [CrossRef]
- Li, Y.X.; Zhang, F.Y.; Xu, Y.; Matsumura, K.; Han, Z.; Liu, L.L.; Lin, W.H.; Jia, Y.X.; Qian, P.Y. Structural optimization and evaluation of butenolides as potent antifouling agents: modification of the side chain affects the biological activities of compounds. Biofouling 2012, 28, 857–864. [Google Scholar] [CrossRef]
- Pierce, C.G.; Uppuluri, P.; Teistan, A.R.; Wormley, F.L.J.; Mowat, E.; Ramage, G.; Lopez-Ribot, J.L. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat. Protoc. 2008, 3, 1494–1500. [Google Scholar] [CrossRef]
Supplementary Files
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zheng, C.-J.; Shao, C.-L.; Wu, L.-Y.; Chen, M.; Wang, K.-L.; Zhao, D.-L.; Sun, X.-P.; Chen, G.-Y.; Wang, C.-Y. Bioactive Phenylalanine Derivatives and Cytochalasins from the Soft Coral-Derived Fungus, Aspergillus elegans. Mar. Drugs 2013, 11, 2054-2068. https://doi.org/10.3390/md11062054
Zheng C-J, Shao C-L, Wu L-Y, Chen M, Wang K-L, Zhao D-L, Sun X-P, Chen G-Y, Wang C-Y. Bioactive Phenylalanine Derivatives and Cytochalasins from the Soft Coral-Derived Fungus, Aspergillus elegans. Marine Drugs. 2013; 11(6):2054-2068. https://doi.org/10.3390/md11062054
Chicago/Turabian StyleZheng, Cai-Juan, Chang-Lun Shao, Lu-Yong Wu, Min Chen, Kai-Ling Wang, Dong-Lin Zhao, Xue-Ping Sun, Guang-Ying Chen, and Chang-Yun Wang. 2013. "Bioactive Phenylalanine Derivatives and Cytochalasins from the Soft Coral-Derived Fungus, Aspergillus elegans" Marine Drugs 11, no. 6: 2054-2068. https://doi.org/10.3390/md11062054
APA StyleZheng, C. -J., Shao, C. -L., Wu, L. -Y., Chen, M., Wang, K. -L., Zhao, D. -L., Sun, X. -P., Chen, G. -Y., & Wang, C. -Y. (2013). Bioactive Phenylalanine Derivatives and Cytochalasins from the Soft Coral-Derived Fungus, Aspergillus elegans. Marine Drugs, 11(6), 2054-2068. https://doi.org/10.3390/md11062054