Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential
Abstract
:1. Introduction
2. Exopolysaccharides (EPS)
2.1. Physiological Roles and Structures of EPS
2.2. Bioactivities and Applications of EPS
2.3. Strategies for EPS Yield-Increase
3. Extracellular Proteins
3.1. Exoenzymes
3.1.1. Extracellular Carbonic Anhydrases (eCA)
3.1.2. Extracellular Proteases
3.1.3. Extracellular Phenoloxidases
3.2. Protease Inhibitors
3.3. Phycoerythrin-Like Proteins
4. Organic Acids
4.1. l-Ascorbic Acid (AA)
4.2. Lactic Acid (LA)
4.3. 5-Aminolevulinic Acid (ALA)
4.4. Glycolic Acid
5. Extracellular Lipids
5.1. Fatty Acids
5.2. Hydrocarbons
6. Extracellular Phytohormones
6.1. Abscisic Acid (ABA)
6.2. Indole-3-Acetic Acid (IAA)
6.3. Gibberellic Acid (GA)
7. Allelopathic Chemicals
7.1. Fatty Acids
7.2. Polyunsaturated Aldehydes
7.3. Alkaloids
7.4. Peptides
7.5. Methanol
8. Summary and Prospects
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
EM | Extracellular Metabolites |
DOS | Dissolved Organic Substance |
EOR | Enhanced Oil Recovery |
EPS | Exopolysaccharides |
eCA | Extracellullar Carbonican Hydrase |
CA | Carbonican Hydrase |
VSV | Vesicular Stomatitis Virus |
ASFV | African Swine Fever Virus |
VACV | Vaccinia Virus |
References
- Perez-Garcia, O.; Escalante, F.M.; de-Bashan, L.E.; Bashan, Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 2011, 45, 11–36. [Google Scholar] [CrossRef] [PubMed]
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. App. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Pignolet, O.; Jubeau, S.; Vaca-Garcia, C.; Michaud, P. Highly valuable microalgae: Biochemical and topological aspects. J. Ind. Microbiol. Biotechnol. 2013, 40, 781–796. [Google Scholar] [CrossRef] [PubMed]
- Borowitzka, M.A. High-value products from microalgae—Their development and commercialisation. J. Appl. Phycol. 2013, 25, 743–756. [Google Scholar] [CrossRef]
- Kang, H.K.; Salim, H.M.; Akter, N.; Kim, D.W.; Kim, J.H.; Bang, H.T.; Kim, M.J.; Na, J.C.; Hwangbo, J.; Choi, H.C.; et al. Effect of various forms of dietary Chlorella supplementation on growth performance, immune characteristics, and intestinal microflora population of broiler chickens. J. Appl. Poultry Res. 2013, 22, 100–108. [Google Scholar] [CrossRef]
- Choi, W.Y.; Kang, D.H.; Lee, H.Y. Enhancement of immune activation activities of Spirulina maxima grown in deep-sea water. Int. J. Mol. Sci. 2013, 14, 12205–12221. [Google Scholar] [CrossRef] [PubMed]
- Raja, R.; Hemaiswarya, S.; Rengasamy, R. Exploitation of Dunaliella for β-carotene production. Appl. Microbiol. Biotechnol. 2007, 74, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Guerin, M.; Huntley, M.E.; Olaizola, M. Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol. 2003, 21, 210–216. [Google Scholar] [CrossRef]
- Jaspars, M.; De Pascale, D.; Andersen, J.H.; Reyes, F.; Crawford, A.D.; Ianora, A. The marine biodiscovery pipeline and ocean medicines of tomorrow. J. Mar. Biol. Assoc. UK 2016, 96, 151–158. [Google Scholar] [CrossRef]
- Romano, G.; Costantini, M.; Sansone, C.; Lauritano, C.; Ruocco, N.; Ianora, A. Marine microorganisms as a promising and sustainable source of bioactive molecules. Mar. Environ. Res. 2016, in press. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2016, 33, 382–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauritano, C.; Andersen, J.; Hansen, E.; Albrigtsen, M.; Escalera, L.; Esposito, F.; Helland, K.; Hanssen, K.; Romano, G.; Lanora, A. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front. Mar. Sci. 2016, 3, 68. [Google Scholar] [CrossRef]
- Chen, X.; He, G.; Deng, Z.; Wang, N.; Jiang, W.; Chen, S. Screening of microalgae for biodiesel feedstock. Adv. Microbiol. 2014, 4, 365–376. [Google Scholar] [CrossRef]
- Marchetti, J.; Bougaran, G.; Le Dean, L.; Mégrier, C.; Lukomska, E.; Kaas, R.; Olivo, E.; Baron, R.; Robert, R.; Cadoret, J.P. Optimizing conditions for the continuous culture of Isochrysis affinis galbana relevant to commercial hatcheries. Aquaculture 2012, 326–329, 106–115. [Google Scholar] [CrossRef]
- Krienitz, L.; Wirth, M. The high content of polyunsaturated fatty acids in Nannochloropsis limnetica (Eustigmatophyceae) and its implication for food web interactions, freshwater aquaculture and biotechnology. Limnologica 2006, 36, 204–210. [Google Scholar] [CrossRef]
- Raposo, M.F.; de Morais, R.M.; de Morais, A.M.B. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar. Drugs 2013, 11, 233–252. [Google Scholar] [CrossRef] [PubMed]
- Berry, J.P.; Gantar, M.; Perez, M.H.; Berry, G.; Noriega, F.G. Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Mar. Drugs 2008, 6, 117–146. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, A.S.; van Beilen, J.B.; Möller, R.; Clayton, D. Micro- and Macro-Algae: Utility for Industrial Applications; Bowles, D., Ed.; CPL Press: Newbury, UK, 2007. [Google Scholar]
- Tohmola, N.; Ahtinen, J.; Pitkänen, J.-P.; Parviainen, V.; Joenväärä, S.; Hautamäki, M.; Lindroos, P.; Mäkinen, J.; Renkonen, R. On-line high performance liquid chromatography measurements of extracellular metabolites in an aerobic batch yeast (Saccharomyces cerevisiae) culture. Biotechnol. Bioprocess Eng. 2011, 16, 264–272. [Google Scholar] [CrossRef]
- Nalewajko, C.; Lee, K.; Fay, P. Significance of algal extracellular products to bacteria in lakes and in cultures. Microb. Ecol. 1980, 6, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Vidoudez, C.; Casotti, R.; Bastianini, M.; Pohnert, G. Quantification of dissolved and particulate polyunsaturated aldehydes in the Adriatic Sea. Mar. Drugs 2011, 9, 500–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gantar, M.; Berry, J.P.; Thomas, S.; Wang, M.; Perez, R.; Rein, K.S. Allelopathic activity among cyanobacteria and microalgae isolated from Florida freshwater habitats. FEMS Microbiol. Ecol. 2008, 64, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Li, Y.; Lan, C.Q. Production and rheological studies of microalgal extracellular biopolymer from lactose using the green alga Neochloris oleoabundans. J. Polym. Environ. 2011, 19, 935–942. [Google Scholar] [CrossRef]
- De Philippis, R.; Colica, G.; Micheletti, E. Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: Molecular basis and practical applicability of the biosorption process. App. Microbiol. Biotechnol. 2011, 92, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Delbarre-Ladrat, C.; Sinquin, C.; Lebellenger, L.; Zykwinska, A.; Colliec-Jouault, S. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules. Front. Chem. 2014, 2, 85. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Zheng, Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol. Adv. 2016. [Google Scholar] [CrossRef] [PubMed]
- Ruas-Madiedo, P.; Hugenholtz, J.; Zoon, P. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J. 2002, 12, 163–171. [Google Scholar] [CrossRef]
- Trabelsi, L.; Chaieb, O.; Mnari, A.; Abid-Essafi, S.; Aleya, L. Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiella sp. BMC Complement. Altern. Med. 2016, 16, 210. [Google Scholar] [CrossRef] [PubMed]
- Prajapat, J.; Patel, A. Food and health applications of exopolysaccharides produced by lactic acid bacteria. Adv. Dairy Res. 2013, 1, 107. [Google Scholar] [CrossRef]
- Dertli, E.; Mayer, M.J.; Narbad, A. Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785. BMC Microbiol. 2015, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Ghafoor, A.; Hay, I.D.; Rehm, B.H. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl. Environ. Microbiol. 2011, 77, 5238–5246. [Google Scholar] [CrossRef] [PubMed]
- Feldmane, J.; Semjonovs, P.; Ciprovica, I. Potential of exopolysaccharides in yoghurt production. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2013, 7, 456–459. [Google Scholar]
- Nguyen, D.T.A.; Nguyen, T.H.K. Detection on antioxidant and cytotoxicity activities of exopolysaccharides isolated in plant-originated Lactococcus lactis. Biomed. Pharmacol. J. 2014, 7, 33–38. [Google Scholar] [CrossRef]
- Mahendran, S.; Saravanan, S.; Vijayabaskar, P.; Anandapandian, K.T.K.; Shankar, T. Antibacterial potential of microbial exopolysaccharide from Ganoderma lucidum and Lysinibacillus fusiformis. Int. J. Recent Sci. Res. 2013, 4, 501–505. [Google Scholar]
- Bafanaa, A. Characterization and optimization of production of exopolysaccharide from Chlamydomonas reinhardtii. Carbohydr. Polym. 2013, 95, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Angelina; Vijayendr, S.V.N. Microbial Factory; Springer India: New Delhi, India, 2015; Volume 2, p. 113. [Google Scholar]
- Huang, J.; Chen, B.; You, W. Studies on separation of extracellular polysaccharide from Porphyridium cruentum and its anti-HBV activity in vitro. Chin. J. Mar. Drugs 2005, 24, 18–21. (In Chinese) [Google Scholar]
- Sun, L.; Wang, L.; Zhou, Y. Immunomodulation and antitumor activities of different molecular weight polysaccharides from Porphyridium cruentum. Carbohydr. Polym. 2012, 87, 1206–1210. [Google Scholar] [CrossRef]
- Dvir, I.; Chayoth, R.; Sod-Moriah, U.; Shany, S.; Nyska, A.; Stark, A.H.; Madar, Z.; Arad, S.M. Soluble polysaccharide of red microalga Porphyridium sp. Alters intestinal morphology and reduces serum cholesterol in rats. Br. J. Nutr. 2000, 84, 469–476. [Google Scholar] [PubMed]
- Dvir, I.; Stark, A.H.; Chayoth, R.; Madar, Z.; Arad, S.M. Hypocholesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp. in rats. Nutrients 2009, 1, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; You, W.; Huang, J.; Yu, Y.; Chen, W. Isolation and antioxidant property of the extracellular polysaccharide from Rhodella reticulata. World J. Microbiol. Biotechnol. 2010, 26, 833–840. [Google Scholar] [CrossRef]
- Freire-Nordi, C.S.; Vieira, A.A.H.; Nascimento, O.R. The metal binding capacity of Anabaena spiroides extracellular polysaccharide: An EPR study. Proc. Biochem. 2005, 40, 2215–2224. [Google Scholar] [CrossRef]
- Mona, S.; Kaushik, A. Chromium and cobalt sequestration using exopolysaccharides produced by freshwater cyanobacterium Nostoc linckia. Ecol. Eng. 2015, 82, 121–125. [Google Scholar] [CrossRef]
- Rafika, C.; Lamia, T.; Rym, B.D.; Omeya, E.A.; Ali, Y.; Khamissa, G.; Jihen, B.A.; Hela, O.; Ouada, H.B. Evaluation of cytotoxicity and biological activities in extracellular polysaccharides released by cyanobacterium Arthrospira platensis. Braz. Arch. Biol. Technol. 2011, 54, 831–838. [Google Scholar]
- Han, P.P.; Sun, Y.; Wu, X.Y.; Yuan, Y.J.; Dai, Y.J.; Jia, S.R. Emulsifying, flocculating, and physicochemical properties of exopolysaccharide produced by cyanobacterium Nostoc flagelliforme. Appl. Biochem. Biotechnol. 2014, 172, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, D.; Christiaen, D.; Arad, S.M. Chelating properties of extracellular polysaccharides from Chlorella spp. Appl. Environ. Microbiol. 1987, 53, 2953–2956. [Google Scholar] [PubMed]
- Yim, J.H.; Kim, S.J.; Ahn, S.H.; Lee, C.K.; Rhie, K.T.; Lee, H.K. Antiviral effects of sulfated exopolysaccharide from the marine microalga Gyrodinium impudicum strain KG03. Mar. Biotechnol. 2004, 6, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Angelis, S.; Novak, A.C.; Sydney, E.B.; Soccol, V.T.; Carvalho, J.C.; Pandey, A.; Noseda, M.D.; Tholozan, J.L.; Lorquin, J.; Soccol, C.R. Co-culture of microalgae, cyanobacteria, and macromycetes for exopolysaccharides production: Process preliminary optimization and partial characterization. Appl. Biochem. Biotechnol. 2012, 167, 1092–1106. [Google Scholar] [CrossRef] [PubMed]
- El-Sheekh, M.M.; Khairy, H.M.; El-Shenody, R. Algal production of extra and intra-cellular polysaccharides as an adaptive response to the toxin crude extract of Microcystis aeruginosa. Iran. J. Environm. Health Sci. Eng. 2012, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Deng, X.; Xian, Q.; Qian, X.; Li, A. Allelopathic effect of Microcystis aeruginosa on Microcystis wesenbergii: Microcystin-LR as a potential allelochemical. Hydrobiologia 2014, 727, 65–73. [Google Scholar] [CrossRef]
- Zhang, M.; Kong, F.; Xing, P.; Tan, X. Effects of interspecific interactions between Microcystis aeruginosa and Chlorella pyrenoidosa on their growth and physiology. Int. Rev. Hydrobiol. 2007, 92, 281–290. [Google Scholar] [CrossRef]
- Marcati, A.; Ursu, A.V.; Laroche, C.; Soanen, N.; Marchal, L.; Jubeau, S.; Djelveh, G.; Michaud, P. Extraction and fractionation of polysaccharides and β-phycoerythrin from the microalga Porphyridium cruentum by membrane technology. Algal Res. 2014, 5, 258–263. [Google Scholar] [CrossRef]
- Gloaguen, V.; Ruiz, G.; Morvan, H.; Mouradi-Givernaud, A.; Maes, E.; Krausz, P.; Strecker, G. The extracellular polysaccharide of Porphyridium sp.: An NMR study of lithium-resistant oligosaccharidic fragments. Carbohydr. Res. 2004, 339, 97–103. [Google Scholar] [CrossRef] [PubMed]
- De Philippis, R.; Sili, C.; Paperi, R.; Vincenzini, M. Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review. J. Appl. Phycol. 2001, 13, 293–299. [Google Scholar] [CrossRef]
- Trabelsi, L.; M’sakni, N.H.; Ben Ouada, H.; Bacha, H.; Roudesli, S. Partial characterization of extracellular polysaccharides produced by cyanobacterium Arthrospira platensis. Biotechnol. Bioprocess Eng. 2009, 14, 27–31. [Google Scholar] [CrossRef]
- Chen, X.J.; Wu, M.J.; Jiang, Y.; Yang, Y.; Yan, Y.B. Dunaliella salina Hsp90 is halotolerant. Int. J. Biol. Macromol. 2015, 75, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Jha, B. Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresour. Technol. 2009, 100, 3382–3386. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Kavita, K.; Jha, B. Characterization of extracellular polymeric substances produced by micro-algae Dunaliella salina. Carbohydr. Polym. 2011, 83, 852–857. [Google Scholar] [CrossRef]
- Maksimova, I.V.; Bratkovskaya, L.B.; Plekhanov, S.E. Extracellular carbohydrates and polysaccharides of the alga Chlorella pyrenoidosa chick S-39. Biol. Bull. 2004, 31, 175–181. [Google Scholar] [CrossRef]
- Raposo, M.F.; de Morais, A.M.; de Morais, R.M. Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci. 2014, 101, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Gasljevic, K.; Hall, K.; Chapman, D.; Matthys, E.F. Drag-reducing polysaccharides from marine microalgae: Species productivity and drag reduction effectiveness. J. Appl. Phycol. 2007, 20, 299–310. [Google Scholar] [CrossRef]
- Ray, B.; Bandyopadhyay, S.S.; Capek, P.; Kopecky, J.; Hindak, F.; Lukavsky, J. Extracellular glycoconjugates produced by cyanobacterium Wollea saccata. Int. J. Biol. Macromol. 2011, 48, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, P.F.; Melao, M.G.; Lombardi, A.T.; Nogueira, M.M.; Vieira, A.A. The effects of Anabaena spiroides exopolysaccharides on copper accumulation in an aquatic food chain. Aquat. Toxicol. 2009, 93, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Díaz Bayona, K.C.; Garcés, L.A. Effect of different media on exopolysaccharide and biomass production by the green microalga Botryococcus braunii. J. App. Phycol. 2014, 26, 2087–2095. [Google Scholar] [CrossRef]
- Kuhlisch, C.; Pohnert, G. Metabolomics in chemical ecology. Nat. Prod. Rep. 2015, 32, 937–955. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Sun, Z.; Ma, X.; Yang, B.; Jiang, Y.; Wei, D.; Chen, F. Mutation breeding of extracellular polysaccharide-producing microalga Crypthecodinium cohnii by a novel mutagenesis with atmospheric and room temperature plasma. Int. J. Mol. Sci. 2015, 16, 8201–8212. [Google Scholar] [CrossRef] [PubMed]
- Rier, S.T.; Nawrocki, K.S.; Whitley, J.C. Response of biofilm extracellular enzymes along a stream nutrient enrichment gradient in an agricultural region of north central Pennsylvania, USA. Hydrobiologia 2011, 669, 119–131. [Google Scholar] [CrossRef]
- Romani, A.M.; Sabater, S. Influence of algal biomass on extracellular enzyme activity in river biofilms. Microb. Ecol. 2000, 40, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Strojsova, A.; Dyhrman, S.T. Cell-specific β-N-acetylglucosaminidase activity in cultures and field populations of eukaryotic marine phytoplankton. FEMS Microbiol. Ecol. 2008, 64, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Francoeur, S.N.; Schaecher, M.; Neely, R.K.; Kuehn, K.A. Periphytic photosynthetic stimulation of extracellular enzyme activity in aquatic microbial communities associated with decaying typha litter. Microb. Ecol. 2006, 52, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Hopkinson, B.M. Size scaling of extracellular carbonic anhydrase activity in centric marine diatoms. J. Phycol. 2015, 51, 255–263. [Google Scholar]
- Elzenga, J.T.M.; Prins, H.B.A. The role of extracellular carbonic anhydrase activity in inorganic carbon utilization of Phaeocystis globosa (Prymnesiophyceae): A comparison with other marine algae using the isotopic disequilibrium technique. Limnol. Oceanogr. 2000, 45, 372–380. [Google Scholar] [CrossRef]
- Hopkinson, B.M.; Meile, C.; Shen, C. Quantification of extracellular carbonic anhydrase activity in two marine diatoms and investigation of its role. Plant Physiol. 2013, 162, 1142–1152. [Google Scholar] [CrossRef] [PubMed]
- Dudoladova, M.V.; Kupriyanova, E.V.; Markelova, A.G.; Sinetova, M.P.; Allakhverdiev, S.I.; Pronina, N.A. The thylakoid carbonic anhydrase associated with photosystem ii is the component of inorganic carbon accumulating system in cells of halo- and alkaliphilic cyanobacterium Rhabdoderma lineare. Biochim. Biophys. Acta 2007, 1767, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.R.; Kun, S.G. Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae. J. Integr. Plant Biol. 2005, 47, 668–675. [Google Scholar] [CrossRef]
- Liu, W.; Ming, Y.; Li, P.; Huang, Z. Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation. Plant Physiol. Biochem. 2012, 54, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Kellam, S.J.; Walker, J.M. An extracellular protease from the alga Chlorella sphaerkii. Biochem. Soc. Trans. 1987, 15, 520–521. [Google Scholar] [CrossRef]
- Paul, C.; Pohnert, G. Induction of protease release of the resistant diatom Chaetoceros didymus in response to lytic enzymes from an algicidal bacterium. PLoS ONE 2013, 8, e57577. [Google Scholar] [CrossRef] [PubMed]
- Lendeckel, U.; Hooper, N.M. Viral Proteases and Antiviral Protease Inhibitor Therapy; Lendeckel, U., Hooper, N.M., Eds.; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Jaromir, M.; Wirgiliusz, D. Phenols transformation in the environment and living organisms. Curr. Top. Biophys. 2007, 30, 24–36. [Google Scholar]
- Zhang, J.; Liu, X.; Xu, Z.; Chen, H.; Yang, Y. Degradation of chlorophenols catalyzed by laccase. Int. Biodeterior. Biodegrad. 2008, 61, 351–356. [Google Scholar] [CrossRef]
- La Russa, M.; De Biasi, M.G.; Chiaiese, P.; Palomba, F.; Pollio, A.; Pinto, G.; Filippone, E. Screening of green microalgae species for extracellular phenoloxidase activity useful for wastewater phycoremediation. In Proceedings of the European Bioremediation Conference, Chania, Crete, Greece, September 2008; Volume 74.
- Lima, S.A.C.; Castro, P.M.L.; Morais, R. Biodegradation of p-nitrophenol by microalgae. J. Appl. Phycol. 2003, 15, 137–142. [Google Scholar] [CrossRef]
- Otto, B.; Schlosser, D. First laccase in green algae: Purification and characterization of an extracellular phenol oxidase from Tetracystis aeria. Planta 2014, 240, 1225–1236. [Google Scholar] [CrossRef] [PubMed]
- Zahra, A.; Hamid, F.; Shahla, R.; Amir, H.M.; Mohammad, A.F. Removal of phenol and bisphenol—A catalyzed by laccase in aqueous solution. J. Environ. Health Sci. Eng. 2014, 12, 12. [Google Scholar]
- Ishihara, M.; Shiroma, T.; Taira, T.; Tawata, S. Purification and characterization of extracellular cysteine protease inhibitor, ECPI-2, from Chlorella sp. J. Biosci. Bioeng. 2006, 101, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kate, B.N.; Banerjee, U.C. Bioactive compounds from cyanobacteria and microalgae: An overview. Crit. Rev. Biotechnol. 2005, 25, 73–95. [Google Scholar] [CrossRef] [PubMed]
- Karseno; Harada, K.; Bamba, T.; Dwi, S.; Mahakhant, A.; Yoshikawa, T.; Hirata, K. Extracellular phycoerythrin-like protein released by freshwater cyanobacteria Oscillatoria and Scytonema sp. Biotechnol. Lett. 2009, 31, 999–1003. [Google Scholar] [CrossRef] [PubMed]
- Hancock, R.D.; Viola, R. The use of micro-organisms for l-ascorbic acid production: Current status and future perspectives. Appl. Microbiol. Biotechnol. 2001, 56, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Bremus, C.; Herrmann, U.; Bringer-Meyer, S.; Sahm, H. The use of microorganisms in l-ascorbic acid production. J. Biotechnol. 2006, 124, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Running, J.A.; Severson, D.K.; Schneider, K.J. Extracellular production of l-ascorbic acid by Chlorella protothecoides, prototheca species, and mutants of P. moriformis during aerobic culturing at low PH. J. Ind. Microbiol. Biotechnol. 2002, 29, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhao, D.; Zhu, L.; Jiang, J. Simultaneous saccharification and fermentation of furfural residues by mixed cultures of lactic acid bacteria and yeast to produce lactic acid and ethanol. Eur. Food Res. Technol. 2011, 233, 489–495. [Google Scholar] [CrossRef]
- Berezina, N.; Martelli, S.M. Bio-based polymers and materials. RSC Green Chem. 2014, 27, 1–28. [Google Scholar]
- Talukder, M.M.R.; Das, P.; Wu, J.C. Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid. Biochem. Eng. J. 2012, 68, 109–113. [Google Scholar] [CrossRef]
- Kambourova, R.; Petkov, G.; Bankova, V. Extracellular polar organic substances in cultures of the green alga Scenedesmus. Algol. Stud. 2006, 119, 155–162. [Google Scholar] [CrossRef]
- Angermayr, S.A.; Paszota, M.; Hellingwerf, K.J. Engineering a cyanobacterial cell factory for production of lactic acid. Appl. Environ. Microbiol. 2012, 78, 7098–7106. [Google Scholar] [CrossRef] [PubMed]
- Wachowska, M.; Muchowicz, A.; Firczuk, M.; Gabrysiak, M.; Winiarska, M.; Wańczyk, M.; Bojarczuk, K.; Golab, J. Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer. Molecules 2011, 16, 4140–4164. [Google Scholar] [CrossRef]
- Sasaki, K.; Watanabe, K.; Tanaka, T.; Hotta, Y.; Nagai, S. 5-Aminolevulinic acid production by Chlorella sp. During heterotrophic cultivation in the dark. World J. Microbiol. Biotechnol. 1995, 11, 361–362. [Google Scholar] [CrossRef] [PubMed]
- Akihiro, A.; Hitoshi, F.; Katsumi, N.; Yoshinori, N. Effect of glycine on 5-aminolevulinic acid biosynthesis in heterotrophic culture of Chlorella regularis YA-603. J. Biosci. Bioeng. 1999, 88, 57–60. [Google Scholar]
- Tolbert, N.E.; Zill, L.P. Excretion of glycolic acid by algae during photosynthesis. J. Biol. Chem. 1956, 222, 895–906. [Google Scholar] [PubMed]
- Rigobello-Masini, M.; Penteado, J.C.; Tiba, M.; Masini, J.C. Study of photorespiration in marine microalgae through the determination of glycolic acid using hydrophilic interaction liquid chromatography. J. Sep. Sci. 2012, 35, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Abomohra, A.E.-F.; El-Sheekh, M.; Hanelt, D. Extracellular secretion of free fatty acids by the chrysophyte Ochromonas danica under photoautotrophic and mixotrophic growth. World J. Microbiol. Biotechnol. 2014, 30, 3111–3119. [Google Scholar] [CrossRef] [PubMed]
- Tambiev, A.H.; Shelyastina, N.N.; Kirikova, N.N. Exometabolites of lipid nature from two species of marine microalgae. Funct. Ecol. 1989, 3, 245–247. [Google Scholar] [CrossRef]
- Kind, T.; Meissen, J.K.; Yang, D.; Nocito, F.; Vaniya, A.; Cheng, Y.S.; Vandergheynst, J.S.; Fiehn, O. Qualitative analysis of algal secretions with multiple mass spectrometric platforms. J. Chromatogr. A 2012, 1244, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Petkov, G.; Kambourova, R.; Bankova, V. Extracellular substances of total bacterial flora from cultures of the green algae Scenedesmus. C. R. Acad. Bulg. Sci. 2010, 63, 235–240. [Google Scholar]
- Changa, C.Y.; Lina, S.T.; Wang, C.C. Construction of a platform for fatty acid secretion from Chlorella. In Proceedings of the International Congress on Informatics, Environment, Energy and Applications-IEEA; IACSIT Press: Singapore, 2012; Volume 38. [Google Scholar]
- Park, Y.-I.; Choi, S.-B.; Liu, J.R. Transgenic Plants with cyanobacterial genes. Plant Biotechnol. Rep. 2009, 3, 267–275. [Google Scholar] [CrossRef]
- Lee, C.H.; Chae, H.S.; Lee, S.H.; Kim, H.S. Growth characteristics and lipid content of three Korean isolates of Botryococcus braunii (Trebouxiophyceae). J. Ecol. Environ. 2015, 38, 67–74. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, H.; Xu, X.; Lin, X. Biofilm formation and lipid accumulation of attached culture of Botryococcus braunii. Bioprocess Biosyst. Eng. 2015, 38, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Weiss, T.L.; Roth, R.; Goodson, C.; Vitha, S.; Black, I.; Azadi, P.; Rusch, J.; Holzenburg, A.; Devarenne, T.P.; Goodenough, U. Colony organization in the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix. Eukaryot. Cell 2012, 11, 1424–1440. [Google Scholar] [CrossRef] [PubMed]
- Hirose, M.; Mukaida, F.; Okada, S.; Noguchia, T. Active hydrocarbon biosynthesis and accumulation in a green alga, Botryococcus braunii (Race A). Eukaryot. Cell 2013, 12, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.; Ito, N.; Uno, Y.; Nishii, I.; Kagiwada, S.; Okada, S.; Noguchi, T. Transformation of lipid bodies related to hydrocarbon accumulation in a green alga, Botryococcus braunii (Race B). PLoS ONE 2013, 8, e81626. [Google Scholar] [CrossRef] [PubMed]
- Eroglu, E.; Melis, A. Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa. Bioresour. Technol. 2010, 101, 2359–2366. [Google Scholar] [CrossRef] [PubMed]
- Atobe, S.; Saga, K.; Maeyama, H.; Fujiwara, K.; Okada, S.; Imou, K. Culture of the green microalga Botryococcus braunii show a with LED irradiation eliminating violet light enhances hydrocarbon production and recovery. Biosci. Biotechnol. Biochem. 2014, 78, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Moheimani, N.R.; Cord-Ruwisch, R.; Raes, E.; Borowitzka, M.A. Non-destructive oil extraction from Botryococcus braunii (Chlorophyta). J. Appl. Phycol. 2013, 25, 1653–1661. [Google Scholar] [CrossRef]
- Hirsch, A.M.; Fang, Y.; Asad, S.; Kapulnik, Y. The role of phytohormones in plant-microbe symbioses. Plant Soil 1997, 194, 171–184. [Google Scholar] [CrossRef]
- Buggeln, R.G.; Craigie, J.S. Evaluation of evidence for the presence of indole-3-acetic acid in marine algae. Planta 2001, 97, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Miska, S.; Kaushit, B.D. Growth promoting substances of Cyanobacteria II detections of amino acids, sugars and auxins. Proc. Indian Natl. Sci. Acad. 1989, 5–6, 499–504. [Google Scholar]
- De Jesus Raposo, M.F.; de Morais, R.M.S.C. Influence of the growth regulators kinetin and 2,4-D on the growth of two chlorophyte microalgae, Haematococcus pluvialis and Dunaliella salina. J. Basic Appl. Sci. 2013, 9, 302–308. [Google Scholar]
- Lu, Y.; Xu, J. Phytohormones in microalgae: A new opportunity for microalgal biotechnology? Trends Plant Sci. 2015, 20, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Maršálek, B.; Zahradníčková, H.; Hronková, M. Extracellular production of abscisic acid by soil algae under salt, acid or drought stress. Z. Naturforschung C 1992, 47, 701–704. [Google Scholar]
- Maršálek, B.; Zahradníčková, H.; Hronková, M. Extracellular abscisic acid produced by cyanobacreria under salt stress. J. Plant Physiol. 1992, 139, 506–508. [Google Scholar] [CrossRef]
- Mazur, H.; Konop, A.; Synak, R. Indole-3-acetic acid in the culture medium of two axenic green microalgae. J. Appl. Phycol. 2001, 13, 35–42. [Google Scholar] [CrossRef]
- Stirk, W.A.; Balint, P.; Tarkowska, D.; Novak, O.; Maroti, G.; Ljung, K.; Tureckova, V.; Strnad, M.; Ordog, V.; van Staden, J. Effect of light on growth and endogenous hormones in Chlorella minutissima (Trebouxiophyceae). Plant Physiol. Biochem. 2014, 79, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.A.; Stella, A.M.; Storni, M.M.; Zulpa, G.; Zaccaro, M.C. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Syst. 2006, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Inderjit; Keating, K.I. Allelopathy: Principles, procedures, processes, and promises for biological control. Adv. Agron. 1999, 67, 141–231. [Google Scholar]
- Bhadoria, P.B.S. Allelopathy: A natural way towards weed management. Am. J. Exp. Agric. 2011, 1, 7–20. [Google Scholar]
- Solé, J.; García-Ladona, E.; Ruardij, P.; Estrada, M. Modelling allelopathy among marine algae. Ecol. Model 2005, 183, 373–384. [Google Scholar] [CrossRef]
- Wang, R.; Xiao, H.; Zhang, P.; Qu, L.; Cai, H.; Tang, X. Allelopathic effects of Ulva pertusa, Corallina pilulifera and Sargassum thunbergii on the growth of the dinoflagellates Heterosigma akashiwo and Alexandrium tamarense. J. Appl. Phycol. 2007, 19, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Mendes, L.B.B.; Vermelho, A.B. Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnol. Biofuels 2013, 6, 152. [Google Scholar] [CrossRef] [PubMed]
- Della Greca, M.; Zarrelli, A.; Fergola, P.; Cerasuolo, M.; Pollio, A.; Pinto, G. Fatty acids released by Chlorella vulgaris and their role in interference with Pseudokirchneriella subcapitata: Experiments and modelling. J. Chem. Ecol. 2010, 36, 339–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Xu, S.; Li, W.; Zhang, J.; Wang, C. Antialgal substances from Isochrysis galbana and its effects on the growth of Isochrysis galbana and six species of feed microalgae. In Information Technology and Agricultural Engineering; Springer: Berlin/Heidelberg, Germany, 2008; pp. 211–223. [Google Scholar]
- Nga, T.D.; Rickards, R.W.; Rothschild, J.M.; Smith, G.D. Allelopathic actions of the alkaloid 12-epihapalindole E isonitrile and calothrixin A from cyanobacteria of the genera Fischerella and Calothrix. J. Appl. Phycol. 2000, 12, 409–416. [Google Scholar]
- Kearns, K.D.; Hunter, M.D. Toxin-producing anabaena flos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga. Microb. Ecol. 2001, 42, 80–86. [Google Scholar] [PubMed]
- Ikawa, M.; Hartshorne, T.; Caron, L.-A.; Iannitelli, R.C.; Barbero, L.J.; Wegener, K. Inhibition of growth of the green alga Chlorella pyrenoidosa by unsaturated fatty acids. J. Am. Oil Chem. Soc. 1984, 61, 1877–1878. [Google Scholar] [CrossRef]
- Pratt, R.; Oneto, J.F.; Pratt, J. Studies on Chlorella vulgaris. X. Influence of the age of the culture on the accumulation of chlorellin. Am. J. Bot. 1945, 32, 405–408. [Google Scholar] [CrossRef]
- Chiang, I.-Z.; Huang, W.-Y.; Wu, J.-T. Allelochemicals of Botryococcus braunii (Chlorophyceae). J. Phycol. 2004, 40, 474–480. [Google Scholar] [CrossRef]
- Benkendorff, K.; Davis, A.R.; Rogers, C.N.; Bremner, J.B. Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties. J. Exp. Mar. Biol. Ecol. 2005, 316, 29–44. [Google Scholar] [CrossRef]
- Pohnert, G. Diatom/copepod interactions in plankton: The indirect chemical defense of unicellular algae. Chembiochem. 2005, 6, 946–959. [Google Scholar] [CrossRef] [PubMed]
- Wichard, T.; Pohnert, G. Formation of halogenated medium chain hydrocarbons by a lipoxygenase/hydroperoxide halolyase-mediated transformation in planktonic microalgae. J. Am. Chem. Soc. 2006, 128, 7114–7115. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Waller, G.R. Allelopathy due to purine alkaloids in tea seeds during germination. Plant Soil 1987, 98, 131–136. [Google Scholar] [CrossRef]
- Volk, R.B.; Girreser, U.; Al-Refai, M.; Laatsch, H. Bromoanaindolone, a novel antimicrobial exometabolite from the cyanobacterium Anabaena constricta. Nat. Prod. Res. 2009, 23, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Mincer, T.J.; Aicher, A.C. Methanol production by a broad phylogenetic array of marine phytoplankton. PLoS ONE 2016, 11, e0150820. [Google Scholar] [CrossRef] [PubMed]
- Barofsky, A.; Vidoudez, C.; Pohnert, G. Metabolic profiling reveals growth stage variability in diatom exudates. Limnol. Oceanogr. Methods 2009, 7, 382–390. [Google Scholar] [CrossRef]
Species/Group | Product | Application Areas |
---|---|---|
Spirulina (Arthrospira)/Cyanophyta | Phycocyanin/allophycocyanin, biomass | Health food, cosmetics, feed additives |
Chlorella vulgaris/Chlorophyta | Biomass, Chlorella growth factor (CGF), Chlorophyll | Health food, dietary supplement, feed additives |
Dunaliella salina/Chlorophyta | Carotenoids (β-carotene) | Dietary supplement, cosmetics |
Haematococcus pluvialis/Chlorophyta | Carotenoids (astaxanthin) | Health food, pharmaceuticals, feed additives |
Odontella aurita/Bacillariophyta | Fatty acids (EPA, DHA) | Pharmaceuticals, cosmetics, baby food |
Porphyridium cruentum/Rhodophyta | Polysaccharides, fatty acids (EPA, DHA), phycoerythrin | Pharmaceuticals, cosmetics, nutrition, thickener |
Porphyridium sp./Rhodophyta | Phycoerythrin | Cosmetics |
Isochrysis galbana/Haptota | Fatty acids (DHA) | Animal nutrition as living feed |
Phaedactylum tricornutum/Bacillariophyta | Carotenoids (fucoxanthin), fatty acids (EPA) | Pharmaceuticals, cosmetics, animal nutrition as living feed |
Lyngbya majuscula/Cyanobacteria | Immune modulators | Pharmaceuticals, nutrition |
Muriellopsis sp./Chlorophyta | Carotenoids, lutein | Health food, food supplement, feed |
Microalgae | Group | Bioactivities and Applications | References |
---|---|---|---|
Porphyridium cruentum | Rhodophytes | Antiviral, antibacterial activity Immunomodulation, Antitumor activities, Drag-reducing effect | [37,38,39] |
Porphyridium sp. | Intestinal morphological modification, Hypocholesterolemic effect | [39,40] | |
Rhodella reticulata | Free radical scavenging, Antioxidant activity, Drag-reducing effect | [41] | |
Anabaena spiroides | Cyanophytes | Metal-binding Anti-thrombogenic, Antiatherogenic, anticoagulant, Antibacterial, antioxidant | [42] [4] |
Nostoc linckia | Metal-binding | [43] | |
Arthrospira platensis | Antiviral, antibacterial, antioxidant | [44] | |
Nostoc flagelliforme | Emulsification, flocculation | [45] | |
Chlorella stigmatophora LB993 | Chlorophytes | Metal-binding | [46] |
Gyrodinium impudicum | Dinoflagellates | Antiviral | [47] |
Species | EPS Yield (mg/L) | Technological Process | Reference |
---|---|---|---|
Chlamydomonas reinhardtii | 628 | One-at-a-time approach Plackett–Burman design Response surface methodology | [43] |
Botryococcus braunii | 44 | Different medium comparison | [64] |
Phaeodactylum cruentum | NA | [62] | |
Chlorella vulgaris Arthrospira (S. platensis) | 7100 5420 | Co-culture | [48] |
Crypthecodinium cohnii | 1020 | ARTP | [66] |
Compounds | Microalgae | Effect | Target | Reference |
---|---|---|---|---|
Fatty acids | ||||
Mixture of C18 fatty acids | Chlorella vulgaris | Growth stimulation Growth-inhibition | Chlorella vulgaris Pseudokirchneriella subcapitata | [132] |
1-[hydroxyl-diethyl malonate]-isopropyl dodecenoic acid | Isochrysis galbana | Growth-inhibition | Dunaliella salina Platymonas elliptica Nitzschia closterium Chaetoceros muelleri Chaetoceros gracilis Nitzschia closterium Chlorella minutissima Phaeodactylum tricornutum | [133] |
Polysaccharides | Chlorella vulgaris Anabaena PCC 7120 | Toxin-resistance | Microcystis aeruginosa | [49] |
Alkaloids | ||||
Indolo phenanthridine calothrixin A | Calothrix sp. | Inhibitory effect on RNA and protein synthesis, DNA replication inhibition | Bacillus subtilis. | [134] |
Peptides | Anabaena flosaquae | Inhibitory effect | Chlamydomonas reinhardtii | [135] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Pohnert, G.; Wei, D. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential. Mar. Drugs 2016, 14, 191. https://doi.org/10.3390/md14100191
Liu L, Pohnert G, Wei D. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential. Marine Drugs. 2016; 14(10):191. https://doi.org/10.3390/md14100191
Chicago/Turabian StyleLiu, Lu, Georg Pohnert, and Dong Wei. 2016. "Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential" Marine Drugs 14, no. 10: 191. https://doi.org/10.3390/md14100191
APA StyleLiu, L., Pohnert, G., & Wei, D. (2016). Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential. Marine Drugs, 14(10), 191. https://doi.org/10.3390/md14100191