The Large Jellyfish Rhizostoma luteum as Sustainable a Resource for Antioxidant Properties, Nutraceutical Value and Biomedical Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Jellyfish Biomass Characterization
2.2. Jellyfish Carbon, Nitrogen and Sulfur Content
2.3. Jellyfish Protein Content
2.4. Phenolic Compound Content in Jellyfish Aqueous Soluble Extract
2.5. Antioxidant Activity in Jellyfish Aqueous Soluble Extract
2.6. Lipid Content
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Sample Collection and Preparation
3.3. Elemental Analysis
3.4. Polar Solvent Extraction
3.5. Protein Content
3.6. Phenol Content
3.7. Antioxidant Activity
3.8. Total Lipid Extraction
Fatty Acid Profiles Determination
3.9. GC-MS Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brotz, L.; Cheung, W.W.L.; Kleisner, K.; Pakhomov, E.; Pauly, D. Increasing jellyfish populations: Trends in Large Marine Ecosystems. Hydrobiologia 2012, 690, 3–20. [Google Scholar] [CrossRef]
- Doyle, T.K.; Hays, G.C.; Harrod, C.; Houghton, J.D.R. Ecological and societal benefits of jellyfish. In Jellyfish Blooms; Pitt, K.A., Lucas, C.H., Eds.; Springer Science + Business Media: Dordrecht, The Netherlands, 2014; pp. 105–127. [Google Scholar] [CrossRef]
- Matsushita, Y.; Honda, N.; Kawamura, S. Design and tow trial of JET (Jellyfish Excluder for Towed fishing gear). Nippon Suisan Gakk. 2005, 71, 965–967. [Google Scholar] [CrossRef] [Green Version]
- Purcell, J.E.; Uye, S.I.; Lo, W.T. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: A review. Mar. Ecol. Prog. Ser. 2007, 350, 153–174. [Google Scholar] [CrossRef]
- Kontogianni, A.D.; Emmanouilides, C.J. The cost of a gelatinous future and loss of critical habitats in the Mediterranean. ICES J. Mar. Sci. 2014, 71, 853–866. [Google Scholar] [CrossRef] [Green Version]
- Condon, R.H.; Graham, W.M.; Duarte, C.M.; Pitt, K.A.; Lucas, C.H.; Haddock, S.H.; Sutherland, K.R.; Robinson, K.L.; Dawson, M.N.; Decker, M.B.; et al. Questioning the rise of gelatinous zooplankton in the world’s oceans. BioScience 2012, 62, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, M.J.; Boero, F.; Brotz, L. We should not assume that fishing jellyfish will solve our jellyfish problem. ICES J. Mar. Sci. 2015, 73, 1012–1018. [Google Scholar] [CrossRef]
- Prieto, L.; Astorga, D.; Navarro, G.; Ruiz, J. Environmental control of phase transition and polyp survival of a massive-outbreaker jellyfish. PLoS ONE 2010, 5, e13793. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; Prieto, L.; Astorga, D. A model for temperature control of jellyfish (Cotylorhiza tuberculata) outbreaks: A causal analysis in a Mediterranean coastal lagoon. Ecol. Model. 2012, 233, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Boero, F. Review of jellyfish blooms in the Mediterranean and Black Sea. In General Fisheries Commission for the Mediterranean. Studies and Reviews; No. 92. Food and Agriculture Organization of the United Nations (FAO), Ed.; FAO: Rome, Italy, 2013; p. 53. ISBN 978-92-5-107457-2. [Google Scholar]
- Lucas, C.H.; Pitt, K.A.; Purcell, J.E.; Lebrato, M.; Condon, R.H. What’s in a jellyfish? Proximate and elemental composition and biometric relationships for use in biogeochemical studies. Ecology 2011, 92, 1704. [Google Scholar] [CrossRef]
- Hsieh, Y.H.P.; Rudloe, J. Potential of utilizing jellyfish as food in Western countries. Trends Food Sci. Technol. 1994, 5, 225–229. [Google Scholar] [CrossRef]
- Hsieh, Y.H.P.; Leong, F.M.; Rudloe, J. Jellyfish as food. Hydrobiologia 2001, 451, 11–17. [Google Scholar] [CrossRef]
- Li, J.; Hsieh, Y.H.P. Traditional Chinese food technology and cuisine. Asia Pac. J. Clin. Nutr. 2004, 13, 147–155. [Google Scholar] [PubMed]
- Omori, M.; Nakano, E. Jellyfish fisheries in southeast Asia. Hydrobiologia 2001, 451, 19–26. [Google Scholar] [CrossRef]
- Leone, A.; Lecci, R.M.; Durante, M.; Meli, F.; Piraino, S. The bright side of gelatinous blooms: Nutraceutical value and antioxidant properties of three Mediterranean jellyfish (Scyphozoa). Mar. Drugs 2015, 13, 4654–4681. [Google Scholar] [CrossRef] [PubMed]
- Addad, S.; Exposito, J.Y.; Faye, C.; Ricard-Blum, S.; Lethias, C. Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Mar. Drugs 2011, 9, 967–983. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Sun, L.; Zhao, X.; Wang, J.; Hou, H.; Li, B. Antioxidant and melanogenesis-inhibitory activities of collagen peptide from jellyfish (Rhopilema esculentum). J. Sci. Food Agric. 2009, 89, 1722–1727. [Google Scholar] [CrossRef]
- Zhuang, Y.L.; Sun, L.P.; Zhao, X.; Hou, H.; Li, B.F. Investigation of gelatin polypeptides of jellyfish (Rhopilema esculentum) for their antioxidant activity in vitro. Food Technol. Biotechnol. 2010, 48, 222–228. [Google Scholar]
- Barzideh, Z.; Latiff, A.A.; Gan, C.; Alias, A.K. ACE inhibitory and antioxidant activities of collagen hydrolysates from the ribbon jellyfish (Chrysaora sp.). Food Technol. Biotechnol. 2014, 52, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Hou, H.; Zhao, X.; Zhang, Z.; Li, B. Effects of collagen and collagen hydrolysate from jellyfish (Rhopilema esculentum) on mice skin photoaging induced by UV irradiation. J. Food Sci. 2009, 74, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Zhuang, Y.; Li, B. Effects of collagen and collagen hydrolysate from jellyfish umbrella on histological and immunity changes of mice photoaging. Nutrients 2013, 5, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, S.; Goto, Y.; Morishige, H.; Shiraishi, R.; Doi, M.; Akiyama, K.; Yamauchi, S.; Sugahara, T. Mode of action of the immunostimulatory effect of collagen from jellyfish. Biosci. Biotechnol. Biochem. 2008, 72, 2806–2814. [Google Scholar] [CrossRef] [PubMed]
- Morishige, H.; Sugahara, T.; Nishimoto, S.; Muranaka, A.; Ohno, F.; Shiraishi, R.; Doi, M. Immunostimulatory effects of collagen from jellyfish in vivo. Cytotechnology 2011, 63, 481–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, Y.; Sun, L.; Zhang, Y.; Liu, G. Antihypertensive effect of long-term oral administration of jellyfish (Rhopilema esculentum) collagen peptides on renovascular hypertension. Mar. Drugs 2012, 10, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Prieto, L.; Armani, A.; Macías, D. Recent strandings of the giant jellyfish Rhizostoma luteum Quoy and Gaimard, 1827 (Cnidaria: Scyphozoa: Rhizostomeae) on the Atlantic and Mediterranean coasts. Mar. Biol. 2013, 160, 3241–3247. [Google Scholar] [CrossRef]
- Kienberger, K.; Prieto, L. The jellyfish Rhizostoma luteum (Quoy & Gaimard, 1827): Not such a rare species after all. Mar. Biodivers. 2017, 1–8. [Google Scholar] [CrossRef]
- Armani, A.; Tinacci, L.; Giusti, A.; Castigliego, L.; Gianfaldoni, D.; Guidi, A. What is inside the jar? Forensically informative nucleotide sequencing (FINS) of a short mitochondrial COI gene fragment reveals a high percentage of mislabeling in jellyfish food products. Food Res. Int. 2013, 54, 1383–1393. [Google Scholar] [CrossRef]
- Kienberger, K.; Riera-Buch, M.; Schönemann, A.M.; Bartsch, V.; Halbauer, R.; Prieto, L. First description of the life cycle of the jellyfish Rhizostoma luteum (Scyphozoa: Rhizostomeae). PLoS ONE 2018, 13, e0202093. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.; Lecci, R.M.; Durante, M.; Piraino, S. Extract from the zooxanthellate jellyfish Cotylorhiza tuberculata modulates gap junction intercellular communication in human cell cultures. Mar. Drugs 2013, 11, 1728–1762. [Google Scholar] [CrossRef] [PubMed]
- Heaslip, S.G.; Iverson, S.J.; Bowen, W.D.; James, M.C. Jellyfish support high energy intake of leatherback sea turtles (Dermochelys coriacea): Video evidence from animal-borne cameras. PLoS ONE 2012, 7. [Google Scholar] [CrossRef]
- Milisenda, G.; Rosa, S.; Fuentes, V.L.; Boero, F.; Guglielmo, L.; Purcell, J.E.; Piraino, S. Jellyfish as prey: Frequency of predation and selective foraging of boops boops (vertebrata, actinopterygii) on the mauve stinger Pelagia noctiluca (Cnidaria, scyphozoa). PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- D’Ambra, I.; Graham, W.M.; Carmichael, R.H.; Hernandez, F.J. Fish rely on scyphozoan hosts as a primary food source: Evidence from stable isotope analysis. Mar. Biol. 2014, 162, 247–252. [Google Scholar] [CrossRef]
- Cardona, L.; De Quevedo, I.Á.; Borrell, A.; Aguilar, A. Massive consumption of gelatinous plankton by Mediterranean apex predators. PLoS ONE 2012, 7, e31329. [Google Scholar] [CrossRef] [PubMed]
- Arai, M.N. A Functional Biology of Scyphozoa; Springer Science & Business Media: Dordrecht, The Netherlands, 1997. [Google Scholar] [CrossRef]
- Bailey, T.G.; Youngbluth, M.J.; Owen, G.P. Chemical composition and metabolic rates of gelatinous zooplankton from midwater and benthic boundary layer environments off Cape Hatteras, North Carolina, USA. Mar. Ecol. Prog. Ser. 1995, 122, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Banaszak, A.T.; Lesser, M.P. Effects of solar ultraviolet radiation on coral reef organisms. Photochem. Photobiol. Sci. 2009, 8, 1276–1294. [Google Scholar] [CrossRef] [PubMed]
- Pitt, K.A.; Welsh, D.T.; Condon, R.H. Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 2009, 616, 133–149. [Google Scholar] [CrossRef]
- Enrique-Navarro, A. Characterization of zooxanthellae living in symbiosis with the jellyfish Cotylorhiza tuberculata. Master Thesis, University of Cádiz, Cádiz, Spain, 2017. [Google Scholar]
- Nagai, T.; Worawattanamateekul, W.; Suzuki, N.; Nakamura, T.; Ito, T.; Fujiki, K.; Nakao, M.; Yano, T. Isolation and characterization of collagen from rhizostomous jellyfish (Rhopilema asamushi). Food Chem. 2000, 70, 205–208. [Google Scholar] [CrossRef]
- Zhang, J.; Duan, R.; Huang, L.; Song, Y.; Regenstein, J.M. Characterisation of acid-soluble and pepsin-solubilised collagen from jellyfish (Cyanea nozakii Kishinouye). Food Chem. 2014, 150, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.; Moreira-Silva, J.; Marques, A.; Domingues, A.; Bayon, Y.; Reis, R. Marine origin collagens and its potential applications. Mar. Drugs 2014, 12, 5881–5901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanquet, R. Structural and chemical aspects of the podocyst cuticle of the scyphozoan medusa, Chrysaora quinquecirrha. Biol. Bull. 1972, 142, 1–10. [Google Scholar] [CrossRef]
- Mitchell, K. Organic Compounds in Cyanea capillata and Chrysaora quinquecirrha. Available online: http://digitalcommons.iwu.edu/cgi/viewcontent.cgi?article=1012&context=bio_honproj (accessed on 26 March 2014).
- Madhan, B.; Subramanian, V.; Rao, J.R.; Nair, B.U.; Ramasami, T. Stabilization of collagen using plant polyphenol: Role of catechin. Int. J. Biol. Macromol. 2005, 37, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Vidal, C.M.P.; Leme, A.A.; Aguiar, T.R.; Phansalkar, R.; Nam, J.W.; Bisson, J.; McAlpine, J.B.; Chen, S.N.; Pauli, G.F.; Bedran-Russo, A. Mimicking the hierarchical functions of dentin collagen cross-links with plant derived phenols and phenolic acids. Langmuir 2014, 30, 14887–14993. [Google Scholar] [CrossRef] [PubMed]
- Leblond, J.D.; Chapman, P.J. Lipid class distribution of highly unsaturated long chain fatty acids in marine dinoflagellates. J. Phycol. 2000, 36, 1103–1108. [Google Scholar] [CrossRef]
- Russo, G.L. Dietary n-6 and n-3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention. Biochem. Pharmacol. 2009, 77, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Siriwardhana, N.; Kalupahana, N.S.; Moustaid-Moussa, N. Health benefits of n-3 polyunsaturated fatty acids: Eicosapentaenoic acid and docosahexaenoic acid. Adv. Food Nutr. Res. 2012, 65, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Szczęsna-Antczak, M.; Antczak, T.; Piotrowicz-Wasiak, M.; Rzyska, M.; Binkowska, N.; Bielecki, S. Relationships between lipases and lipids in mycelia of two Mucor strains. Enzyme Microb. Technol. 2006, 39, 1214–1222. [Google Scholar] [CrossRef]
Batch (n = Number of Jellyfish) | Days After Ephyra Release Range * Mean (days) | Umbrella Diameter Range * Mean (cm) | Fresh Weight Total (g) | Fresh Weight Per Individual Mean (g) | Ratio FW/Diameter | Dry Weight Total (g) | DW (% of FW) |
---|---|---|---|---|---|---|---|
1 (5) | 109 ± 10 | 0.92 ± 0.03 | 2.9383 | 0.587 ± 0.106 | 0.6 | 0.912 | 31.0 |
2 (5) | 92 ± 3 | 0.87 ± 0.01 | 3.0509 | 0.610 ± 0.121 | 0.7 | 0.808 | 26.5 |
3 (10) | 89 ± 17 | 0.85 ± 0.06 | 9.6241 | 0.962 ± 0.142 | 1.1 | 0.350 | 3.6 |
4 (10) | 85 ± 21 | 0.84 ± 0.07 | 5.6126 | 0.561 ± 0.144 | 0.7 | 0.2034 | 3.6 |
5 (10) | 66 ± 10 | 0.77 ± 0.04 | 5.6181 | 0.560 ± 0.106 | 0.7 | 0.2747 | 4.9 |
6 (10) | 72 ± 3 | 0.79 ± 0.01 | 4.5403 | 0.454 ± 0.086 | 0.6 | 0.1519 | 3.3 |
7 (41) | 51 ± 22 | 0.69 ± 0.10 | 12.3213 | 0.300 ± 0.057 | 0.4 | 0.4609 | 3.7 |
8 (40) | 42 ± 6 | 0.66 ± 0.04 | 5.9973 | 0.150 ± 0.028 | 0.2 | 0.1917 | 3.2 |
9 (61) | 35 ± 6 | 0.62 ± 0.03 | 7.0676 | 0.116 ± 0.022 | 0.2 | 0.2384 | 3.4 |
10 (59) | 51 ± 6 | 0.71 ± 0.03 | 9.9585 | 0.169 ± 0.032 | 0.2 | 0.388 | 3.9 |
11 (52) | 53 ± 5 | 0.71 ± 0.03 | 8.7219 | 0.168 ± 0.032 | 0.2 | 0.332 | 3.8 |
Type of Fatty Acids (FA) | Name of FA | RT (min) | % | Total |
---|---|---|---|---|
Saturated FA (SFA) | Decanoic acid C10:0 | 5.67 | 0.1 ± 0.0 | 30.2 |
Lauric acid C12:0 | 8.65 | 0.3 ± 0.0 | ||
Tridecanoic acid C13:0 | 10.20 | 0.1 ± 0.0 | ||
Myristic acid C14:0 | 11.73 | 2.0 ± 0.1 | ||
Pentadecanoic acid C15:0 | 13.21 | 0.4 ± 0.1 | ||
Palmitic acid C16:0 | 14.65 | 11.0 ± 0.6 | ||
Margaric acid C17:0 | 16.03 | 0.7 ± 0.1 | ||
Stearic acid C18:0 | 17.40 | 15.0 ± 1.5 | ||
Arachidic acid C20:0 | 19.90 | 0.1 ± 0.0 | ||
Heneicosanoic acid C21:0 | 21.13 | 0.1 ± 0.0 | ||
Docosanoic acid C22:0 | 22.30 | 0.2 ± 0.0 | ||
Lignoceric acid C24:0 | 24.90 | 0.2 ± 0.0 | ||
Monounsaturated FA (MUFA) | Pentadec-10-enoic acid C15:1 (ω5) | 12.97 | 0.1 ± 0.1 | 20.8 |
Palmitoleic acid C16:1 | 14.34 | 3.1 ± 0.2 | ||
Heptadec-10-enoic acid C17:1 (ω7) | 15.70 | 0.4 ± 0.0 | ||
Oleic acid C18:1 (ω9) | 17.02 | 11.3 ± 0.8 | ||
Elaidic acid C18:1 (ω9) | 17.09 | 3.9 ± 0.1 | ||
Eicos-11-enoic acid C20:1 (ω9) | 19.58 | 1.0 ± 0.0 | ||
Erucic or cis-docos-13-enoic acid C22:1 (ω9) | 22.07 | 0.1 ± 0.0 | ||
Nervonic acid C24:1 (ω9) | 24.54 | 0.8 ± 0.0 | ||
Polyunsaturated FA (PUFA) | Gamma-linolenic acid C18:3 (ω6) | 16.69 | 0.2 ± 0.0 | 49.0 |
Linoleic acid C18:2 (ω6) * | 16.92 | 4.6 ± 0.5 | ||
Linolelaidic acid C18:2 (ω6, ω9) | 17.02 | 1.0 ± 0.1 | ||
Linolenic acid C18:3 (ω3) | 17.02 | 9.8 ± 0.3 | ||
Arachidonic acid C20:4 (ω6) | 19.02 | 23.7 ± 1.3 | ||
Eicosapentaenoic acid C20:5 (ω3) | 19.08 | 3.6 ± 0.2 | ||
Dihomo-gamma-linolenic acid C20:3 (ω6) | 19.25 | 3.2 ± 0.4 | ||
Eicosadien-11,14-oic acid C20:2 (ω6) | 19.50 | 0.7 ± 0.0 | ||
Eicosa-11,14,17-trienoic acid C20:3 (ω3) | 19.58 | 1.9 ± 0.1 | ||
Docosahexaenoic acid C22:6 (ω3) | 21.36 | 0.3 ± 0.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prieto, L.; Enrique-Navarro, A.; Li Volsi, R.; Ortega, M.J. The Large Jellyfish Rhizostoma luteum as Sustainable a Resource for Antioxidant Properties, Nutraceutical Value and Biomedical Applications. Mar. Drugs 2018, 16, 396. https://doi.org/10.3390/md16100396
Prieto L, Enrique-Navarro A, Li Volsi R, Ortega MJ. The Large Jellyfish Rhizostoma luteum as Sustainable a Resource for Antioxidant Properties, Nutraceutical Value and Biomedical Applications. Marine Drugs. 2018; 16(10):396. https://doi.org/10.3390/md16100396
Chicago/Turabian StylePrieto, Laura, Angélica Enrique-Navarro, Rosalia Li Volsi, and María J. Ortega. 2018. "The Large Jellyfish Rhizostoma luteum as Sustainable a Resource for Antioxidant Properties, Nutraceutical Value and Biomedical Applications" Marine Drugs 16, no. 10: 396. https://doi.org/10.3390/md16100396
APA StylePrieto, L., Enrique-Navarro, A., Li Volsi, R., & Ortega, M. J. (2018). The Large Jellyfish Rhizostoma luteum as Sustainable a Resource for Antioxidant Properties, Nutraceutical Value and Biomedical Applications. Marine Drugs, 16(10), 396. https://doi.org/10.3390/md16100396