A Potential Adjuvant Agent of Chemotherapy: Sepia Ink Polysaccharides
Abstract
:1. Introduction
2. Molecular Characteristics of SIPs
3. Biological Activities of SIPs
3.1. Chemoprevention
3.1.1. Protection of the Reproductive System
3.1.2. Protection of Intestinal Tract
3.1.3. Protection of Other Tissues/Organs
3.2. Antitumour Activities
3.3. Chemosensitization
3.4. Anticoagulant and Procoagulant Activities
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhong, J.P.; Wang, G.; Shang, J.H.; Pan, J.Q.; Li, K.; Huang, Y.; Liu, H.Z. Protective effects of squid ink extract towards hemopoietic injuries induced by cyclophosphamide. Mar. Drugs 2009, 7, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Saleh, H.; Soliman, A.M.; Mohamed, A.S.; Marie, M.A.S. Antioxidant effect of Sepia ink extract on extrahepatic cholestasis induced by bile duct ligation in rats. Biomed. Environ. Sci. 2015, 28, 582–594. [Google Scholar] [PubMed]
- Vate, N.K.; Benjakul, S.; Agustini, T.W. Application of melanin-free ink as a new antioxidative gel enhancer in sardine surimi gel. J. Sci. Food Agric. 2015, 95, 2201–2207. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Z.; Luo, P.; Chen, S.H.; Shang, J.H. Effects of squid ink on growth performance, antioxidant functions and immunity in growing broiler chickens. Asian Austral. J. Anim. Sci. 2011, 24, 1752–1756. [Google Scholar] [CrossRef]
- Liu, H.Z.; Wang, G.; Guo, Y.Z.; Pan, J.Q.; Huang, Y.; Zhong, J.P.; Li, K. Sepia ink extract attenuates renal injury caused by cyclophosphamide-induced oxidative stress. Chin. J. Nephrol. 2009, 25, 804–805. [Google Scholar]
- Wang, G.; Guo, Y.Z.; Guan, S.B.; Zhong, J.P.; Pan, J.Q.; Huang, Y.; Liu, H.Z. Protective effects of sepia ink extract on cyclophosphamide-induced pulmonary fibrosis in mice. Chin. J. Mar. Drugs 2009, 28, 36–40. [Google Scholar]
- Wang, G.; Pan, J.Q.; Zhong, J.P.; Li, K.; Huang, Y.; Wu, J.L.; Liu, H.Z. Protective effects of sepia ink extract against cyclophosphamide-induced oxidative damage in mice spleen. Food Sci. 2009, 30, 219–222. [Google Scholar]
- Wang, G.; Liu, H.Z.; Wu, J.L.; Cao, Q.W.; Chen, Y.P.; Yang, C.L.; Zhong, J.P. Study of sepia ink extract on protection from oxidative damage of cardiac muscle and brain tissue in mice. Chin. J. Mod. Appl. Pharm. 2010, 27, 95–99. [Google Scholar]
- Fahmy, S.R.; Soliman, A.M. In vitro antioxidant, analgesic and cytotoxic activities of Sepia officinalis ink and Coelatura aegyptiaca extracts. Afr. J. Pharm. Pharmacol. 2013, 7, 1512–1522. [Google Scholar] [CrossRef]
- Mimura, T.; Itoh, S.; Tsujikawa, K.; Nakajima, H.; Satake, M.; Kohama, Y.; Okabe, M. Studies on biological activities of melanin from marine animals. V. Anti-inflammatory activity of low-molecular-weight melanoprotein from squid (Fr. SM II). Chem. Pharm. Bull. 1987, 35, 1144–1150. [Google Scholar] [CrossRef] [PubMed]
- Mimura, T.; Maeda, K.; Terada, T.; Oda, Y.; Morishita, K.; Aonuma, S. Studies on biological activities of melanin from marine animals. III. Inhibitory effect of SM II (low molecular weight melanoprotein from squid) on phenylbutazone-induced ulceration in gastric mucosa in rats, and its mechanism of action. Chem. Pharm. Bull. 1985, 33, 2052–2060. [Google Scholar] [CrossRef] [PubMed]
- Rajaganapathi, J.; Thyagarajan, S.P.; Patterson Edward, J.K. Study on cephalopod’s ink for anti-retroviral activity. Indian J. Exp. Biol. 2000, 38, 519–520. [Google Scholar] [PubMed]
- Kim, S.Y.; Kim, S.H.; Song, K.B. Characterization of a partial purification and angiotensin-converting enzyme inhibitor from squid ink. Agric. Chem. Biotechnol. 2003, 46, 122–123. [Google Scholar]
- Fahmy, S.R.; Soliman, A.; Ali, E.M. Antifungal and antihepatotoxic effects of sepia ink extract against oxidative stress as a risk factor of invasive pulmonary aspergillosis in neutropenic mice. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Petkovic, M.V. Determination of the antimicrobial activity of purified melanin from the ink Octopus mimus Gould, 1852 (Cephalopoda: Octopodidae). Lat. Am. J. Aquat. Res. 2013, 41, 584–587. [Google Scholar]
- Shi, L.S.; Liu, H.Z.; Zhong, J.P.; Pan, J.Q. Fresh-keeping effects of melanin-free extract from squid ink on yellowfin sea bream (Sparus latus) during cold storage. J. Aquat. Food Prod. Technol. 2015, 24, 199–212. [Google Scholar] [CrossRef]
- Kumar, P.; Kannan, M.; ArunPrasanna, V.; Vaseeharan, B.; Vijayakumar, S. Proteomics analysis of crude squid ink isolated from Sepia esculenta for their antimicrobial, antibiofilm and cytotoxic properties. Microb. Pathog. 2018, 116, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Wang, J.F.; Wang, Y.M.; Pang, L.; Wang, Y.; Xu, W.; Xue, C.H. Study of the radio-protective effect of cuttlefish ink on hemopoietic injury. Asia Pac. J. Clin. Nutr. 2007, 16 (Suppl. 1), 239–243. [Google Scholar] [PubMed]
- Sasaki, J.; Ishita, K.; Takaya, Y.; Uchisawa, H.; Matsue, H. Anti-tumor activity of squid ink. J. Nutr. Sci. Vitaminol. 1997, 43, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.F.; Huang, F.F.; Yang, Z.S.; Yu, D.; Yang, Y.F. Anticancer activity of an oligopeptide isolated from hydrolysates of sepia ink. Chin. J. Nat. Med. 2011, 9, 51–55. [Google Scholar]
- Huang, F.; Yang, Z.; Yu, D.; Wang, J.; Li, R.; Ding, G. Sepia ink oligopeptide induces apoptosis in prostate cancer cell lines via caspase-3 activation and elevation of Bax/Bcl-2 ratio. Mar. Drugs 2012, 10, 2153–2165. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.L.; Lv, C.L.; Hong, M.B. Experimental study of the effective mechanisms of sepia ink in promoting coagulation of blood. J. China Med. Univ. 1994, 23, 530–531. [Google Scholar]
- Derby, C.D. Cephalopod ink: Production, chemistry, functions and applications. Mar. Drugs 2014, 12, 2700–2730. [Google Scholar] [CrossRef] [PubMed]
- Zuo, T.; Zhang, N.; Zhang, Q.; Shi, H.; Lu, S.; Xue, C.; Tang, Q.J. Transportation of squid ink polysaccharide SIP through intestinal epithelial cells and its utilization in the gastrointestinal tract. J. Funct. Foods 2016, 22, 408–416. [Google Scholar] [CrossRef]
- Takaya, Y.; Uchisawa, H.; Hanamatsu, K.; Narumi, F.; Okuzaki, B.; Matsue, H. Novel fucose-rich glycosaminoglycans from squid ink bearing repeating unit of trisaccharide structure (-6GalNAcα1-3GlcAβ1-3Fucα1-)n. Biochem. Biophy. Res. Commun. 1994, 198, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Takaya, Y.; Uchisawa, H.; Narumi, F.; Matsue, H. Illexins A, B and C from squid ink should have a branched structure. Biochem. Biophy. Res. Commun. 1996, 226, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.G.; Xu, J.; Xue, C.H.; Dong, P.; Sheng, W.J.; Yu, G.L.; Chai, W.G. Sequence determination of a non-sulfated glycosaminoglycan-like polysaccharide from melanin-free ink of the squid Ommastrephes bartrami by negative-ion electrospray tandem mass spectrometry and NMR spectroscopy. Glycoconj. J. 2008, 5, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Li, X.D.; Li, Y.H.; Feng, Y.; Zhou, S.; Wang, F.S. Structural characterization and antimutagenic activity of a novel polysaccharide isolated from Sepiella maindroni ink. Food Chem. 2008, 110, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Z.; Tao, Y.X.; Luo, P.; Deng, C.M.; Gu, Y.P.; Yang, L.; Zhong, J.P. Preventive effects of a novel polysaccharide from Sepia esculenta ink on ovarian failure and its action mechanisms in cyclophosphamide-treated mice. J. Agric. Food Chem. 2016, 64, 5759–5766. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, M.J.; Costa, R.R.; Mano, J.F. Marine origin polysaccharides in drug delivery systems. Mar. Drugs 2016, 14, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Jesus Raposo, M.F.; de Morais, A.M.B.; de Morais, R.M.S.C. Marine polysaccharide from algae with potential biomedical applications. Mar. Drugs 2015, 13, 2967–3028. [Google Scholar] [CrossRef] [PubMed]
- Vazqez, J.A.; Rodriguez-Amado, I.; Montemayor, M.I.; Fraguas, J.; del Pilar Gonzalez, M.; Murado, M.A. Chondronitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: Characteristics, applications and eco-friendly processes: A review. Mar. Drugs 2013, 11, 747–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takaya, Y.; Uchisawa, H.; Matsue, H.; Okuzaki, B.I.; Narumi, F.; Sasaki, J.I.; Ishida, K. An investigation of the antitumor peptidoglycan fraction from squid ink. Biol. Pharm. Bull. 1994, 17, 846–849. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Zuo, T.; Lu, S.; Wu, J.; Wang, J.; Zheng, R.; Chen, S.; Xue, C. Dietary squid ink polysaccharides ameliorated the intestinal microflora dysfunction in mice undergoing chemotherapy. Food Funct. 2014, 5, 2529–2535. [Google Scholar] [CrossRef] [PubMed]
- Zuo, T.; Cao, L.; Sun, X.; Li, X.; Wu, J.; Lu, S.; Xue, C.; Tang, Q. Dietary squid ink polysaccharide could enhance SIgA secretion in chemotherapeutic mice. Food Funct. 2014, 5, 3189–3196. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zuo, T.; Zhang, N.; Shi, H.; Liu, F.; Wu, J.; Wang, Y.; Xue, C.; Tang, Q. High throughput sequencing analysis reveals amelioration of intestinal dysbiosis by squid ink polysaccharide. J. Funct. Foods 2016, 20, 506–515. [Google Scholar] [CrossRef]
- Zuo, T.; Cao, L.; Xue, C.; Tang, Q.J. Dietary squid ink polysaccharide induces goblet cells to protect small intestinal from chemotherapy induced injury. Food Funct. 2015, 6, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Zuo, T.; He, X.; Cao, L.; Xue, C.; Tang, Q.J. The dietary polysaccharide from Ommastrephes bartrami prevents chemotherapeutic mucositis by promoting the gene expression of antimicrobial peptides in Paneth cells. J. Funct. Foods 2015, 12, 530–539. [Google Scholar] [CrossRef]
- Zuo, T.; Cao, L.; Li, X.; Zhang, Q.; Xue, C.; Tang, Q. The squid ink polysaccharides protect tight junctions and adherens junctions from chemotherapeutic injury in the small intestinal epithelium of mice. Nutr. Cancer 2015, 67, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Zuo, T.; Li, X.M.; Yu, Q.; Cao, B.B.; Wang, J.F. Protective effects of polysaccharides from the ink of Ommastrephes bartrami on the intestinal mucosa of the mice with chemotherapy and its mechanism. Chin. Pharmacol. Bull. 2013, 29, 1558–1562. [Google Scholar]
- Chen, S.G.; Wang, J.F.; Xue, C.H.; Li, H.; Sun, B.B.; Xue, Y.; Chai, W.G. Sulfation of a squid ink polysaccharide and its inhibitory effect on tumor cell metastasis. Carbohyd. Polym. 2010, 81, 560–566. [Google Scholar] [CrossRef]
- Chen, S.G.; Li, Z.G.; Wang, Y.M.; Li, G.Y.; Sun, B.B.; Xue, C.H. Sulfation of a squid ink polysaccharide and its anticoagulant activities. Chem. J. Chin. Univ. 2010, 31, 2407–2412. [Google Scholar]
- Wang, S.; Cheng, Y.; Wang, F.; Sun, L.; Liu, C.; Chen, G.; Li, Y.; Ward, S.G.; Qu, X. Inhibition activity of sulfated polysaccharide of Sepiella maindroni ink on matrix metalloproteinase (MMP)-2. Biomed. Pharmacother. 2008, 62, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Tian, W.; Ijaz, M.; Wang, F. Inhibition of EGF-induced migration and invasion by sulfated polysaccharide of Sepiella maindroni ink via the suppression of EGFR/Akt/p38 MAPK/MMP-2 signaling pathway in KB cells. Biomed. Pharmacother. 2017, 95, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Cheng, Y.; Zhao, N.; Li, L.; Shi, Y.; Zong, A.; Wang, F. Sulfated polysaccharide of Sepiella Maindroni ink inhibits the migration, invasion and matrix metalloproteinase-2 expression through suppressing EGFR-mediated p38/MAPK and PI3K/Akt/mTOR signaling pathways in SKOV-3 cells. Int. J. Bio. Macromol. 2018, 107, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Zong, A.Z.; Zhao, T.; Zhang, Y.; Song, X.L.; Shi, Y.K.; Cao, H.Z.; Liu, C.H.; Cheng, Y.N.; Qu, X.J.; Cao, J.C.; et al. Anti-metastatic and anti-angiogenic activities of sulfated polysaccharide of Sepiella maindroni ink. Carbohyd. Polym. 2013, 91, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Zong, A.Z.; Liu, Y.H.; Zhang, Y.; Song, X.; Shi, Y.K.; Cao, H.Z.; Liu, C.H.; Cheng, Y.; Jiang, W.J.; Du, F.L.; et al. Anti-tumor activity and the mechanism of SIP-S: A sulfated polysaccharide with anti-metastatic effect. Carbohyd. Polym. 2015, 129, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Liu, H.Z.; Le, X.Y.; Du, H.; Kang, X.H. Squid ink polysaccharide prevents chemotherapy induced injury in the testes of reproducing mice. Pak. J. Pharm. Sci. 2018, 31, 25–29. [Google Scholar] [PubMed]
- Le, X.Y.; Luo, P.; Gu, Y.P.; Tao, Y.X.; Liu, H.Z. Interventional effects of squid ink polysaccharide on cyclophosphamide-associated testicular damage in mice. Bratislava Med. J. 2015, 5, 334–339. [Google Scholar] [CrossRef]
- Le, X.Y.; Luo, P.; Gu, Y.P.; Tao, Y.X.; Liu, H.Z. Squid ink polysaccharide reduces cyclophosphamide-induced testicular damage via Nrf2/ARE activation pathway in mice. Iran. J. Basic Med. Sci. 2015, 18, 827–831. [Google Scholar] [PubMed]
- Gu, Y.P.; Yang, X.M.; Duan, Z.H.; Luo, P.; Shang, J.H.; Xiao, W.; Tao, Y.X.; Zhang, D.Y.; Zhang, Y.B.; Liu, H.Z. Inhibition of chemotherapy-induced apoptosis of testicular cells by squid ink polysaccharide. Exp. Ther. Med. 2017, 14, 5889–5895. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.P.; Yang, X.M.; Duan, Z.H.; Shang, J.H.; Luo, P.; Xiao, W.; Zhang, D.Y.; Liu, H.Z. Squid ink polysaccharide prevents autophagy and oxidative stress affected by cyclophosphamide in Leydig cells of mice: A pilot study. Iran. J. Basic Med. Sci. 2017, 20, 1194–1199. [Google Scholar] [PubMed]
- Gu, Y.P.; Yang, X.M.; Luo, P.; Li, Y.Q.; Tao, Y.X.; Duan, Z.H.; Xiao, W.; Zhang, D.Y.; Liu, H.Z. Inhibition of acrolein-induced autophagy and apoptosis by a glycosaminoglycan from Sepia esculenta ink in mouse Leydig cells. Carbohyd. Polym. 2017, 163, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Z.; Wang, G.; Wu, J.L.; Shi, L.S.; Zhong, J.P.; Pan, J.Q. Amelioration of sepia ink polysaccharides on internal organs injured by cyclophosphamide in mice. Chin. J. Mod. Appl. Pharm. 2012, 29, 89–93. [Google Scholar]
- Wu, J.L.; Wang, G.; Shi, L.S.; Zhong, J.P.; Pan, J.Q.; Liu, H.Z. Sepia ink polysaccharide preparation attenuates cyclophosphamide toxicity in mice. Chin. J. Mar. Drugs 2012, 31, 49–51. [Google Scholar]
- Wang, G.; Zhong, J.P.; Liu, H.Z. Amelioration of sepia ink polysaccharides on functional inhibition of bone marrow by cyclophosphamide in rats. Sci. Technol. Food Ind. 2012, 33, 365–367. [Google Scholar]
- Cao, S.Q.; Liu, L.; Zhu, M.F.; Chen, Q.P.; Qi, X.Y.; Yang, H. Preparation of polysaccharide from sepia ink and its effects on B16F10 cells. J. Nucl. Agric. Sci. 2017, 31, 906–912. [Google Scholar]
- Liu, H.Z.; Xiao, W.; Gu, Y.P.; Tao, Y.X.; Zhang, D.Y.; Du, H.; Shang, J.H. Polysaccharide from Sepia esculenta ink and cisplatin inhibit synergistically proliferation and metastasis of triple-negative breast cancer MDA-MB-231 cells. Iran. J. Basic Med. Sci. 2016, 19, 1292–1298. [Google Scholar] [PubMed]
- Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin. 2016, 66, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumar, S.; Yogeeta, S.K.; Subashini, R.; Devaki, T. Attenuation of cyclophosphamide induced toxicity by squalene in experimental rats. Chem. Biol. Interact. 2006, 3, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Selvakumar, E.; Prahalathan, C.; Sudharsan, P.T.; Varalakshmi, P. Protective effect of lipoic acid on cyclophosphamide-induced testicular toxicity. Clin. Chim. Acta 2006, 7, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Motawi, T.M.K.; Sadik, N.A.H.; Refaat, A. Cytoprotective effects of DL-alpha-lipoic acid or squalene on cyclophosphamide-induced oxidative injury: An experimental study on rat myocardium, testicles and urinary bladder. Food Chem. Toxicol. 2010, 48, 2326–2336. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Mahecha, A.; Hales, B.F.; Robaire, B. Effects of acute and chronic cyclophosphamide treatment on meiotic progression and the induction of DNA double-strand breaks in rat spermatocytes. Biol. Reprod. 2005, 72, 1297–1304. [Google Scholar] [CrossRef] [PubMed]
- Elangovan, N.; Chiou, T.J.; Tzeng, W.F.; Chu, S.T. Cyclophosphamide treatment causes impairment of sperm and its fertilizing ability in mice. Toxicology 2006, 222, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Liu, H.Z. Antioxidant ability of squid ink polysaccharides as well as their protective effects on DNA damage in vitro. Afr. J. Pharm. Pharmacol. 2013, 7, 1382–1388. [Google Scholar] [CrossRef]
- Yang, J.; Liu, K.X.; Qu, J.M.; Wang, X.D. The changes induced by cyclophosphamide in intestinal barrier and microflora in mice. Eur. J. Pharmacol. 2013, 714, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Huang, Y.K. Chemotherapeutics impairment on intestinal mucosal barrier and the prevention and treatment. Med. Recapitul. 2012, 18, 1325–1327. [Google Scholar]
- Round, J.L.; Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 2009, 9, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, A.J.; Harris, N.L. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 2004, 4, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Sun, Y.L.; Chen, D.H. Effects of chitin and sepia ink hybrid hemostatic sponge on the blood parameters of mice. Mar. Drugs 2014, 12, 2269–2281. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Lin, J.; Li, S.; Deng, Y.; Kong, S.; Hong, P.; Yang, P.; Liao, M.; Hu, Z. Preparation and evaluation of squid ink polysaccharide-chitosan as a wound-healing sponge. Mat. Sci. Eng. C Mater. 2018, 82, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Franz, S.A. Structure-activity relationship of antithrombotic polysaccharide derivatives. Int. J. Bio. Macromol. 1995, 17, 311–314. [Google Scholar] [CrossRef]
Species | Monosaccharides (Molar Ratio) | Primary Structure | Sulphate (Molar Ratio: Sulphate/Monsaccharides) | Literature |
---|---|---|---|---|
Illex argentinus | GlcA, GalNAc, Fuc (1:1:1) | (-3GlcAβ1-4(GalNAcα1-3)Fucα1-)n | 1/3 | [25,26] |
Ommastrephes bartrami | no | [27] | ||
Sepiella maindroni | Fuc, GalNAc, GlcA, Man (2:2:1:1) | (-4Fucβ1-4Fucβ1-4GalNAcα1-6 (GlcAα1-3)Manα1-4GalNAcα1-)n | unknown | [28] |
Sepia esculenta | GalN, Ara, Fuc (5:5:1) | unknown | unknown | [29] |
Species | Polysaccharides | Monosaccharides | Properties |
---|---|---|---|
Marine plants | alginate | l-guluronate, d-mannuronate | antibacterial, tissue regeneration |
carrageenan | d-galactose, d/l-galactose | anticoagulant, antitumour, immunomodulatory, antihyperlipidemic, antioxidant, antibacterial, antifungal, antiviral | |
fucoidan | l-fucose | antitumour, anticoagulant, anti-adhensive, antiviral | |
Marine animals | chitosan | d-glucosamine | antimicrobial, antitumour, anti-inflammatory |
chondroitin sulphate | glucuronic, N-acetyl-galactosamine | Improving function and elasticity of the articular cartilage, hemostasis and anti-inflammation, regulation of cell development, cell adhesion, cell proliferation, cell differentiation, anticoagulation | |
hyaluronan | N-acetyl-d-glucosamine, d-glucuronic acid | tissue regeneration, cell prolifernation, cell differentiation, cell migration |
Species | Sulfation | Properties | Targets | Literature |
---|---|---|---|---|
Illex argentinus | no | no antitumouractivity | Meth-A | [33] |
Ommastrephes bartrami | no | chemoprevention | intestinal tract (mice) | [34,35,36,37,38,39,40] |
yes | antitumour | HepG2 | [41] | |
anticoagulant | blood (in vitro experiment) | [42] | ||
Sepiella maindroni | yes | antitumour | SKOV-3, KB, HT-29, S180, B16F10 | [43,44,45,46,47] |
Sepia esculenta | no | chemoprevention | testis, ovary, spleen, kidney, liver, lung, heart, bone marrow (mice) | [29,48,49,50,51,52,53,54,55,56] |
antitumour | B16F10, MDA-MB-231 | [57,58] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Luo, P.; Liu, H. A Potential Adjuvant Agent of Chemotherapy: Sepia Ink Polysaccharides. Mar. Drugs 2018, 16, 106. https://doi.org/10.3390/md16040106
Li F, Luo P, Liu H. A Potential Adjuvant Agent of Chemotherapy: Sepia Ink Polysaccharides. Marine Drugs. 2018; 16(4):106. https://doi.org/10.3390/md16040106
Chicago/Turabian StyleLi, Fangping, Ping Luo, and Huazhong Liu. 2018. "A Potential Adjuvant Agent of Chemotherapy: Sepia Ink Polysaccharides" Marine Drugs 16, no. 4: 106. https://doi.org/10.3390/md16040106
APA StyleLi, F., Luo, P., & Liu, H. (2018). A Potential Adjuvant Agent of Chemotherapy: Sepia Ink Polysaccharides. Marine Drugs, 16(4), 106. https://doi.org/10.3390/md16040106