Toward the Synthesis and Improved Biopotential of an N-methylated Analog of a Proline-Rich Cyclic Tetrapeptide from Marine Bacteria
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Pharmacological Activity
3. Discussion
4. Materials and Methods
4.1. Procedure for the Preparation of N-Methylated Dipeptide Units (1, 2)
4.1.1. tert-Butyloxycarbonyl-l-Prolyl-l-N-Methyl-l-Leucine Methyl Ester (1)
4.1.2. tert-Butyloxycarbonyl-l-Prolyl-l-N-Methyl-Phenylalanine Methyl Ester (2)
4.2. Procedure for the Synthesis of Linear Tetrapeptide Segments (3)
tert-Butyloxycarbonyl-l-Prolyl-l-N-Methyl-l-Leucyl-l-Prolyl-l-N-Methyl-Phenylalanine Methyl Ester (3)
4.3. Procedure for the Synthesis of N-Methylated Tetracyclopeptide (4)
Cyclo (l-Prolyl-l-N-Methyl-l-Leucyl-l-Prolyl-l-N-Methyl-Phenylalanyl) (4)
4.4. Pharmacological Studies
4.4.1. Anthelmintic Screening
4.4.2. Antibacterial Screening
4.4.3. Antifungal Screening
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- König, G.M.; Kehraus, S.; Seibert, S.F.; Abdel-Lateff, A.; Müller, D. Natural products from marine organisms and their associated microbes. ChemBioChem 2006, 7, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Urda, C.; Fernández, R.; Rodríguez, J.; Pérez, M.; Jiménez, C.; Cuevas, C. Daedophamide, a cytotoxic cyclodepsipeptide from a Daedalopelta sp. sponge collected in Indonesia. J. Nat. Prod. 2017, 80, 3054–3059. [Google Scholar] [CrossRef] [PubMed]
- Pathak, D.; Dahiya, R. Cyclic peptides as novel antineoplastic agents: A review. J. Sci. Pharm. 2003, 4, 125–131. [Google Scholar]
- Fang, W.Y.; Dahiya, R.; Qin, H.L.; Mourya, R.; Maharaj, S. Natural proline-rich cyclopolypeptides from marine organisms: Chemistry, synthetic methodologies and biological status. Mar. Drugs 2016, 14, 194. [Google Scholar] [CrossRef] [PubMed]
- Langenfeld, A.; Blond, A.; Gueye, S.; Herson, P.; Nay, B.; Dupont, J.; Prado, S. Insecticidal cyclodepsipeptides from Beauveria felina. J. Nat. Prod. 2011, 74, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, R. Cyclopolypeptides with antifungal interest. Coll. Pharm. Commun. 2013, 1, 1–15. [Google Scholar]
- Dahiya, R.; Pathak, D. Cyclic peptides: New hope for antifungal therapy. Egypt. Pharm. J. (NRC) 2006, 5, 189–199. [Google Scholar]
- Daletos, G.; Kalscheuer, R.; Koliwer-Brandl, H.; Hartmann, R.; de Voogd, N.J.; Wray, V.; Lin, W.; Proksch, P. Callyaerins from the marine sponge Callyspongia aerizusa: Cyclic peptides with antitubercular activity. J. Nat. Prod. 2015, 78, 1910–1925. [Google Scholar] [CrossRef] [PubMed]
- Randazzo, A.; Bifulco, G.; Giannini, C.; Bucci, M.; Debitus, C.; Cirino, G.; Gomez-Paloma, L. Halipeptins A and B: Two novel potent anti-inflammatory cyclic depsipeptides from the Vanuatu marine sponge Haliclona species. J. Am. Chem. Soc. 2001, 123, 10870–10876. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Van Wagoner, R.M.; Harper, M.K.; Baker, H.L.; Hooper, J.N.; Bewley, C.A.; Ireland, C.M.; Mirabamides, E.H. HIV-inhibitory depsipeptides from the sponge Stelletta clavosa. J. Nat. Prod. 2011, 74, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, K.; Takada, K.; Okada, S.; Matsunaga, S. Nazumazoles D–F, cyclic pentapeptides that inhibit chymotrypsin, from the marine sponge Theonella swinhoei. J. Nat. Prod. 2016, 79, 1694–1697. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.; Puddick, J.; Prinsep, M.R.; Rottmann, M.; Tan, L.T. Lagunamides A and B: Cytotoxic and antimalarial cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 2010, 73, 1810–1814. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Wu, C.; Wang, W.; Cheng, Z.; Yao, G.; Liu, K.; Li, H.; Fang, L.; Su, W. Total synthesis and stereochemical assignment of gymnopeptides A. and B. Org. Lett. 2017, 19, 4420–4423. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Dahiya, R.; Khokra, S.L.; Mourya, R.; Chennupati, S.V.; Maharaj, S. Total synthesis and pharmacological investigation of cordyheptapeptide A. Molecules 2017, 22, E682. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, J.; Rechenmacher, F.; Kessler, H. N-methylation of peptides and proteins: An important element for modulating biological functions. Angew. Chem. Int. Ed. Engl. 2013, 52, 254–269. [Google Scholar] [CrossRef] [PubMed]
- Prashad, M.; Har, D.; Hu, B.; Kim, H.-Y.; Repic, O.; Blacklock, T.J. An efficient and practical N-methylation of amino acid derivatives. Org. Lett. 2003, 5, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Di Gioia, M.L.; Leggio, A.; Liguori, A.; Perri, F. Solid-phase synthesis of N-nosyl- and N-Fmoc-N-Methyl-α-amino acids. J. Org. Chem. 2007, 72, 3723–3728. [Google Scholar] [CrossRef] [PubMed]
- Aurelio, L.; Brownlee, R.T.C.; Hughes, A.B. Synthetic preparation of N-methyl-α-amino acids. Chem. Rev. 2004, 104, 5823–5846. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, J.; Gilon, C.; Hoffman, A.; Kessler, H. N-methylation of peptides: A new perspective in medicinal chemistry. Acc. Chem. Res. 2008, 41, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
- Rader, A.F.B.; Reichart, F.; Weinmuller, M.; Kessler, H. Improving oral bioavailability of cyclic peptides by N-methylation. Bioorg. Med. Chem. 2018, 26, 2766–2773. [Google Scholar] [CrossRef] [PubMed]
- Asfaw, H.; Laqua, K.; Walkowska, A.M.; Cunningham, F.; Martinez-Martinez, M.S.; Cuevas-Zurita, J.C.; Ballell-Pages, L.; Imming, P. Design, synthesis and structure-activity relationship study of Wollamide B; a new potential anti TB agent. PLoS ONE 2017, 12, e0176088. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, R.; Maheshwari, M.; Kumar, A. Toward the synthesis and biological evaluation of hirsutide. Monatsh. Chem. 2009, 140, 121–127. [Google Scholar] [CrossRef]
- Dahiya, R.; Pathak, D. First total synthesis and biological evaluation of halolitoralin A. J. Serb. Chem. Soc. 2007, 72, 101–107. [Google Scholar] [CrossRef]
- Dahiya, R.; Gautam, H. Solution phase synthesis and bioevaluation of cordyheptapeptide B. Bull. Pharm. Res. 2011, 1, 1–10. [Google Scholar]
- Dahiya, R.; Pathak, D. Synthesis, characterization and biological evaluation of halolitoralin BA natural cyclic peptide. Asian J. Chem. 2007, 19, 1499–1505. [Google Scholar]
- Rungprom, W.; Siwu, E.R.O.; Lambert, L.K.; Dechsakulwatana, C.; Barden, M.C.; Kokpol, U.; Blanchfield, J.T.; Siwu, E.R.O.; Kita, M.; Garson, M.J. Cyclic tetrapeptides from marine bacteria associated with the seaweed Diginea sp. and the sponge Halisarca ectofibrosa. Tetrahedron 2008, 64, 3147–3152. [Google Scholar] [CrossRef]
- Dahiya, R.; Gautam, H. Synthesis and pharmacological studies on a cyclooligopeptide from marine bacteria. Chin. J. Chem. 2011, 29, 1911–1916. [Google Scholar]
- Bodanszky, M.; Bodanszky, A. The Practice of Peptide Synthesis; Springer: New York, NY, USA, 1984; pp. 78–143. [Google Scholar]
- Dahiya, R.; Pathak, D.; Himaja, M.; Bhatt, S. First total synthesis and biological screening of hymenamide E. Acta Pharm. 2006, 56, 399–415. [Google Scholar] [PubMed]
- Das, P.; Himaja, M. Design and synthesis of 4-[2′-(5′-nitro) imidazolyl] benzoyl (N-methyl) amino acids and peptides. Int. J. Drug Dev. Res. 2010, 2, 364–370. [Google Scholar]
- Garg, L.C.; Atal, C.K. Anthelmintic activity of Myrsine africana. Indian J. Pharm. Sci. 1963, 59, 240–245. [Google Scholar]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Path. 1996, 45, 493–496. [Google Scholar] [CrossRef]
- Dahiya, R.; Singh, S.; Kaur, K.; Kaur, R. Total synthesis of a natural cyclooligopeptide from fruits of sugar-apples. Bull. Pharm. Res. 2017, 7, 151. [Google Scholar]
- Gagnon, M.G.; Roy, R.N.; Lomakin, I.B.; Florin, T.; Mankin, A.S.; Steitz, T.A. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition. Nucl. Acids Res. 2016, 44, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Matejuk, A.; Leng, Q.; Begum, M.D.; Woodle, M.C.; Scaria, P.; Chou, S.T.; Mixson, A.J. Peptide-based antifungal therapies against emerging infections. Drugs Future 2010, 35, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneria, M.J.; Rakholia, K.D.; Chanda, S.V. Role of medicinal plants and bioactive compounds against skin disease–causing microbes, with special emphasis on their mechanisms of action. In The Microbiology of Skin, Soft Tissue, Bone and Joint Infections; Kon, K., Rai, M., Eds.; Academic Press: Cambridge, MA, USA, 2017; Volume 2, pp. 255–269. [Google Scholar]
- Boddy, L. Interactions with humans and other animals. In The Fungi, 3rd ed.; Watkinson, S.C., Boddy, L., Money, N.P., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 293–336. [Google Scholar]
- Weedon, D. Mycoses and algal infections. In Weedon’s Skin Pathology, 3rd ed.; Weedon, D., Ed.; Churchill Livingstone: London, UK, 2010; pp. 581–602. [Google Scholar]
- Wu, M.; Li, X. Klebsiella pneumoniae and Pseudomonas aeruginosa. In Molecular Medical Microbiology, 2nd ed.; Tang, Y.W., Sussman, M., Liu, D., Poxton, I., Schwartzman, J., Eds.; Academic Press: Cambridge, MA, USA, 2015; Volume 3, pp. 1547–1564. [Google Scholar]
- Bodey, G.P.; Bolivar, R.; Fainstein, V.; Jadeja, L. Infections caused by Pseudomonas aeruginosa. Rev. Infect. Dis. 1983, 5, 279–313. [Google Scholar] [CrossRef] [PubMed]
- Kaletta, T.; Hengartner, M.O. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 2006, 5, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Barnett, R.E.; Bailey, D.C.; Hatfield, H.E.; Fitsanakis, V.A. Caenorhabditis elegans: A model organism for nutraceutical safety and toxicity evaluation. In Neutraceuticals: Efficacy, Safety, and Toxicity; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 341–354. [Google Scholar]
- Dahiya, R.; Mourya, R. Synthesis and antimicrobial screening of some novel halogenated phenoxyacetyl amino acid and peptide analogs. Bull. Pharm. Res. 2012, 2, 56–65. [Google Scholar]
- Dahiya, R.; Pathak, D. Synthetic studies on novel benzimidazolopeptides with antimicrobial, cytotoxic and anthelmintic potential. Eur. J. Med. Chem. 2007, 42, 772–798. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, R.; Singh, S.; Sharma, A.; Chennupati, S.V.; Maharaj, S. First total synthesis and biological screening of a proline-rich cyclopeptide from a Caribbean marine sponge. Mar. Drugs 2016, 14, 228. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, R.; Gautam, H. Toward the synthesis and biological screening of a cyclotetrapeptide from marine bacteria. Mar. Drugs 2011, 9, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, R.; Gautam, H. Total synthesis and antimicrobial activity of a natural cycloheptapeptide of marine-origin. Mar. Drugs 2010, 8, 2384–2394. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, R.; Singh, S. Synthesis, characterization and biological screening of diandrine A. Acta Pol. Pharm. 2017, 74, 873–880. [Google Scholar] [PubMed]
- Dahiya, R.; Singh, S. Toward the Synthesis and pharmacological screening of a natural cycloheptapeptide of plant origin. Nat. Prod. Commun. 2017, 12, 379–383. [Google Scholar]
- Dahiya, R.; Singh, S. Synthesis, characterization, and biological activity studies on fanlizhicyclopeptide A. Iran. J. Pharm. Res. 2017, 16, 1178–1186. [Google Scholar]
- Dahiya, R. Synthesis, spectroscopic and biological investigation of cyclic octapeptide: Cherimolacyclopeptide G. Turk. J. Chem. 2008, 32, 205–215. [Google Scholar]
- Dahiya, R.; Kumar, A.; Yadav, R. Synthesis and biological activity of peptide derivatives of iodoquinazolinones/nitroimidazoles. Molecules 2008, 13, 958–976. [Google Scholar] [CrossRef] [PubMed]
Compound Ә | Earthworm Species | |||||
---|---|---|---|---|---|---|
M. kon. | P. cor. | E. eug. | ||||
Mean Paralyzing Time (min) ‡ | Mean Death Time (min) ‡ | Mean Paralyzing Time (min) | Mean Death Time (min) | Mean Paralyzing Time (min) | Mean Death Time (min) | |
III * | 14.06 ± 0.36 | 22.09 ± 0.27 | 18.55 ± 0.19 | 29.44 ± 0.29 | 14.15 ± 0.26 | 24.32 ± 0.36 |
IV * | 10.25 ± 0.22 | 18.22 ± 0.14 | 12.36 ± 0.37 | 21.25 ± 0.14 | 12.34 ± 0.41 | 21.04 ± 0.21 |
3 | 13.43 ± 0.22 | 21.13 ± 0.49 | 17.08 ± 0.16 | 27.16 ± 0.22 | 12.57 ± 0.33 | 22.08 ± 0.25 |
4 | 08.12 ± 0.41 | 16.45 ± 0.26 | 09.55 ± 0.29 | 20.05 ± 0.44 | 09.50 ± 0.24 | 18.05 ± 0.39 |
Control # | - | - | - | - | - | - |
Mebendazole | 13.58 ± 0.38 | 22.59 ± 0.29 | 17.58 ± 0.40 | 29.56 ± 0.15 | 13.50 ± 0.44 | 24.09 ± 0.49 |
Compound Ә | Diameter of Zone of Inhibition (mm) | |||||||
---|---|---|---|---|---|---|---|---|
Bacterial Strains | Fungal Strains | |||||||
B. sub. | S. aur. | P. aer. | K. pne. | C. alb. | M. aud. | A. nig. | T. men. | |
III * | - | - | 12 (25) † | 17 (25) | 9 (12.5) | 17 (6) | - | 18 (6) |
IV * | - | - | 16 (25) | 19 (25) | 13 (12.5) | 25 (6) | - | 26 (6) |
3 | - | 10 (12.5) | 16 (12.5) | 18 (12.5) | 18 (6) | 19 (6) | - | 22 (6) |
4 | - | 12 (12.5) | 21 (12.5) | 23 (12.5) | 24 (6) | 27 (6) | - | 28 (6) |
Control # | - | - | - | - | - | - | - | - |
Gatifloxacin | 18 (12.5) † | 27 (6) | 23(6) | 26 (6) | - | - | - | - |
Griseofulvin | - | - | - | - | 20 (6) | 18 (6) | 20 (12.5) | 19 (6) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahiya, R.; Kumar, S.; Khokra, S.L.; Gupta, S.V.; Sutariya, V.B.; Bhatia, D.; Sharma, A.; Singh, S.; Maharaj, S. Toward the Synthesis and Improved Biopotential of an N-methylated Analog of a Proline-Rich Cyclic Tetrapeptide from Marine Bacteria. Mar. Drugs 2018, 16, 305. https://doi.org/10.3390/md16090305
Dahiya R, Kumar S, Khokra SL, Gupta SV, Sutariya VB, Bhatia D, Sharma A, Singh S, Maharaj S. Toward the Synthesis and Improved Biopotential of an N-methylated Analog of a Proline-Rich Cyclic Tetrapeptide from Marine Bacteria. Marine Drugs. 2018; 16(9):305. https://doi.org/10.3390/md16090305
Chicago/Turabian StyleDahiya, Rajiv, Suresh Kumar, Sukhbir Lal Khokra, Sheeba Varghese Gupta, Vijaykumar B. Sutariya, Deepak Bhatia, Ajay Sharma, Shamjeet Singh, and Sandeep Maharaj. 2018. "Toward the Synthesis and Improved Biopotential of an N-methylated Analog of a Proline-Rich Cyclic Tetrapeptide from Marine Bacteria" Marine Drugs 16, no. 9: 305. https://doi.org/10.3390/md16090305
APA StyleDahiya, R., Kumar, S., Khokra, S. L., Gupta, S. V., Sutariya, V. B., Bhatia, D., Sharma, A., Singh, S., & Maharaj, S. (2018). Toward the Synthesis and Improved Biopotential of an N-methylated Analog of a Proline-Rich Cyclic Tetrapeptide from Marine Bacteria. Marine Drugs, 16(9), 305. https://doi.org/10.3390/md16090305