Supercritical Carbon Dioxide Extraction of Astaxanthin, Lutein, and Fatty Acids from Haematococcus pluvialis Microalgae
Abstract
:1. Introduction
2. Materials and Methods
2.1. H. pluvialis Red Biomass and Chemicals
2.2. Experimental Apparatus
2.3. Experimental Procedure
2.4. Analytical Methods
3. Result and Discussion
3.1. Effect of Different CO2 Flow Rate at Different Temperatures and Pressure on Astaxanthin Recovery and Purity over Extraction Time
3.2. Effect of Different CO2 Flow Rate with Different Temperatures on Lutein Recovery and Purity over Extraction Time
3.3. Effect of Temperature and Pressure on Global Recovery of Astaxanthin and Lutein
3.4. Effect of Temperature and Pressure on Recovery of FAs
3.5. Comparison of Astaxanthin, Lutein, and FAs Global Recovery at Different Operative Conditions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gordon, J.M.; Polle, J.E.W. Ultrahigh bioproductivity from algae. Appl. Microbiol. Biotechnol. 2007, 76, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Leu, S.; Boussiba, S. Advances in the Production of High-Value Products by Microalgae. Ind. Biotechnol. 2014, 10, 169–183. [Google Scholar] [CrossRef]
- Molino, A.; Rimauro, J.; Casella, P.; Cerbone, A.; Larocca, V.; Chianese, S.; Karatza, D.; Mehariya, S.; Ferraro, A.; Hristoforou, E.; et al. Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using Generally Recognized as Safe solvents and accelerated extraction. J. Biotechnol. 2018, 283, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-M.D.; Chen, C.-C.; Huynh, P.; Chang, J.-S. Exploring the potential of using algae in cosmetics. Bioresour. Technol. 2015, 184, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-M.D.; Li, X.-C.; Lee, D.-J.; Chang, J.-S. Potential biomedical applications of marine algae. Bioresour. Technol. 2017, 244, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes, R.L.; Coelho, J.P.; Fernandes, H.L.; Marrucho, I.J.; Cabral, J.M.S.; Novais, J.M.; Palavra, A.F. Applications of supercritical CO2 extraction to microalgae and plants. J. Chem. Technol. Biotechnol. 1995, 62, 53–59. [Google Scholar] [CrossRef]
- Yen, H.-W.; Chiang, W.-C.; Sun, C.-H. Supercritical fluid extraction of lutein from Scenedesmus cultured in an autotrophical photobioreactor. J. Taiwan Inst. Chem. Eng. 2012, 43, 53–57. [Google Scholar] [CrossRef]
- Chauton, M.S.; Reitan, K.I.; Norsker, N.H.; Tveterås, R.; Kleivdal, H.T. A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: Research challenges and possibilities. Aquaculture 2015, 436, 95–103. [Google Scholar] [CrossRef]
- Liu, J.; Chen, F. Biology and Industrial Applications of Chlorella: Advances and Prospects. In Microalgae Biotechnology; Posten, C., Feng Chen, S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–35. ISBN 978-3-319-23808-1. [Google Scholar]
- Rawat, I.; Ranjith Kumar, R.; Mutanda, T.; Bux, F. Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Appl. Energy 2013, 103, 444–467. [Google Scholar] [CrossRef]
- Venkata Subhash, G.; Rajvanshi, M.; Navish Kumar, B.; Govindachary, S.; Prasad, V.; Dasgupta, S. Carbon streaming in microalgae: Extraction and analysis methods for high value compounds. Bioresour. Technol. 2017, 244, 1304–1316. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Qi, Z.; Burdyny, T.; Kong, T.; Sinton, D. Low pressure supercritical CO2 extraction of astaxanthin from Haematococcus pluvialis demonstrated on a microfluidic chip. Bioresour. Technol. 2018, 250, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.-L.; Wang, H.-M.; Chen, C.-Y.; Chang, J.-S. Extraction of astaxanthin from Haematococcus pluvialis by supercritical carbon dioxide fluid with ethanol modifier. Eng. Life Sci. 2012, 12, 638–647. [Google Scholar] [CrossRef]
- Brown, D.R.; Gough, L.A.; Deb, S.K.; Sparks, S.A.; McNaughton, L.R. Astaxanthin in Exercise Metabolism, Performance and Recovery: A Review. Front. Nutr. 2018, 4, 76. [Google Scholar] [CrossRef] [PubMed]
- Heimann, K.; Huerlimann, R. Microalgal Classification: Major Classes and Genera of Commercial Microalgal Species. In Handbook of Marine Microalgae; Kim, S.-K., Ed.; Academic Press: Boston, MA, USA, 2015; pp. 25–41. ISBN 978-0-12-800776-1. [Google Scholar]
- Chekanov, K.; Lobakova, E.; Selyakh, I.; Semenova, L.; Sidorov, R.; Solovchenko, A. Accumulation of Astaxanthin by a New Haematococcus pluvialis Strain BM1 from the White Sea Coastal Rocks (Russia). Mar. Drugs 2014, 12, 4504–4520. [Google Scholar] [CrossRef] [PubMed]
- Sarada, R.; Tripathi, U.; Ravishankar, G.A. Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochem. 2002, 37, 623–627. [Google Scholar] [CrossRef]
- Hagen, C.; Siegmund, S.; Braune, W. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur. J. Phycol. 2002, 37, 217–226. [Google Scholar] [CrossRef]
- Lee, S.Y.; Cho, J.M.; Chang, Y.K.; Oh, Y.-K. Cell disruption and lipid extraction for microalgal biorefineries: A review. Bioresour. Technol. 2017, 244, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Show, K.-Y.; Lee, D.-J.; Tay, J.-H.; Lee, T.-M.; Chang, J.-S. Microalgal drying and cell disruption—Recent advances. Bioresour. Technol. 2015, 184, 258–266. [Google Scholar] [CrossRef] [PubMed]
- De Melo, M.M.R.; Silvestre, A.J.D.; Silva, C.M. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. J. Supercrit. Fluids 2014, 92, 115–176. [Google Scholar] [CrossRef]
- Ruen-ngam, D.; Shotipruk, A.; Pavasant, P. Comparison of Extraction Methods for Recovery of Astaxanthin from Haematococcus pluvialis. Sep. Sci. Technol. 2010, 46, 64–70. [Google Scholar] [CrossRef]
- Shah, M.M.R.; Liang, Y.; Cheng, J.J.; Daroch, M. Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Front. Plant Sci. 2016, 7, 531. [Google Scholar] [CrossRef] [PubMed]
- Joana Gil-Chávez, G.; Villa, J.A.; Fernando Ayala-Zavala, J.; Basilio Heredia, J.; Sepulveda, D.; Yahia, E.M.; González-Aguilar, G.A. Technologies for Extraction and Production of Bioactive Compounds to be Used as Nutraceuticals and Food Ingredients: An Overview. Compr. Rev. Food Sci. Food Saf. 2013, 12, 5–23. [Google Scholar] [CrossRef] [Green Version]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.-H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Poojary, M.M.; Barba, J.F.; Aliakbarian, B.; Donsì, F.; Pataro, G.; Dias, A.D.; Juliano, P. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds. Mar. Drugs 2016, 14, 214. [Google Scholar] [CrossRef] [PubMed]
- Crampon, C.; Boutin, O.; Badens, E. Supercritical Carbon Dioxide Extraction of Molecules of Interest from Microalgae and Seaweeds. Ind. Eng. Chem. Res. 2011, 50, 8941–8953. [Google Scholar] [CrossRef]
- Mendes, R.L.; Fernandes, H.L.; Coelho, J.; Reis, E.C.; Cabral, J.M.S.; Novais, J.M.; Palavra, A.F. Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris. Food Chem. 1995, 53, 99–103. [Google Scholar] [CrossRef]
- Mendes, R.L.; Nobre, B.P.; Cardoso, M.T.; Pereira, A.P.; Palavra, A.F. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg. Chim. Acta 2003, 356, 328–334. [Google Scholar] [CrossRef]
- Palavra, A.M.F.; Coelho, J.P.; Barroso, J.G.; Rauter, A.P.; Fareleira, J.M.N.A.; Mainar, A.; Urieta, J.S.; Nobre, B.P.; Gouveia, L.; Mendes, R.L.; et al. Supercritical carbon dioxide extraction of bioactive compounds from microalgae and volatile oils from aromatic plants. J. Supercrit. Fluids 2011, 60, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Sovová, H. Rate of the vegetable oil extraction with supercritical CO2—I. Modelling of extraction curves. Chem. Eng. Sci. 1994, 49, 409–414. [Google Scholar] [CrossRef]
- Kitzberger, C.S.G.; Lomonaco, R.H.; Michielin, E.M.Z.; Danielski, L.; Correia, J.; Ferreira, S.R.S. Supercritical fluid extraction of shiitake oil: Curve modeling and extract composition. J. Food Eng. 2009, 90, 35–43. [Google Scholar] [CrossRef]
- Herrero, M.; Mendiola, J.A.; Cifuentes, A.; Ibáñez, E. Supercritical fluid extraction: Recent advances and applications. J. Chromatogr. A 2010, 1217, 2495–2511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattea, F.; Martín, Á.; Cocero, M.J. Carotenoid processing with supercritical fluids. J. Food Eng. 2009, 93, 255–265. [Google Scholar] [CrossRef]
- Smith, R.M. Supercritical fluids in separation science—The dreams, the reality and the future. J. Chromatogr. A 1999, 856, 83–115. [Google Scholar] [CrossRef]
- Nobre, B.; Marcelo, F.; Passos, R.; Beirão, L.; Palavra, A.; Gouveia, L.; Mendes, R. Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. Eur. Food Res. Technol. 2006, 223, 787–790. [Google Scholar] [CrossRef]
- Thana, P.; Machmudah, S.; Goto, M.; Sasaki, M.; Pavasant, P.; Shotipruk, A. Response surface methodology to supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis. Bioresour. Technol. 2008, 99, 3110–3115. [Google Scholar] [CrossRef] [PubMed]
- Valderrama, J.O.; Perrut, M.; Majewski, W. Extraction of Astaxantine and Phycocyanine from Microalgae with Supercritical Carbon Dioxide. J. Chem. Eng. Data 2003, 48, 827–830. [Google Scholar] [CrossRef]
- Kitada, K.; Machmudah, S.; Sasaki, M.; Goto, M.; Nakashima, Y.; Kumamoto, S.; Hasegawa, T. Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. J. Chem. Technol. Biotechnol. 2008, 84, 657–661. [Google Scholar] [CrossRef]
- Cerón-García, M.D.C.; Campos-Pérez, I.; Macías-Sánchez, M.D.; Bermejo-Román, R.; Fernández-Sevilla, J.M.; Molina-Grima, E. Stability of Carotenoids in Scenedesmus almeriensis Biomass and Extracts under Various Storage Conditions. J. Agric. Food Chem. 2010, 58, 6944–6950. [Google Scholar] [CrossRef]
- Ishaq, A.G.; Matias-Peralta, H.M.; Basri, H. Bioactive Compounds from Green Microalga-Scenedesmus and Its Potential Applications: A Brief Review. Pertanika J. Trop. Agric. Sci. 2016, 39, 1–15. [Google Scholar]
- Macías-Sánchez, M.D.; Fernandez-Sevilla, J.M.; Fernández, F.G.A.; García, M.C.C.; Grima, E.M. Supercritical fluid extraction of carotenoids from Scenedesmus almeriensis. Food Chem. 2010, 123, 928–935. [Google Scholar] [CrossRef]
- Sánchez, J.F.; Fernández-Sevilla, J.M.; Acién, F.G.; Cerón, M.C.; Pérez-Parra, J.; Molina-Grima, E. Biomass and lutein productivity of Scenedesmus almeriensis: Influence of irradiance, dilution rate and temperature. Appl. Microbiol. Biotechnol. 2008, 79, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Machmudah, S.; Shotipruk, A.; Goto, M.; Sasaki, M.; Hirose, T. Extraction of Astaxanthin from Haematococcus pluvialis Using Supercritical CO2 and Ethanol as Entrainer. Ind. Eng. Chem. Res. 2006, 45, 3652–3657. [Google Scholar] [CrossRef]
- Krichnavaruk, S.; Shotipruk, A.; Goto, M.; Pavasant, P. Supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis with vegetable oils as co-solvent. Bioresour. Technol. 2008, 99, 5556–5560. [Google Scholar] [CrossRef] [PubMed]
- Tachaprutinun, A.; Udomsup, T.; Luadthong, C.; Wanichwecharungruang, S. Preventing the thermal degradation of astaxanthin through nanoencapsulation. Int. J. Pharm. 2009, 374, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Ambati, R.R.; Phang, S.-M.; Ravi, S.; Aswathanarayana, R.G. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review. Mar. Drugs 2014, 12, 128–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruen-Ngam, D.; Shotipruk, A.; Pavasant, P.; Machmudah, S.; Goto, M. Selective extraction of lutein from alcohol treated Chlorella vulgaris by supercritical CO2. Chem. Eng. Technol. 2012, 35, 255–260. [Google Scholar] [CrossRef]
- Vasapollo, G.; Longo, L.; Rescio, L.; Ciurlia, L. Innovative supercritical CO2 extraction of lycopene from tomato in the presence of vegetable oil as co-solvent. J. Supercrit. Fluids 2004, 29, 87–96. [Google Scholar] [CrossRef]
- Shilpi, A.; Shivhare, U.S.; Basu, S. Supercritical CO2 Extraction of Compounds with Antioxidant Activity from Fruits and Vegetables Waste—A Review. Focus. Mod. Food Ind. 2013, 2, 43–62. [Google Scholar]
- Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalak, I.; Chojnacka, K. Algae as production systems of bioactive compounds. Eng. Life Sci. 2014, 15, 160–176. [Google Scholar] [CrossRef]
Operative Conditions | |||
---|---|---|---|
Temperature (°C) | Pressure (bar) | CO2 Flow Rate (g/min) | Biomass Load (g) |
50 | 100 | 3.62 | 1.38 |
50 | 100 | 14.48 | 1.36 |
50 | 400 | 3.62 | 1.37 |
50 | 400 | 14.48 | 1.38 |
50 | 550 | 3.62 | 1.38 |
50 | 550 | 14.48 | 1.36 |
65 | 100 | 3.62 | 1.34 |
65 | 100 | 14.48 | 1.34 |
65 | 400 | 3.62 | 1.33 |
65 | 400 | 14.48 | 1.32 |
65 | 550 | 3.62 | 1.35 |
65 | 550 | 14.48 | 1.34 |
80 | 100 | 3.62 | 1.35 |
80 | 100 | 14.48 | 1.34 |
80 | 400 | 3.62 | 1.31 |
80 | 400 | 14.48 | 1.38 |
80 | 550 | 3.62 | 1.34 |
80 | 550 | 14.48 | 1.34 |
Operative Conditions | Total Extraction Yield (mg/g) | ||
---|---|---|---|
Temperature (°C) | Pressure (bar) | CO2 Flow Rate (g/min) | |
50 | 100 | 3.62 | 0.1 |
50 | 100 | 14.48 | 17.5 |
50 | 400 | 3.62 | 136.4 |
50 | 400 | 14.48 | 20.7 |
50 | 550 | 3.62 | 237.4 |
50 | 550 | 14.48 | 53.2 |
65 | 100 | 3.62 | 4.8 |
65 | 100 | 14.48 | 1.4 |
65 | 400 | 3.62 | 279.2 |
65 | 400 | 14.48 | 34.6 |
65 | 550 | 3.62 | 185.8 |
65 | 550 | 14.48 | 15.6 |
80 | 100 | 3.62 | 10.9 |
80 | 100 | 14.48 | 8.5 |
80 | 400 | 3.62 | 160.5 |
80 | 400 | 14.48 | 28.0 |
80 | 550 | 3.62 | 60.4 |
80 | 550 | 14.48 | 189.5 |
Class of Fatty Acids (mg/g) | Operative Temperature (°C) | Theoretical Content | ||||||||
50 | 65 | 80 | ||||||||
Operative Pressure (bar) at CO2 Flow Rate of 3.62 g/min | ||||||||||
100 | 400 | 550 | 100 | 400 | 550 | 100 | 400 | 550 | ||
SFAs | nd | 0.64 | 5.5 | 0.42 | 4.8 | 5.57 | 0.41 | 0.38 | 0.47 | 6.45 |
MUFAs | nd | 0.49 | 0.35 | <Ldl | 0.94 | 4.92 | <Ldl | 0.27 | 0.12 | 5.44 |
PUFAs | nd | 8.38 | 9.3 | <Ldl | 9.87 | 10.92 | <Ldl | 4.57 | 8.98 | 11.06 |
Operative Pressure (bar) at CO2 Flow Rate of 14.48 g/min | ||||||||||
100 | 400 | 550 | 100 | 400 | 550 | 100 | 400 | 550 | ||
SFAs | nd | 0.58 | 3.97 | nd | 5.57 | 5.46 | nd | 0.41 | 0.49 | 6.45 |
MUFAs | nd | 4.56 | 5.25 | nd | 4.9 | 4.97 | nd | 0.84 | 2.57 | 5.44 |
PUFAs | nd | 9.28 | 10.97 | nd | 10.9 | 10.85 | nd | 6.32 | 8.08 | 11.06 |
Recovery (mg/gdry biomass) | Temperature (°C) | CO2 Flow Rate of 3.62 g/min | CO2 Flow Rate of 14.48 g/min | ||||
---|---|---|---|---|---|---|---|
Pressures (bar) | |||||||
100 | 400 | 550 | 100 | 400 | 550 | ||
Astaxanthin | 50 | 0.10 | 19.16 | 19.72 | 0.01 | 9.55 | 11.94 |
65 | 0.06 | 16.34 | 7.24 | 0.07 | 8.91 | 4.62 | |
80 | 1.16 | 15.00 | 2.78 | 0.25 | 6.58 | 1.79 | |
Lutein | 50 | 0.08 | 3.60 | 4.03 | 0.08 | 2.53 | 1.50 |
65 | 0.00 | 2.63 | 2.96 | <Ldl | 0.71 | 0.01 | |
80 | 0.16 | 1.36 | 0.12 | <Ldl | 0.49 | 0.15 | |
FAs | 50 | nd | 9.5 | 15.15 | nd | 14.43 | 20.19 |
65 | 0.42 | 15.6 | 21.41 | nd | 21.37 | 21.29 | |
80 | 0.41 | 5.21 | 9.57 | nd | 7.57 | 11.14 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanzo, G.D.; Mehariya, S.; Martino, M.; Larocca, V.; Casella, P.; Chianese, S.; Musmarra, D.; Balducchi, R.; Molino, A. Supercritical Carbon Dioxide Extraction of Astaxanthin, Lutein, and Fatty Acids from Haematococcus pluvialis Microalgae. Mar. Drugs 2018, 16, 334. https://doi.org/10.3390/md16090334
Sanzo GD, Mehariya S, Martino M, Larocca V, Casella P, Chianese S, Musmarra D, Balducchi R, Molino A. Supercritical Carbon Dioxide Extraction of Astaxanthin, Lutein, and Fatty Acids from Haematococcus pluvialis Microalgae. Marine Drugs. 2018; 16(9):334. https://doi.org/10.3390/md16090334
Chicago/Turabian StyleSanzo, Giuseppe Di, Sanjeet Mehariya, Maria Martino, Vincenzo Larocca, Patrizia Casella, Simeone Chianese, Dino Musmarra, Roberto Balducchi, and Antonio Molino. 2018. "Supercritical Carbon Dioxide Extraction of Astaxanthin, Lutein, and Fatty Acids from Haematococcus pluvialis Microalgae" Marine Drugs 16, no. 9: 334. https://doi.org/10.3390/md16090334
APA StyleSanzo, G. D., Mehariya, S., Martino, M., Larocca, V., Casella, P., Chianese, S., Musmarra, D., Balducchi, R., & Molino, A. (2018). Supercritical Carbon Dioxide Extraction of Astaxanthin, Lutein, and Fatty Acids from Haematococcus pluvialis Microalgae. Marine Drugs, 16(9), 334. https://doi.org/10.3390/md16090334