Nano-in-Micro Delivery System Prepared by Co-Axial Air Flow for Oral Delivery of Conjugated Linoleic Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Amphiphilic Chitosan
2.2. Characterization of Chitosan Nanoparticles
2.3. Characterization of Nano-in-Micro Delivery System (NiMDS)
2.4. In Vitro Release Studies of Loaded CLA
2.5. Release Kinetics
2.6. In vitro Cell Viability Assay
3. Materials and Methods
3.1. Materials
3.2. Synthesis and Characterization of Amphiphilic Chitosan
3.3. Preparation of CLA-Loaded Nanoparticles
3.4. Preparation of CLA-Loaded NiMDS
3.5. Characterization of Nanoparticles and NiMDS
3.6. CLA Loading Efficiency and Loading Capacity
3.7. In Vitro Release Study
3.8. Release Kinetics
3.9. In Vitro Cytotoxicity Assay
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, Q.; Liu, C.G.; Huang, Z.H.; Xue, F.F. Preparation and characterization of nanoparticles based on hydrophobic alginate derivative as carriers for sustained release of vitamin D3. J. Agric. Food Chem. 2011, 59, 1962–1967. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Wang, R.; Wang, H.; Sheng, K.; Liu, C.; Hao, Q.; Aijin, M.; Lei, Z. Formulation and characterization of chitosan hydrochloride and carboxymethyl chitosan encapsulated quercetin nanoparticles for controlled applications in foods system and simulated gastrointestinal condition. Food Hydrocoll. 2018, 84, 450–457. [Google Scholar] [CrossRef]
- Moreira, A.F.; Dias, D.R.; Costa, E.C.; Correi, I.J. Thermo- and pH-responsive nano-in-micro particles for combinatorial drug delivery to cancer cells. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Eur. J. Pharm. Sci. 2017, 104, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Kriwet, B.; Walter, E.; Kissel, T. Synthesis of bioadhesivepoly(acrylic acid) nano- and microparticles using an inverse emulsion polymerization method for the entrapment of hydrophilic drug candidates. J. Control Release 1998, 56, 149–158. [Google Scholar] [CrossRef]
- Joshi, A.; Keerthiprasad, R.; Jayant, R.D.; Srivastava, R. Nano-in-micro alginate based hybrid particles. Carbohyd. Polym. 2010, 81, 790–798. [Google Scholar] [CrossRef]
- Sen, D.; Bahadur, J.; Das, A.; Mazumder, S.; Melo, J.S.; Frielinghaus, H.; Loidl, R.E. coli imprinted nano-structured silica micro-granules by spray drying: Optimization of calcination temperature. Colloids Surf. B Biointerfaces 2015, 127, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, M.; Ranjbarian, S. Production of micro- and nano-composite particles by supercritical carbon dioxide. J. Supercrit. Fluid 2007, 40, 263–283. [Google Scholar] [CrossRef]
- Prüsse, U.; Bilancetti, L.; Bučko, M.; Bugarski, B.; Bukowski, J.; Gemeiner, P.; Lewińska, D.; Manojlovic, V.; Massart, B.; Nastruzzi, C.; et al. Comparison of different technologies for alginate beads production. Chem. Pap. 2008, 62, 364–374. [Google Scholar] [CrossRef]
- Sarmento, B.; Ribeiro, A.; Veiga, F.; Sampaio, P.; Neufeld, R.; Ferreira, D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res. 2007, 24, 2198–2206. [Google Scholar] [CrossRef]
- Onuigbo, E.; Iseghohimhen, J.; Chah, K.; Gyang, M.; Attama, A. Chitosan/alginate microparticles for the oral delivery of fowl typhoid vaccine: Innate and acquired immunity. Vaccine 2018, 36, 4973–4978. [Google Scholar] [CrossRef]
- Rahman, M.M.; Halade, G.V.; El Jamali, A.; Fernandes, G. Conjugated linoleic acid (CLA) prevents age-associated skeletal muscle loss. Biochem. Biophys. Res. Commun. 2009, 383, 513–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liew, C.; Schut, H.A.J.; Chin, S.F.; Pariza, M.W.; Dashwood, R.H. Protection of conjugated linoleic acids against 2-amino-3-methylimidazo[4,5-f]quinoline-induced colon carcinogenesis in the F344 rat: A study of inhibitory mechanisms. Carcinogenesis 1995, 16, 3037–3043. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.K.; Flintoff-Dye, N.; Omaye, S.T. Conjugated linoleic acid modulation of risk factors associated with atherosclerosis. Nutr. Metab. 2008, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Scalerandi, M.V.; Gonzalez, M.A.; Saín, J.; Fariña, A.C.; Bernal, C.A. Effect of conjugated linoleic acid mixtures and different edible oils in body composition and lipid regulation in mice. Nutr. Hosp. 2014, 29, 591–601. [Google Scholar] [PubMed]
- Yuan, H.; Lu, L.J.; Du, Y.Z.; Hu, F.Q. Stearic acid-g-chitosan polymeric micelle for oral drug delivery: In vitro transport and in vivo absorption. Mol. Pharm. 2011, 8, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.G.; Desai, K.G.; Chen, X.G.; Park, H.J. Linolenic acid-modified chitosan for formation of self-assembled nanoparticles. J. Agric. Food Chem. 2005, 53, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Boels, L.; Witkamp, G.J. Carboxymethyl inulin biopolymers: A green alternative for phosphonate calcium carbonate growth inhibitors. Cryst. Growth Des. 2011, 11, 4155–4165. [Google Scholar] [CrossRef]
- Sartori, C.; Finch, D.S.; Ralph, B.; Gilding, K. Determination of the cation content of alginate thin films by FT i.r. spectroscopy. Polymer 1997, 38, 43–51. [Google Scholar] [CrossRef]
- Li, P.; Dai, Y.N.; Zhang, J.P.; Wang, A.Q.; Wei, Q. Chitosan-alginate nanoparticles as a novel drug delivery system for Nifedipine. Int. J. Biomed. Sci. 2008, 4, 221–228. [Google Scholar]
- Buwalda, S.J.; Vermonden, T.; Hennink, W.E. Hydrogels for therapeutic delivery: Current developments and future directions. Biomacromolecules 2017, 18, 316–330. [Google Scholar] [CrossRef]
- Naeem, M.; Choi, M.; Cao, J.; Lee, Y.; Ikram, M.; Yoon, S.; Lee, J.; Moon, H.R.; Kim, M.S.; Jung, Y.; et al. Colon-targeted delivery of budesonide using dual pH- and time-dependent polymeric nanoparticles for colitis therapy. Drug Des. Dev. Ther. 2015, 9, 3789–3799. [Google Scholar]
- Chakraborty, S.; Mitra, M.K.; Chaudhuri, M.G.; Sa, B.; Das, S.; Dey, R. Study of the release mechanism of Terminalia chebula extract from nanoporous silica gel. Appl. Biochem. Biotechnol. 2012, 168, 2043–2056. [Google Scholar] [CrossRef] [PubMed]
Sample | Degree of Substitution (%) | Critical Aggregation Concentration (mg/mL) | Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|---|---|
CS–SA13 | 13.34 | 0.037 | 265.7 ± 7.5 | 0.2 ± 0.1 | 27.8 ± 0.8 |
CS–SA18 | 18.02 | 0.031 | 238.8 ± 5.8 | 0.3 ± 0.1 | 25.5 ± 1.7 |
CS–SA21 | 21.36 | 0.027 | 219.0 ± 6.3 | 0.3 ± 0.1 | 23.6 ± 0.1 |
Sample | Chitosan Nanoparticles:Alginate (mL:mL) | Size (μm) | Relative Viscosity (η) | Loading Efficiency (%) | Loading Capacity (%) |
---|---|---|---|---|---|
S0 | 0:10 | 70.99 ± 2.575 | 89.70 ± 0.65 | 80.12 ± 0.95 | 0.15 ± 0.02 |
S1 | 2.0:10 | 130.21 ± 6.209 | 99.13 ± 0.33 | 84.05 ± 0.65 | 0.17 ± 0.02 |
S2 | 2.5:10 | 133.90 ± 5.304 | 102.41 ± 0.74 | 88.96 ± 1.04 | 0.22 ± 0.01 |
S3 | 3.0:10 | 153.26 ± 9.324 | 104.71 ± 0.46 | 95.62 ± 1.20 | 0.31 ± 0.01 |
Sample | Zero-Order R2 | First-Order R2 | Higuchi’s Plot R2 | Ritger-Peppas | |
---|---|---|---|---|---|
R2 | n Value | ||||
S0 0-2h | 0.9288 | 0.9985 | 0.9734 | 0.9695 | 0.7406 |
S3 0-2h | 0.8403 | 0.8816 | 0.9865 | 0.9903 | 0.4168 |
S3 2-7h | 0.9816 | 0.9951 | 0.9975 | 0.9922 | 0.7338 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Xue, F.; Qu, J.; Liu, L.; Hu, R.; Liu, C. Nano-in-Micro Delivery System Prepared by Co-Axial Air Flow for Oral Delivery of Conjugated Linoleic Acid. Mar. Drugs 2019, 17, 15. https://doi.org/10.3390/md17010015
Li Q, Xue F, Qu J, Liu L, Hu R, Liu C. Nano-in-Micro Delivery System Prepared by Co-Axial Air Flow for Oral Delivery of Conjugated Linoleic Acid. Marine Drugs. 2019; 17(1):15. https://doi.org/10.3390/md17010015
Chicago/Turabian StyleLi, Qian, Fangfang Xue, Junle Qu, Liwei Liu, Rui Hu, and Chenguang Liu. 2019. "Nano-in-Micro Delivery System Prepared by Co-Axial Air Flow for Oral Delivery of Conjugated Linoleic Acid" Marine Drugs 17, no. 1: 15. https://doi.org/10.3390/md17010015
APA StyleLi, Q., Xue, F., Qu, J., Liu, L., Hu, R., & Liu, C. (2019). Nano-in-Micro Delivery System Prepared by Co-Axial Air Flow for Oral Delivery of Conjugated Linoleic Acid. Marine Drugs, 17(1), 15. https://doi.org/10.3390/md17010015