Properties and Applications of Extremozymes from Deep-Sea Extremophilic Microorganisms: A Mini Review
Abstract
:1. Deep-Sea Extremophilic Microorganisms: A Novel Source of Extremozymes
2. Strategies for Discovering Extremozymes in Deep-Sea Environments
3. Properties and Applications of Extremozymes Isolated from Deep-Sea Extremophilic Microorganisms
3.1. Deep-Sea Thermophilic Enzymes
3.2. Deep-Sea Psychrophilic Enzymes
3.3. Deep-Sea Halophilic Enzymes
3.4. Deep-Sea Piezophilic Enzymes
4. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Sogin, M.L.; Morrison, H.G.; Huber, J.A.; Welch, D.M.; Huse, S.M.; Neal, P.R.; Arrieta, J.M.; Herndl, G.J. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. USA 2006, 103, 12115–12120. [Google Scholar] [CrossRef] [PubMed]
- Horikoshi, K.; Bull, A.T. Prologue: Definition, categories, distribution, origin and evolution, pioneering studies, and emerging fields of extremophiles. In Extremophiles Handbook; Springer: Tokyo, Janpan, 2011; pp. 3–15. [Google Scholar]
- Harrison, J.P.; Gheeraert, N.; Tsigelnitskiy, D.; Cockell, C.S. The limits for life under multiple extremes. Trends Microbiol. 2013, 21, 204–212. [Google Scholar] [CrossRef]
- Cowan, D.A.; Ramond, J.-B.; Makhalanyane, T.P.; De Maayer, P. Metagenomics of extreme environments. Curr. Opin. Microbiol. 2015, 25, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Cavicchioli, R.; Amils, R.; Wagner, D.; McGenity, T. Life and applications of extremophiles. Environ. Microbiol. 2011, 13, 1903–1907. [Google Scholar] [CrossRef] [PubMed]
- Nath, I.A.; Bharathi, P.L. Diversity in transcripts and translational pattern of stress proteins in marine extremophiles. Extremophiles 2011, 15, 129–153. [Google Scholar] [CrossRef]
- Dalmaso, G.; Ferreira, D.; Vermelho, A. Marine extremophiles: A source of hydrolases for biotechnological applications. Mar. Drugs 2015, 13, 1925–1965. [Google Scholar] [CrossRef]
- Zhang, C.; Kim, S.K. Research and application of marine microbial enzymes: Status and prospects. Mar. Drugs 2010, 8, 1920–1934. [Google Scholar] [CrossRef]
- Samuel, P.; Raja, A.; Prabakaran, P. Investigation and application of marine derived microbial enzymes: Status and prospects. Int. J. Ocean. Mar. Ecol. Syst. 2012, 1, 1–10. [Google Scholar] [CrossRef]
- Raddadi, N.; Cherif, A.; Daffonchio, D.; Neifar, M.; Fava, F. Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl. Microbiol. Biot. 2015, 99, 7907–7913. [Google Scholar] [CrossRef]
- Van Den Burg, B. Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 2003, 6, 213–218. [Google Scholar] [CrossRef]
- Irwin, J.A.; Baird, A.W. Extremophiles and their application to veterinary medicine. Irish Vet. J. 2004, 57, 348. [Google Scholar] [CrossRef] [PubMed]
- Haki, G.; Rakshit, S. Developments in industrially important thermostable enzymes: A review. Bioresour. Technol. 2003, 89, 17–34. [Google Scholar] [CrossRef]
- Gao, B.; Li, L.; Wu, H.; Zhu, D.; Jin, M.; Qu, W.; Zeng, R. A novel strategy for efficient agaro-oligosaccharide production based on the enzymatic degradation of crude agarose in Flammeovirga pacifica WPAGA1. Front. Microbiol. 2019, 10, 1231. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, M.; Golyshina, O.; Beloqui, A.; Golyshin, P.N. Mining enzymes from extreme environments. Curr. Opin. Microbiol. 2007, 10, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Amann, R.I.; Binder, B.J.; Olson, R.J.; Chisholm, S.W.; Devereux, R.; Stahl, D.A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 1990, 56, 1919–1925. [Google Scholar]
- Madhavan, A.; Sindhu, R.; Parameswaran, B.; Sukumaran, R.K.; Pandey, A. Metagenome analysis: A powerful tool for enzyme bioprospecting. Appl. Biochem. Biotechnol. 2017, 183, 636–651. [Google Scholar] [CrossRef]
- López-López, O.; Cerdan, M.E.; Gonzalez Siso, M.I. New extremophilic lipases and esterases from metagenomics. Curr. Protein Pept. Sci. 2014, 15, 445–455. [Google Scholar] [CrossRef]
- Popovic, A.; Tchigvintsev, A.; Tran, H.; Chernikova, T.N.; Golyshina, O.V.; Yakimov, M.M.; Golyshin, P.N.; Yakunin, A.F. Metagenomics as a tool for enzyme discovery: Hydrolytic enzymes from marine-related metagenomes. In Prokaryotic Systems Biology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–20. [Google Scholar]
- Lee, H.S.; Kwon, K.K.; Kang, S.G.; Cha, S.-S.; Kim, S.J.; Lee, J.H. Approaches for novel enzyme discovery from marine environments. Curr. Opin. Biotechnol. 2010, 21, 353–357. [Google Scholar] [CrossRef]
- Escobar-Zepeda, A.; Vera-Ponce de León, A.; Sanchez-Flores, A. The road to metagenomics: From microbiology to DNA sequencing technologies and bioinformatics. Front. Genet. 2015, 6, 348. [Google Scholar] [CrossRef]
- Ferrer, M.; Beloqui, A.; Timmis, K.N.; Golyshin, P.N. Metagenomics for mining new genetic resources of microbial communities. J. Mol. Microbiol. Biotechnol. 2009, 16, 109–123. [Google Scholar] [CrossRef]
- Perner, M.; Ilmberger, N.; Köhler, H.U.; Chow, J.; Streit, W.R. Emerging fields in functional metagenomics and its industrial relevance: Overcoming limitations and redirecting the search for novel biocatalysts. In Handbook of Molecular Microbial Ecology II: Metagenomics in Different Habitats; Wiley-Blackwell: Hoboken, NJ, USA, 2011; pp. 481–498. [Google Scholar]
- Leis, B.; Heinze, S.; Angelov, A.; Pham, V.T.T.; Thürmer, A.; Jebbar, M.; Golyshin, P.N.; Streit, W.R.; Daniel, R.; Liebl, W.J. Functional screening of hydrolytic activities reveals an extremely thermostable cellulase from a deep-sea archaeon. Front. Bioeng. Biotechnol. 2015, 3, 95. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Xu, X.; Huo, Y.; Wu, Y.; Zhu, X.; Zhang, X.; Wu, M.J. Identification and characterization of novel esterases from a deep-sea sediment metagenome. Arch. Microbiol. 2012, 194, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Hu, Y.; Xie, F.; Guo, H.; Ashforth, E.J.; Polyak, S.W.; Zhu, B.; Zhang, L.J. Molecular cloning and characterization of a new cold-active esterase from a deep-sea metagenomic library. Appl. Microbiol. Biotechnol. 2011, 90, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hao, J.; Zhang, Y.Q.; Chen, X.L.; Xie, B.B.; Shi, M.; Zhou, B.C.; Zhang, Y.Z.; Li, P. Identification and characterization of a novel salt-tolerant esterase from the deep-sea sediment of the South China Sea. Front. Microbiol. 2017, 8, 441. [Google Scholar] [CrossRef]
- Vermelho, A.B.; Noronha, E.F.; Filho, E.X.F.; Ferrara, M.A.; Bon, E.P. Diversity and biotechnological applications of prokaryotic enzymes. In The Prokaryotes: Applied Bacteriology and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 213–240. [Google Scholar]
- Bornscheuer, U.; Huisman, G.; Kazlauskas, R.J.; Lutz, S.; Moore, J.; Robins, K. Engineering the third wave of biocatalysis. Nature 2012, 485, 185. [Google Scholar] [CrossRef]
- Smith, M.E.; Schumacher, F.F.; Ryan, C.P.; Tedaldi, L.M.; Papaioannou, D.; Waksman, G.; Caddick, S.; Baker, J.R. Protein modification, bioconjugation, and disulfide bridging using bromomaleimides. J. Am. Chem. Soc. 2010, 132, 1960–1965. [Google Scholar] [CrossRef]
- Denard, C.A.; Ren, H.; Zhao, H. Improving and repurposing biocatalysts via directed evolution. Curr. Opin. Chem. Biol. 2015, 25, 55–64. [Google Scholar] [CrossRef]
- Tiwari, M.K.; Singh, R.; Singh, R.K.; Kim, I.W.; Lee, J.K. Computational approaches for rational design of proteins with novel functionalities. Comput. Struct. Biotechnol. J. 2012, 2, e201204002. [Google Scholar] [CrossRef]
- Littlechild, J.A. Enzymes from extreme environments and their industrial applications. Front. Bioeng. Biotechnol. 2015, 3, 161. [Google Scholar] [CrossRef]
- Bertoldo, C.; Antranikian, G. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr. Opin. Chem. Biol. 2002, 6, 151–160. [Google Scholar] [CrossRef]
- Dumorné, K.; Córdova, D.C.; Astorga-Eló, M.; Renganathan, P. Extremozymes: A potential source for industrial applications. J. Microbiol. Biotechnol. 2017, 27, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Canganella, F.; Wiegel, J. Anaerobic thermophiles. Life 2014, 4, 77–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takai, K.; Nakamura, K.; Toki, T.; Tsunogai, U.; Miyazaki, M.; Miyazaki, J.; Hirayama, H.; Nakagawa, S.; Nunoura, T.; Horikoshi, K. Cell proliferation at 122 C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl. Acad. Sci. USA 2008, 105, 10949–10954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colletier, J.-P.; Aleksandrov, A.; Coquelle, N.; Mraihi, S.; Mendoza-Barberá, E.; Field, M.; Madern, D. Sampling the conformational energy landscape of a hyperthermophilic protein by engineering key substitutions. Mol. Biol. Evol. 2012, 29, 1683–1694. [Google Scholar] [CrossRef] [Green Version]
- Tehei, M.; Madern, D.; Franzetti, B.; Zaccai, G. Neutron scattering reveals the dynamic basis of protein adaptation to extreme temperature. J. Biol. Chem. 2005, 280, 40974–40979. [Google Scholar] [CrossRef] [Green Version]
- Reed, C.J.; Lewis, H.; Trejo, E.; Winston, V.; Evilia, C. Protein adaptations in archaeal extremophiles. Archaea 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Mayer, F.; Küper, U.; Meyer, C.; Daxer, S.; Müller, V.; Rachel, R.; Huber, H. AMP-forming acetyl coenzyme A synthetase in the outermost membrane of the hyperthermophilic crenarchaeon Ignicoccus hospitalis. J. Bacteriol. 2012, 194, 1572–1581. [Google Scholar] [CrossRef] [Green Version]
- Liszka, M.J.; Clark, M.E.; Schneider, E.; Clark, D.S. Nature versus nurture: Developing enzymes that function under extreme conditions. Ann. Rev. Chem. Biomol. 2012, 3, 77–102. [Google Scholar] [CrossRef] [Green Version]
- Yeoman, C.J.; Han, Y.; Dodd, D.; Schroeder, C.M.; Mackie, R.I.; Cann, I.K. Thermostable enzymes as biocatalysts in the biofuel industry. In Advances in Applied Aicrobiology; Elsevier: Amsterdam, The Netherlands, 2010; Volume 70, pp. 1–55. [Google Scholar]
- Jin, M.; Chen, C.; He, X.; Zeng, R. Characterization of an extreme alkaline-stable keratinase from the draft genome of feather-degrading Bacillus sp. JM7 from deep-sea. Acta Oceanol. Sin. 2019, 38, 87–95. [Google Scholar] [CrossRef]
- Ghosh, M.; Grunden, A.M.; Dunn, D.M.; Weiss, R.; Adams, M.W. Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 1998, 180, 4781–4789. [Google Scholar]
- Zhu, Y.; Li, H.; Ni, H.; Xiao, A.; Li, L.; Cai, H. Molecular cloning and characterization of a thermostable lipase from deep-sea thermophile Geobacillus sp. EPT9. World J. Microbiol. Biotechnol. 2015, 31, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Lan, D.; Zhao, Z.; Li, S.; Li, X.; Wang, Y. A thermostable monoacylglycerol lipase from marine Geobacillus sp. 12AMOR1: Biochemical characterization and mutagenesis Study. Int. J. Mol. Sci. 2019, 20, 780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.L.; Hou, Y.P.; Jin, M.; Zeng, R.Y.; Lin, H.T. Expression and characterization of a novel thermostable and pH-stable β-agarase from deep-sea bacterium Flammeovirga sp. OC4. J. Agric. Food Chem. 2016, 64, 7251–7258. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Chen, X.; Chan, Z.; Zeng, R. Expression and characterization of a thermostable and pH-stable β-agarase encoded by a new gene from Flammeovirga pacifica WPAGA1. Process Biochem. 2015, 50, 1068–1075. [Google Scholar] [CrossRef]
- Ohta, Y.; Hatada, Y.; Nogi, Y.; Miyazaki, M.; Li, Z.; Akita, M.; Hidaka, Y.; Goda, S.; Ito, S.; Horikoshi, K.J. Enzymatic properties and nucleotide and amino acid sequences of a thermostable β-agarase from a novel species of deep-sea Microbulbifer. Appl. Microbiol. Biotechnol. 2004, 64, 505–514. [Google Scholar] [CrossRef]
- Zhou, G.; Jin, M.; Cai, Y.; Zeng, R.J. Characterization of a thermostable and alkali-stable α-amylase from deep-sea bacterium Flammeovirga pacifica. Int. J. Biol. Maromol. 2015, 80, 676–682. [Google Scholar] [CrossRef]
- Jiang, T.; Cai, M.; Huang, M.; He, H.; Lu, J.; Zhou, X.; Zhang, Y.J. Purification, characterization of a thermostable raw-starch hydrolyzing α-amylase from deep-sea thermophile Geobacillus sp. Protein Expres. Purif. 2015, 114, 15–22. [Google Scholar] [CrossRef]
- Gao, C.; Jin, M.; Yi, Z.; Zeng, R.J. Characterization of a recombinant thermostable arylsulfatase from deep-sea bacterium Flammeovirga pacifica. J. Microbiol. Biotechnol. 2015, 25, 1894–1901. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Park, K.H.J. An extremely thermostable amylopullulanase from Staphylothermus marinus displays both pullulan-and cyclodextrin-degrading activities. Appl. Microbiol. Biotechnol. 2013, 97, 5359–5369. [Google Scholar] [CrossRef]
- Wu, S.; Liu, B.; Zhang, X.J. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl. Microbiol. Biotechnol. 2006, 72, 1210–1216. [Google Scholar] [CrossRef]
- Barzkar, N.; Homaei, A.; Hemmati, R.; Patel, S. Thermostable marine microbial proteases for industrial applications: Scopes and risks. Extremophiles 2018, 22, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.E.; Shockley, K.R.; Chang, L.S.; Levy, R.D.; Michel, J.K.; Conners, S.B.; Kelly, R.M. Proteolysis in hyperthermophilic microorganisms. Archaea 2002, 1, 63–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aehle, W. Enzymes in Industry: Production and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Bruins, M.E.; Janssen, A.E.; Boom, R.M. Thermozymes and their applications. Appl. Biochem. Biotechnol. 2001, 90, 155. [Google Scholar] [CrossRef]
- Hasan, F.; Shah, A.A.; Hameed, A. Industrial applications of microbial lipases. Enzyme Microb. Technol. 2006, 39, 235–251. [Google Scholar] [CrossRef]
- Jin, M.; Liu, H.; Hou, Y.; Chan, Z.; Di, W.; Li, L.; Zeng, R. Preparation, characterization and alcoholic liver injury protective effects of algal oligosaccharides from Gracilaria lemaneiformis. Food Res. Int. 2017, 100, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.T.; Yun, E.J.; Wang, D.; Chung, J.H.; Choi, I.G.; Kim, K.H. High temperature and low acid pretreatment and agarase treatment of agarose for the production of sugar and ethanol from red seaweed biomass. Bioresour. Technol. 2013, 136, 582–587. [Google Scholar] [CrossRef]
- Fu, X.T.; Kim, S.M.J. Agarase: Review of major sources, categories, purification method, enzyme characteristics and applications. Mar. Drugs 2010, 8, 200–218. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Jin, M.; Li, L.; Qu, W.; Zeng, R.J. Genome sequencing reveals the complex polysaccharide-degrading ability of novel deep-sea bacterium Flammeovirga pacifica WPAGA1. Front. Microbiol. 2017, 8, 600. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Fu, Y.; Yang, N.; Ding, Z.; Lai, Q.; Zeng, R.J. Flammeovirga pacifica sp. nov., isolated from deep-sea sediment. Int. J. Syst. Evol. Micr. 2012, 62, 937–941. [Google Scholar] [CrossRef]
- Prakash, O.; Jaiswal, N.J. α-Amylase: An ideal representative of thermostable enzymes. Appl. Biochem. Biotechnol. 2010, 160, 2401–2414. [Google Scholar] [CrossRef]
- Callen, W.; Richardson, T.; Frey, G.; Miller, C.; Kazaoka, M.; Mathur, E.; Short, J. Amylases and Methods for Use in Starch Processing. U.S. Patent No. 8,338,131, 25 December 2012. [Google Scholar]
- Nedwin, G.E.; Sharma, V.; Shetty, J.K. Alpha-Amylase Blend for Starch Processing and Method of Use Thereof. U.S. Patent No. 8,545,907, 1 October 2013. [Google Scholar]
- Mykytczuk, N.C.; Foote, S.J.; Omelon, C.R.; Southam, G.; Greer, C.W.; Whyte, L.G. Bacterial growth at −15°C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 2013, 7, 1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavicchioli, R. Cold-adapted archaea. Nat. Rev. Microbiol. 2006, 4, 331. [Google Scholar] [CrossRef] [PubMed]
- Casanueva, A.; Tuffin, M.; Cary, C.; Cowan, D.A. Molecular adaptations to psychrophily: The impact of ‘omic’ technologies. Trends Microbiol. 2010, 18, 374–381. [Google Scholar] [CrossRef] [PubMed]
- De Maayer, P.; Anderson, D.; Cary, C.; Cowan, D.A. Some like it cold: Understanding the survival strategies of psychrophiles. EMBO Rep. 2014, 15, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, K.S.; Cavicchioli, R. Cold-adapted enzymes. Annu. Rev. Biochem. 2006, 75, 403–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merlino, A.; Krauss, I.R.; Castellano, I.; De Vendittis, E.; Rossi, B.; Conte, M.; Vergara, A.; Sica, F. Structure and flexibility in cold-adapted iron superoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis. J. Struct. Biol. 2010, 172, 343–352. [Google Scholar] [CrossRef]
- Karan, R.; Capes, M.D.; DasSarma, S. Function and biotechnology of extremophilic enzymes in low water activity. Aquat. Biosyst. 2012, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Sarmiento, F.; Peralta, R.; Blamey, J.M. Cold and hot extremozymes: Industrial relevance and current trends. Front. Bioeng. Biotechnol. 2015, 3, 148. [Google Scholar] [CrossRef] [Green Version]
- Cavicchioli, R.; Charlton, T.; Ertan, H.; Omar, S.M.; Siddiqui, K.; Williams, T.J. Biotechnological uses of enzymes from psychrophiles. Micr. Biotechnol. 2011, 4, 449–460. [Google Scholar] [CrossRef] [Green Version]
- Gomes, J.; Steiner, W.J. The biocatalytic potential of extremophiles and extremozymes. Food Technol. Biotechnol. 2004, 42, 223–225. [Google Scholar]
- Luisa Tutino, M.; di Prisco, G.; Marino, G.; de Pascale, D.J. Cold-adapted esterases and lipases: From fundamentals to application. Protein Pep. Lett. 2009, 16, 1172–1180. [Google Scholar]
- Santiago, M.; Ramírez-Sarmiento, C.A.; Zamora, R.A.; Parra, L.P. Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front. Microbiol. 2016, 7, 1408. [Google Scholar] [CrossRef] [PubMed]
- Barroca, M.; Santos, G.; Gerday, C.; Collins, T. Biotechnological aspects of cold-active enzymes. In Psychrophiles: From Biodiversity to Biotechnology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 461–475. [Google Scholar]
- Mao, X.; Hong, Y.; Shao, Z.; Zhao, Y.; Liu, Z.J. A novel cold-active and alkali-stable β-glucosidase gene isolated from the marine bacterium Martelella mediterranea. Appl. Biochem. Biotechnol. 2010, 162, 2136–2148. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Hong, Y.; Shao, Z.; Liu, Z.J. A cold-active β-glucosidase (Bgl1C) from a sea bacteria Exiguobacterium oxidotolerans A011. Word J. Microbiol. Biotechnol. 2010, 26, 1427–1435. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Z.; Zhang, X.; Shao, Z.; Liu, Z. Cloning, expression and characterization of a novel cold-active and halophilic xylanase from Zunongwangia profunda. Extremophiles 2014, 18, 441–450. [Google Scholar] [CrossRef]
- Cai, Z.W.; Ge, H.H.; Yi, Z.W.; Zeng, R.Y.; Zhang, G.Y. Characterization of a novel psychrophilic and halophilic β-1, 3-xylanase from deep-sea bacterium, Flammeovirga pacifica strain WPAGA1. Int. J. Biol. Macom. 2018, 118, 2176–2184. [Google Scholar] [CrossRef]
- Kuddus, M.; Roohi, A.J.; Ramteke, P.W.J.B. An overview of cold-active microbial α-amylase: Adaptation strategies and biotechnological potentials. Biotechnology 2011, 10, 246–258. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, Y.; Liang, J.; Song, Q.; Zhang, X.H. Degradation properties of various macromolecules of cultivable psychrophilic bacteria from the deep-sea water of the South Pacific Gyre. Extremophiles 2016, 20, 663–671. [Google Scholar] [CrossRef]
- Qin, Y.; Huang, Z.; Liu, Z. A novel cold-active and salt-tolerant α-amylase from marine bacterium Zunongwangia profunda: Molecular cloning, heterologous expression and biochemical characterization. Extremophiles 2014, 18, 271–281. [Google Scholar] [CrossRef]
- Dou, S.; Chi, N.; Zhou, X.; Zhang, Q.; Pang, F.; Xiu, Z. Molecular cloning, expression, and biochemical characterization of a novel cold-active α-amylase from Bacillus sp. dsh19-1. Extremophiles 2018, 22, 739–749. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, X.; Wei, L.; Wu, G.; Kumar, A.; Mao, T.; Liu, Z. A cold-adapted, solvent and salt tolerant esterase from marine bacterium Psychrobacter pacificensis. Int. J. Biol. Macrom. 2015, 81, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zeng, R. Psychrotrophic amylolytic bacteria from deep sea sediment of Prydz Bay, Antarctic: Diversity and characterization of amylases. World J. Microbiol. Biotechnol. 2007, 23, 1551–1557. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Liu, Z.; Zhu, H.; Dang, H.; Lu, J.; Cui, Z. Production of cold-adapted amylase by marine bacterium Wangia sp. C52: Optimization, modeling, and partial characterization. Mar. Biotechnol. 2011, 13, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Chan, Z.; Wang, R.; Fan, Y.; Zeng, R. Enhanced cold active lipase production by metagenomic library recombinant clone CALIP3 with a step-wise temperature and dissolved oxygen level control strategy. Chin. J. Chem. Eng. 2016, 24, 1263–1269. [Google Scholar] [CrossRef]
- Chen, X.-L.; Zhang, Y.-Z.; Gao, P.-J.; Luan, X. Two different proteases produced by a deep-sea psychrotrophic bacterial strain, Pseudoaltermonas sp. SM9913. Mar. Biol. 2003, 143, 989–993. [Google Scholar] [CrossRef]
- Chen, K.; Mo, Q.; Liu, H.; Yuan, F.; Chai, H.; Lu, F.; Zhang, H. Identification and characterization of a novel cold-tolerant extracellular protease from Planococcus sp. CGMCC 8088. Extremophiles 2018, 22, 473–484. [Google Scholar] [CrossRef]
- Van der Wielen, P.W.; Bolhuis, H.; Borin, S.; Daffonchio, D.; Corselli, C.; Giuliano, L.; D’Auria, G.; de Lange, G.J.; Huebner, A.; Varnavas, S.P. The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 2005, 307, 121–123. [Google Scholar] [CrossRef]
- Yakimov, M.M.; La Cono, V.; Ferrer, M.; Golyshin, P.N.; Giuliano, L. Metagenomics of Deep Hypersaline Anoxic Basins. Science 2015, 341–348. [Google Scholar] [CrossRef]
- Pikuta, E.V.; Hoover, R.B.; Tang, J. Microbial extremophiles at the limits of life. Crit. Rev. Microbiol. 2007, 33, 183–209. [Google Scholar] [CrossRef]
- Antunes, A.; Ngugi, D.K.; Stingl, U. Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ. Microbiol. 2011, 3, 416–433. [Google Scholar] [CrossRef]
- De Lourdes Moreno, M.; Pérez, D.; García, M.; Mellado, E. Halophilic bacteria as a source of novel hydrolytic enzymes. Life 2013, 3, 38–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Galinski, E.A.; Grant, W.D.; Oren, A.; Ventosa, A. Halophiles 2010: Life in saline environments. Am. Soc. Microbiol. 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Chen, J.C.; Wu, Q.; Chen, G.Q. Halophiles, coming stars for industrial biotechnology. Biotechnol. Adv. 2015, 33, 1433–1442. [Google Scholar] [CrossRef]
- Tadeo, X.; López-Méndez, B.; Trigueros, T.; Laín, A.; Castaño, D.; Millet, O. Structural basis for the aminoacid composition of proteins from halophilic archea. PLoS Biol. 2009, 7, e1000257. [Google Scholar] [CrossRef] [Green Version]
- Tokunaga, H.; Arakawa, T.; Tokunaga, M. Engineering of halophilic enzymes: Two acidic amino acid residues at the carboxy-terminal region confer halophilic characteristics to Halomonas and Pseudomonas nucleoside diphosphate kinases. Protein Sci. 2008, 17, 1603–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raddadi, N.; Cherif, A.; Daffonchio, D.; Fava, F. Halo-alkalitolerant and thermostable cellulases with improved tolerance to ionic liquids and organic solvents from Paenibacillus tarimensis isolated from the Chott El Fejej, Sahara desert, Tunisia. Bioresour. Technol. 2013, 150, 121–128. [Google Scholar] [CrossRef]
- Datta, S.; Holmes, B.; Park, J.I.; Chen, Z.; Dibble, D.C.; Hadi, M.; Blanch, H.W.; Simmons, B.A.; Sapra, R. Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem. 2010, 12, 338–345. [Google Scholar] [CrossRef]
- Elleuche, S.; Schroeder, C.; Sahm, K.; Antranikian, G. Extremozymes—Biocatalysts with unique properties from extremophilic microorganisms. Cur. Opin. Biotechnol. 2014, 29, 116–123. [Google Scholar] [CrossRef]
- Litchfield, C.D. Potential for industrial products from the halophilic Archaea. J. Int. Microbiol. Biot. 2011, 38, 1635. [Google Scholar] [CrossRef]
- Schreck, S.D.; Grunden, A.M. Biotechnological applications of halophilic lipases and thioesterases. Appl. Microbiol. Biot. 2014, 98, 1011–1021. [Google Scholar] [CrossRef]
- Ferrer, M.; Golyshina, O.V.; Chernikova, T.N.; Khachane, A.N.; dos Santos, V.A.M.; Yakimov, M.M.; Timmis, K.N.; Golyshin, P.N. Microbial enzymes mined from the Urania deep-sea hypersaline anoxic basin. Chem. Biol. 2005, 12, 895–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, H.; Song, L.; Xu, Y.; Tsoi, M.Y.; Dobretsov, S.; Qian, P.Y. Characterization of proteolytic bacteria from the Aleutian deep-sea and their proteases. J. Ind. Microbiol. Biot. 2007, 34, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Sayed, A.; Ghazy, M.A.; Ferreira, A.J.; Setubal, J.C.; Chambergo, F.S.; Ouf, A.; Adel, M.; Dawe, A.S.; Archer, J.A.; Bajic, V.B. A novel mercuric reductase from the unique deep brine environment of Atlantis II in the Red Sea. J. Biol. Chem. 2014, 289, 1675–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, M.; Takahashi, E.; Joudeh, L.I.; Marini, M.; Das, G.; Elshenawy, M.M.; Akal, A.; Sakashita, K.; Alam, I.; Tehseen, M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea. FASEB J. 2018, 32, 3346–3360. [Google Scholar] [CrossRef] [Green Version]
- Batista-García, R.A.; Sutton, T.; Jackson, S.A.; Tovar-Herrera, O.E.; Balcázar-López, E.; del Rayo Sanchez-Carbente, M.; Sánchez-Reyes, A.; Dobson, A.D.; Folch-Mallol, J.L. Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLoS ONE 2017, 12, e0173750. [Google Scholar]
- Kawamoto, J.; Sato, T.; Nakasone, K.; Kato, C.; Mihara, H.; Esaki, N.; Kurihara, T. Favourable effects of eicosapentaenoic acid on the late step of the cell division in a piezophilic bacterium, Shewanella violacea DSS12, at high-hydrostatic pressures. Environ. Microbiol. 2011, 13, 2293–2298. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Bartlett, D.H.; Xiao, X. Current developments in marine microbiology: High-pressure biotechnology and the genetic engineering of piezophiles. Cur. Opin. Biot. 2015, 33, 157–164. [Google Scholar] [CrossRef]
- Abe, F.; Horikoshi, K. The biotechnological potential of piezophiles. Trends Biot. 2001, 19, 102–108. [Google Scholar] [CrossRef]
- Daniel, I.; Oger, P.; Winter, R. Origins of life and biochemistry under high-pressure conditions. Chem. Soc. Rev. 2006, 35, 858–875. [Google Scholar] [CrossRef]
- Nath, A.; Subbiah, K. Insights into the molecular basis of piezophilic adaptation: Extraction of piezophilic signatures. J. Theor. Biol. 2016, 390, 117–126. [Google Scholar] [CrossRef]
- Ichiye, T. Enzymes from piezophiles. In Seminars in Cell & Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 138–146. [Google Scholar]
- Huang, Q.; Rodgers, J.M.; Hemley, R.J.; Ichiye, T. Extreme biophysics: Enzymes under pressure. J. Comput. Chem. 2017, 38, 1174–1182. [Google Scholar] [CrossRef] [PubMed]
- Lauro, F.M.; Chastain, R.A.; Blankenship, L.E.; Yayanos, A.A.; Bartlett, D.H. The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl. Environ. Microbiol. 2007, 73, 838–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mota, M.J.; Lopes, R.P.; Delgadillo, I.; Saraiva, J. Microorganisms under high pressure—Adaptation, growth and biotechnological potential. Biot. Adv. 2013, 31, 1426–1434. [Google Scholar] [CrossRef] [PubMed]
- Balny, C.; Hayashi, R. High Pressure Bioscience and Biotechnology; Elsevier: Amsterdam, The Netherlands, 1996; Volume 13. [Google Scholar]
- Rosenbaum, E.; Gabel, F.; Durá, M.A.; Finet, S.; Cléry-Barraud, C.; Masson, P.; Franzetti, B. Effects of hydrostatic pressure on the quaternary structure and enzymatic activity of a large peptidase complex from Pyrococcus horikoshii. Arch. Biochem. Biophys. 2012, 517, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Kato, C.; Sato, T.; Chan, O.; McKay, D. Biosynthesis and dietary uptake of polyunsaturated fatty acids by piezophilic bacteria. Comp. Biochem. Phys. B 2004, 137, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.R.; Sligar, S.G. Hydrostatic and osmotic pressure as tools to study macromolecular recognition. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1995; Volume 259, pp. 395–427. [Google Scholar]
Source | Habitat | Enzyme | Thermostability | References |
---|---|---|---|---|
Bacillus sp. JM7 | deep-sea water | keratinase | 50 °C (70%, 1 h) | [44] |
Pyrococcus furiosus | deep-sea vents | prolidase | 100 °C (100%, 12 h) | [45] |
Geobacillus sp. EPT9 | deep-sea vents | lipase | 80 °C (44%, 1 h) | [46] |
Geobacillus sp. 12AMOR1 | deep-sea vents | monoacylglycerol lipase | 70 °C (half-life 1 h) | [47] |
Flammeovirga Sp. OC4 | deep-sea water | β-Agarase | 50 °C (35%, 144 h) | [48] |
Flammeovirga pacifica | deep-sea water | β-Agarase | 50 °C (100%, 10 h) | [49] |
Microbulbifer strain JAMB-A7 | deep-sea sediment | β-Agarase | 50 °C (half-life 502 min) | [50] |
Flammeovirga pacifica | deep-sea water | α-amylase | 60 °C (81%, 20 min) | [51] |
Geobacillus sp. 4j | deep-sea sediment | α-amylase | 80 °C (half-life 4.25 h) | [52] |
Fosmid library | deep-sea vents | cellulase | 92 °C (half-life 2 h) | [24] |
Flammeovirga pacifica | deep-sea water | arylsulfatase | 50 °C (70%, 12 h) | [53] |
Staphylothermus marinus | deep-sea vents | amylopullulanase | 100 °C (half-life 50 min) | [54] |
Geobacillus sp. MT-1 | deep-sea vents | xylanase | 65 °C (half-life 50 min) | [55] |
Source | Habitat | Enzyme | Activities at Low Temperatures | References |
---|---|---|---|---|
Martelella mediterranea | deep-sea water | β-glucosidase | 50% at 4 °C | [82] |
Exiguobacterium oxidotolerans | deep-sea sediment | β-glycosidase | 61% at 10 °C | [83] |
Zunongwangia profunda | deep-sea sediment | xylanase | 38% at 5 °C | [84] |
Flammeovirga pacifica | deep-sea water | xylanase | 50–70% at 10 °C | [85] |
Luteimonas abyssi | deep-sea water | α-amylase | 36% at 10 °C | [87] |
Zunongwangia profunda | deep-sea sediment | α-amylase | 39% at 10 °C | [88] |
Pseudomonas strain | deep-sea sediment | α-amylase | 50% at 5 °C | [91] |
Wangia sp. C52 | deep-sea sediment | α-amylase | 50% at 25 °C | [92] |
Bacillus sp. dsh19-1 | deep-sea sediment | α-amylase | 35.7% at 4 °C | [89] |
Psychrobacter pacificensis | deep-sea water | esterase | 70% at 10 °C | [90] |
Metagenomic libraries | deep-sea sediment | esterase | 100% at 10 °C | [25] |
Metagenomic libraries | deep-sea sediment | esterase | 38% at 15 °C | [26] |
Metagenomic libraries | deep-sea sediment | lipase | most active below 30 °C | [93] |
Pseudoaltermonas sp. SM9913 | deep-sea sediment | serine protease | 60% at 20 °C | [94] |
Planococcus sp. M7 | deep-sea sediment | protease | 45% at 10 °C | [95] |
Source | Habitat | Enzyme | Activities at High Saline Concentrations | References |
---|---|---|---|---|
Zunongwangia profunda | deep-sea sediment | α-amylase | 93% activity at 4 M NaCl | [88] |
Bacillus sp. dsh19-1 | deep-sea sediment | α-amylase | 60.5% activity at 5 M NaCl | [89] |
Zunongwangia profunda | deep-sea sediment | xylanase | near 100% activity at 5 M NaCl | [84] |
Flammeovirga pacifica | deep-sea water | xylanase | maximum at 1.5 M NaCl | [85] |
Emericellopsis sp. TS11 | deep-sea sponge | xylanase | maximum at 2 M NaCl | [114] |
Metagenomic libraries | deep-sea brine | esterase | maximum at 3–4 M NaCl | [110] |
Fosmid library | deep-sea sediment | esterase | maximum at 3.5 M NaCl | [27] |
Psychrobacter pacificensis | deep-sea water | esterase | maximum at 5 M NaCl | [90] |
Pseudoalteromonas spp. | deep-sea sediment | protease | maximum at 2 M NaCl | [111] |
Metagenomic libraries | deep-sea brine | mercuric reductase | maximum at 4 M NaCl | [112] |
candidate division MSBL1 archaeon SCGC-AAA261G05 | deep-sea brine | DNA polymerase | maximum at 0.5 M NaCl | [113] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, M.; Gai, Y.; Guo, X.; Hou, Y.; Zeng, R. Properties and Applications of Extremozymes from Deep-Sea Extremophilic Microorganisms: A Mini Review. Mar. Drugs 2019, 17, 656. https://doi.org/10.3390/md17120656
Jin M, Gai Y, Guo X, Hou Y, Zeng R. Properties and Applications of Extremozymes from Deep-Sea Extremophilic Microorganisms: A Mini Review. Marine Drugs. 2019; 17(12):656. https://doi.org/10.3390/md17120656
Chicago/Turabian StyleJin, Min, Yingbao Gai, Xun Guo, Yanping Hou, and Runying Zeng. 2019. "Properties and Applications of Extremozymes from Deep-Sea Extremophilic Microorganisms: A Mini Review" Marine Drugs 17, no. 12: 656. https://doi.org/10.3390/md17120656
APA StyleJin, M., Gai, Y., Guo, X., Hou, Y., & Zeng, R. (2019). Properties and Applications of Extremozymes from Deep-Sea Extremophilic Microorganisms: A Mini Review. Marine Drugs, 17(12), 656. https://doi.org/10.3390/md17120656