A Novel Alkaline Phosphatase/Phosphodiesterase, CamPhoD, from Marine Bacterium Cobetia amphilecti KMM 296
Abstract
:1. Introduction
2. Results and Discussion
2.1. CamPhoD Isolation and Characterization by Enzymatic Activity and Primary Structure
2.2. Expression Conditions for CamPhoD Production
2.3. Physicochemical and Enzymatic Properties of CamPhoD
2.4. Substrate Specificity of CamPhoD
2.5. Catalytic Properties of CamPhoD
2.6. 3D Modeling of CamPhoD
2.7. Effect of CamPhoD on Bacterial Biofilms
3. Materials and Methods
3.1. Reagents and Materials
3.2. Construction of Plasmid pET40CamPhoD
3.3. Optimization of Conditions for CamPhoD Expression
3.4. The Recombinant CamPhoD Production
3.5. The Recombinant CamPhoD Isolation and Purification
3.6. Enzyme Activity Assay
3.7. Substrate Specificity
3.8. Determination of Thermostability and Temperature Optimum
3.9. Effect of Metal Ions and Chelating Agents
3.10. Effect of NaCl and KCl
3.11. Determination of Molecular Weight
3.12. Determination of Catalytic Parameters
3.13. Molecular Modeling
3.14. Biofilms Growth and Enzymatic Treatment
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Clark, L.L.; Ingall, E.D.; Benner, R. Marine phosphorus is selectively remineralized. Nature 1998, 393, 426. [Google Scholar] [CrossRef]
- Martinez, J.; Smith, D.C.; Steward, G.F.; Azam, F. Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat. Microb. Ecol. 1996, 10, 223–230. [Google Scholar] [CrossRef]
- Zheng, L.; Ren, M.; Xie, E.; Ding, A.; Liu, Y.; Deng, S.; Zhang, D. Roles of phosphorus sources in microbial community assembly for the removal of organic matters and ammonia in activated sludge. Front. Microbiol. 2019, 10, 1023. [Google Scholar] [CrossRef] [PubMed]
- Omelon, S.; Ariganello, M.; Bonucci, E.; Grynpas, M.; Nanci, A. A review of phosphate mineral nucleation in biology and geobiology. Calcif. Tissue Int. 2013, 93, 382–396. [Google Scholar] [CrossRef] [PubMed]
- Skouri-Panet, F.; Benzerara, K.; Cosmidis, J.; Férard, C.; Caumes, G.; De Luca, G.; Heulin, T.; Duprat, E. In vitro and in silico evidence of phosphatase diversity in the biomineralizing bacterium Ramlibacter tataouinensis. Front Microbiol. 2018, 8, 2592. [Google Scholar] [CrossRef] [PubMed]
- Golotin, V.A.; Balabanova, L.A.; Likhatskaya, G.N.; Rasskazov, V.A. Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina. Mar. Biotechnol. 2015, 17, 130–143. [Google Scholar] [CrossRef]
- Balabanova, L.; Podvolotskaya, A.; Slepchenko, L.; Eliseikina, M.; Noskova, Y.; Nedashkovskaya, O.; Son, O.; Tekutyeva, L.; Rasskazov, V. Nucleolytic enzymes from the marine bacterium Cobetia amphilecti KMM 296 with antibiofilm activity and biopreservative effect on meat products. Food Control 2017, 78, 270–278. [Google Scholar] [CrossRef]
- Yuivar, Y.; Barahona, S.; Alcaíno, J.; Cifuentes, V.; Baeza, M. Biochemical and thermodynamical characterization of glucose oxidase, invertase, and alkaline phosphatase secreted by antarctic yeasts. Front. Mol. Biosci. 2017, 4, 86. [Google Scholar] [CrossRef]
- Lee, D.-H.; Choi, S.-L.; Rha, E.; Kim, S.J.; Yeom, S.-J.; Moon, J.-H.; Lee, S.-G. A novel psychrophilic alkaline phosphatase from the metagenome of tidal flat sediments. BMC Biotechnol. 2015, 15, 1–13. [Google Scholar] [CrossRef]
- Kageyama, H.; Tripathi, K.; Rai, A.K.; Cha-um, S.; Waditee-Sirisattha, R.; Takabe, T. An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of Aphanothece halophytica, a halotolerant cyanobacterium. Appl. Environ. Microbiol. 2011, 77, 5178–5183. [Google Scholar] [CrossRef]
- Luoa, H.; Bennera, R.; Longa, R.A.; Hu, J. Subcellular localization of marine bacterial alkaline phosphatases. Proc. Natl. Acad. Sci. USA 2009, 106, 21219–21223. [Google Scholar] [CrossRef] [PubMed]
- Plisova, E.Y.; Balabanova, L.A.; Ivanova, E.P.; Kozhemyako, V.B.; Mikhailov, V.V.; Agafonova, E.V.; Rasskazov, V.A. A highly active alkaline phosphatase from the marine bacterium Cobetia. Mar. Biotechnol. 2005, 7, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.M.; Pratt, D. Biochemical and physiological properties of alkaline phosphatases in five isolates of marine bacteria. J. Bacteriol. 1977, 129, 1607–1612. [Google Scholar] [PubMed]
- Nasu, E.; Ichiyanagi, A.; Gomi, K. Cloning and expression of a highly active recombinant alkaline phosphatase from psychrotrophic Cobetia marina. Biotechnol. Lett. 2012, 34, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, F.; Lillington, J.; Johnson, S.; Timmel, C.R.; Lea, S.M.; Berks, B.C. Crystal structure of the Bacillus subtilis phosphodiesterase PhoD reveals an iron and calcium-containing active site. J. Biol. Chem. 2014, 289, 30889–30899. [Google Scholar] [CrossRef]
- Singh, D.N.; Gupta, A.; Singh, V.S.; Mishra, R.; Kateriya, S.; Tripathi, A.K. Identification and characterization of a novel phosphodiesterase from the metagenome of an Indian coalbed. PLoS ONE 2015, 10, e0118075. [Google Scholar] [CrossRef]
- Tehara, S.K.; Keasling, J.D. Gene cloning, purification, and characterization of a phosphodiesterase from Delftia acidovorans. Appl. Environ. Microbiol. 2003, 69, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Mukai, N.; Morooka, Y.; Makino, T.; Oshima, K.; Takahashi, S.; Kera, Y. An atypical phosphodiesterase capable of degrading haloalkyl phosphate diesters from Sphingobium sp. strain TCM1. Sci. Rep. 2017, 7, 2842–2850. [Google Scholar] [CrossRef]
- Miller, D.J.; Shuvalova, L.; Evdokimova, E.; Savchenko, A.; Yakunin, A.F.; Anderson, W.F. Structural and biochemical characterization of a novel Mn2+-dependent phosphodiesterase encoded by the yfcE gene. Protein Sci. 2007, 16, 1338–1348. [Google Scholar] [CrossRef]
- Eder, S.; Shi, L.; Jensen, K.; Yamane, K.; Hulett, F.M. A Bacillus subtilis secreted phosphodiesterase alkaline phosphatase is the product of a Pho regulon gene, phoD. Mikrobiology 1996, 142, 2041–2047. [Google Scholar] [CrossRef]
- Hamdan, S.; Bulloch, E.M.; Thompson, P.R.; Beck, J.L.; Yang, J.Y.; Crowther, J.A.; Lilley, P.E.; Carr, P.D.; Ollis, D.L.; Brown, S.E.; et al. Hydrolysis of the 5′-p-nitrophenyl ester of TMP by the proofreading exonuclease (epsilon) subunit of Escherichia coli DNA polymerase III. Biochemistry 2002, 41, 5266–5275. [Google Scholar] [CrossRef] [PubMed]
- Gomez, P.F.; Ingram, L.O. Cloning, sequencing and characterization of the alkaline phosphatase gene (phoD) from Zymomonas mobilis. FEMS Microbiol. Lett. 1995, 125, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Sunden, F.; AlSadhan, I.; Lyubimov, A.; Doukov, T.; Swan, J.; Herschlag, D. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution. J. Biol. Chem. 2017, 292, 20960–20974. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Jayasinghe-Arachchige, V.M.; Zuchniarz, J.; Prabhakar, R. Effects of the metal ion on the mechanism of phosphodiester hydrolysis catalyzed by metal-cyclen complexes. Front. Chem. 2019, 7. [Google Scholar] [CrossRef]
- Mancin, F.; Scrimin, P.; Tecilla, P. Progress in artificial metallonucleases. Chem. Commun. 2012, 48, 5545–5559. [Google Scholar] [CrossRef]
- Jin, J.; Pawson, T. Modular evolution of phosphorylation-based signalling systems. Phil. Trans. R. Soc. B 2012, 367, 2540–2555. [Google Scholar] [CrossRef]
- Millán, J.L. The role of phosphatases in the initiation of skeletal mineralization. Calcif. Tissue Int. 2013, 93, 299–306. [Google Scholar] [CrossRef]
- Ke, H.; Wang, H. Crystal structures of phosphodiesterases and implications on substrate specificity and inhibitor selectivity. Curr. Top. Med. Chem. 2007, 7, 391–403. [Google Scholar] [CrossRef]
- Borges, A.; Simões, M. Quorum sensing inhibition by marine bacteria. Mar. Drugs 2019, 17, 427. [Google Scholar] [CrossRef]
- Azevedo, M.F.; Faucz, F.R.; Bimpaki, E.; Horvath, A.; Levy, I.; de Alexandre, R.B.; Ahmad, F.; Manganiello, V.; Stratakis, C.A. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr. Rev. 2014, 35, 195–233. [Google Scholar] [CrossRef]
- Dobretsov, S.; Teplitski, M.; Paul, V. Mini-review: Quorum sensing in the marine environment and its relationship to biofouling. Biofouling 2009, 25, 413–427. [Google Scholar] [CrossRef] [PubMed]
- Rader, B.A.; Kremer, N.; Apicella, M.A.; Goldman, W.E.; McFall-Ngai, M.J. Modulation of symbiont lipid A signaling by host alkaline phosphatases in the squid-vibrio symbiosis. mBio 2012, 3, 00093-12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, U.; Pal, D.; Prasad, R. Alkaline Phosphatase: An Overview. Indian J. Clin. Biochem. 2014, 29, 269–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fawley, J.; Gourlay, D. Intestinal alkaline phosphatase: A summary of its role in clinical disease. J. Surg. Res. 2016, 202, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Bilski, J.; Mazur-Bialy, A.; Wojcik, D.; Zahradnik-Bilska, J.; Brzozowski, B.; Magierowski, M.; Mach, T.; Magierowska, K.; Brzozowski, T. The Role of Intestinal Alkaline Phosphatase in Inflammatory Disorders of Gastrointestinal Tract. Med. Inflamm. 2017, 9074601. [Google Scholar] [CrossRef]
- Balabanova, L.A.; Golotin, V.A.; Kovalchuk, S.N.; Babii, A.V.; Shevchenko, L.S.; Son, O.M.; Kosovsky, G.Y.; Rasskazov, V.A. The genome of the marine bacterium Cobetia marina KMM 296 isolated from the mussel Crenomytilus grayanus (Dunker, 1853). Rus. J. Mar. Biol. 2016, 42, 106–109. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018, 46, D493–D496. [Google Scholar] [CrossRef]
- Marchler-Bauer, A.; Bo, Y.; Han, L.; He, J.; Lanczycki, C.J.; Lu, S.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017, 45, D200–D203. [Google Scholar] [CrossRef]
- Tegtmeyer, N.; Hartig, R.; Delahay, R.M.; Rohde, M.; Brandt, S.; Conradi, J.; Takahashi, S.; Smolka, A.J.; Sewald, N.; Backert, S. A small fibronectin-mimicking protein from bacteria induces cell spreading and focal adhesion formation. J. Biol. Chem. 2010, 285, 23515–23526. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.J.; Hubauer-Brenner, M.; Gruber, H.J.; Cui, Y.; Traxler, L.; Siligan, C.; Park, S.; Hinterdorfer, P. Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds. Sci. Rep. 2016, 6, 33909. [Google Scholar] [CrossRef]
- Hauksson, J.B.; Andrésson, O.S.; Ásgeirsson, B. Heat-labile bacterial alkaline phosphatase from a marine Vibrio sp. Enzyme Microb. Technol. 2000, 27, 66–73. [Google Scholar] [CrossRef]
- Moura, R.S.; Martın, J.F.; Martın, A.; Liras, P. Substrate analysis and molecular cloning of the extracellular alkaline phosphatase of Streptomyces griseus. Microbiology 2001, 147, 1525–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zappa, S.; Rolland, J.-L.; Flament, D.; Gueguen, Y.; Boudrant, J.; Dietrich, J. Characterization of a highly thermostable alkaline phosphatase from the Euryarchaeon Pyrococcus abyssi. Appl. Environ. Microbiol. 2001, 67, 4504–4511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojciechowski, C.L.; Cardia, J.P.; Kantrowitz, E.R. Alkaline phosphatase from the hyperthermophilic bacterium T. maritime requires cobalt for activity. Protein Sci. 2002, 11, 903–911. [Google Scholar] [CrossRef]
- Vogel, A.; Schilling, O.; Niecke, M.; Bettmer, J.; Meyer-Klaucke, W. ElaC encodes a novel binuclear zinc phosphodiesterase. J. Biol. Chem. 2002, 277, 29078–29085. [Google Scholar] [CrossRef] [Green Version]
- Golotin, V.A.; Balabanova, L.A.; Noskova, Y.A.; Slepchenko, L.V.; Bakunina, I.Y.; Vorobieva, N.S.; Terenteva, N.A.; Rasskazov, V.A. Optimization of cold-adapted alpha-galactosidase expression in Escherichia coli. Protein Expr. Purif. 2016, 123, 14–18. [Google Scholar] [CrossRef]
- Apel, A.K.; Sola-Landa, A.; Rodriguez-Garcia, A.; Martıin, J.F. Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions. Microbiology 2007, 153, 3527–3537. [Google Scholar] [CrossRef] [Green Version]
- Seitkalieva, A.V.; Menzorova, N.I.; Vakorina, T.I.; Dmitrenok, P.S.; Rasskazov, V.A. Novel saltresistant alkaline phosphatase from eggs of the sea urchin Strongylocentrotus intermedius. Appl. Biochem. Microbiol. 2017, 53, 16–25. [Google Scholar] [CrossRef]
- Ishibashi, M.; Yamashita, S.; Tokunaga, M. Characterization of halophilic alkaline phosphatase from Halomonas sp. 593, a moderately halophilic bacterium. Biosci. Biotechnol. Biochem. 2005, 69, 1213–1216. [Google Scholar] [CrossRef]
- Menzorova, N.I.; Seytkalieva, A.V.; Rasskazov, V.A. Enzymatic methods for the determination of pollution in seawater using salt resistant alkaline phosphatase from eggs of the sea urchin Strongylocentrotus intermedius. Mar. Poll. Bul. 2014, 79, 188–195. [Google Scholar] [CrossRef]
- O’Brie, P.J.; Herschlag, D. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase. Biochemistry 2001, 40, 5691–5699. [Google Scholar] [CrossRef] [PubMed]
- Zalatan, J.G.; Fenn, T.D.; Herschlag, D. Comparative enzymology in the alkaline phosphatase superfamily to determine the catalytic role of an active site metal ion. J. Mol. Biol. 2008, 384, 1174–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, S.; Kim, J.; Koo, J.; Bae, E. Structural and mutational analyses of psychrophilic and mesophilic adenylate kinases highlight the role of hydrophobic interactions in protein thermal stability. Struct. Dyn. 2019, 6, 024702. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.S.; Toribara, T.Y., Jr.; Warner, H. Microdetermination of phosphorus. Anal. Chem. 1956, 28, 1756–1758. [Google Scholar] [CrossRef]
- Millán, J.L. Alkaline phosphatases: Structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal. 2006, 2, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Bogosian, G.; Morris, P.J.L.; O’Neil, G.P. A mixed culture recovery method indicates that enteric bacteria do not enter the viable but nonculturable state. Appl. Environ. Microbiol. 1998, 64, 1736–1742. [Google Scholar]
- Terentieva, N.A.; Timchenko, N.F.; Balabanova, L.A.; Rasskazov, V.A. Characteristics of formation, inhibition and destruction of Yersinia pseudotuberculosis biofilms forming on abiotic surfaces. Zh. Mikrobiol. Epidemiol. Immunobiol. 2015, 3, 72–78. [Google Scholar]
- Hashem, K.A.; Authman, S.H.; Mahdi, L.H. In vivo antibacterial activity of alkaline phosphatase isolates from Escherichia coli isolated from diarrhea patients against Pseudomonas aeruginosa. Pharma Inn. J. 2016, 5, 32–36. [Google Scholar]
- Stelitano, V.; Giardina, G.; Paiardini, A.; Astiglione, N.; Cutruzzolà, F.; Rinaldo, S. C-di-GMP hydrolysis by Pseudomonas aeruginosa HDGYP phosphodiesterases: Analysis of the reaction mechanism and novel roles for pGpG. PLoS ONE 2013, 8, e74920. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of the bacteriophage T7. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- MOE, 2018.01; Chemical Computing Group ULC. 1010 Sherbrooke St.; West, Suite #910: Montreal, QC, Canada, 2018; H3A 2R7. [Google Scholar]
- Nijland, R.; Hall, M.J.; Burgess, J.G. Dispersal of biofilms by secreted, matrix degrading, bacterial DNAse. PLoS ONE 2010, 5, e15668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Metal Cations, 2 mM | Retained Activity, (%) * |
---|---|
Co 2+ | 80 |
Mg 2+ | 68 |
Ca 2+ | 50 |
Fe 3+ | 48 |
Ni 2+ | 32 |
Cs 2+ | 23 |
Mn 2+ | 20 |
Zn 2+ | 18 |
Cu 2+ | 7 |
Co 2+ + Fe 3+ | 100 |
Ca 2+ + Fe 3+ | 66 |
Substrate | Amount of Released Pi, mkM |
---|---|
pNPP | 0.52 |
GTP | 0.475 |
CMP | 0.465 |
UMP | 0.37 |
dCMP | 0.325 |
AMP | 0.31 |
TMP | 0.305 |
CTP | 0.24 |
GDP | 0.19 |
GMP | 0.16 |
UDP | 0.15 |
CDP | 0.14 |
dGMP | 0.12 |
UTP | 0.12 |
dCTP | 0.09 |
dAMP | 0.055 |
TTP | 0.05 |
dGTP | 0.04 |
c-di-GMP | 0.005 |
bis-pNPP | 0.003 |
5′-pNP-TMP | 0.002 |
λ DNA | 0 |
pUC19 | 0 |
Oligonucleotides | 0 |
Strain (Enzyme) | Optimum | bis-pNPP | p-NPP | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
t (°C) | pH | Km (mM) | kcat (S−1) | kcat/Km (S−1/mM) | Km (mM) | kcat (S−1) | kcat/Km (S−1/mM) | ||
Cobetia amphilecti KMM 296 (CamPhoD) | 45 | 9.2 | 6.7 | 7603.2 | 1133.0 | 4.2 | 33552 | 7988.6 | |
C. amphilecti KMM 296 (CmAP) | 40- 50 | 10.3 | - | - | - | 13.2 | 28300 | 2144 | [6] |
Aphanothece halophytica | - | 10 | 3.13 | - | - | 3.38 | - | - | [10] |
Bacillus subtilis | 25 | 8.0 | - | - | - | 0.05 | 1.2 | 24 | [15] |
Metagenome | 25 | 8.5 | 10.21 | 615 × 104 | 602 × 103 | - | - | - | [16] |
Delftia acidovorans | 65 | 10 | 2.9 | 52740 | 18186.2 | 5.0 | 10260 | 2052 | [17] |
Sphingobium sp. TCM1 | 55 | 9.5 | 6.1 | 325 | 53.3 | 1.5 | 37.9 | 25.3 | [18] |
Escherichia coli (YfcE) | - | 9.8 | 9.74 | 19.8 | 2.03 | - | - | - | [19] |
Termatoga maritima | 75 | 8.0 | 175 | 16 | 0.091 | [44] | |||
E. coli (ElaC, ZiPD) | - | - | 4 | 59 | 14.75 | - | - | - | [45] |
Strain | Biofilm Formation % (3 Days, 22–24 °C) | Biofilm Destruction % (30 min, 37 °C) |
---|---|---|
K * | 100 | 0 |
B. subtilis | 100 | 0 |
B. licheniformis | 74 | 15 |
B. aegricola | 68 | 14 |
B. berkelogi | 82 | 8 |
P. aeruginosa | 100 | 0 |
Y. pseudotuberculosis | 85 | 23 |
S. enteritidis | 93 | 11 |
Y. pseudotuberculosis + S. enteritidis | 87 | 24 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noskova, Y.; Likhatskaya, G.; Terentieva, N.; Son, O.; Tekutyeva, L.; Balabanova, L. A Novel Alkaline Phosphatase/Phosphodiesterase, CamPhoD, from Marine Bacterium Cobetia amphilecti KMM 296. Mar. Drugs 2019, 17, 657. https://doi.org/10.3390/md17120657
Noskova Y, Likhatskaya G, Terentieva N, Son O, Tekutyeva L, Balabanova L. A Novel Alkaline Phosphatase/Phosphodiesterase, CamPhoD, from Marine Bacterium Cobetia amphilecti KMM 296. Marine Drugs. 2019; 17(12):657. https://doi.org/10.3390/md17120657
Chicago/Turabian StyleNoskova, Yulia, Galina Likhatskaya, Natalia Terentieva, Oksana Son, Liudmila Tekutyeva, and Larissa Balabanova. 2019. "A Novel Alkaline Phosphatase/Phosphodiesterase, CamPhoD, from Marine Bacterium Cobetia amphilecti KMM 296" Marine Drugs 17, no. 12: 657. https://doi.org/10.3390/md17120657
APA StyleNoskova, Y., Likhatskaya, G., Terentieva, N., Son, O., Tekutyeva, L., & Balabanova, L. (2019). A Novel Alkaline Phosphatase/Phosphodiesterase, CamPhoD, from Marine Bacterium Cobetia amphilecti KMM 296. Marine Drugs, 17(12), 657. https://doi.org/10.3390/md17120657