Desertomycin G, a New Antibiotic with Activity against Mycobacterium tuberculosis and Human Breast Tumor Cell Lines Produced by Streptomyces althioticus MSM3, Isolated from the Cantabrian Sea Intertidal Macroalgae Ulva sp.
Abstract
:1. Introduction
2. Results
2.1. Taxonomy and Phylogenetic Analysis of the Strain MSM3
2.2. Structure Determination
2.3. Antimicrobial Activity of Desertomycin G
2.4. Cytotoxic Activity of Desertomycin G
3. Discussion
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Microorganism and Fermentation Conditions
4.3. Isolation and Purification of Desertomycin G
4.4. Phylogenetic Analysis (Taxonomy) of the Producer Microorganism
4.5. Antimicrobial Activity of Compound against Clinic Pathogens
4.6. Cytotoxic Activity of Desertomycin G
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hong, H.; Samborskyy, M.; Lindner, F.; Leadlay, P.F. An Amidinohydrolase Provides the Missing Link in the Biosynthesis of Amino Marginolactone Antibiotics. Angew. Chem. Int. Ed. Engl. 2016, 55, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Uri, J.; Bognar, R.; Bekesi, I.; Varga, B. Desertomycin, a new crystalline antibiotic with antibacterial and cytostatic action. Nature 1958, 182, 401. [Google Scholar] [CrossRef] [PubMed]
- Bortolo, R.; Spera, S.; Cassani, G. Desertomycin D, a new desertomycin related antibiotic. J. Antibiot. 1992, 45, 1016–1019. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, V. New macrolactone of the desertomycin family from Streptomyces spectabilis. Prep. Biochem. Biotechnol. 1997, 27, 19–38. [Google Scholar] [CrossRef] [PubMed]
- Dinya, Z.; Sztaricskai, F.; Horváth, E.; Schaág, J.B.; Varró, K. Studies of the components of crude desertomycin complex by means of electrospray and matrix-assisted laser desorption/ionization mass spectrometric techniques. Rapid Commun. Mass Spectrom. 1996, 10, 1439–1448. [Google Scholar] [CrossRef]
- Dolak, L.A.; Reusser, F.; Baczynskyj, L.; Mizsak, S.A.; Hannon, B.R.; Castle, T.M. Desertomycin: Purification and physical-chemical properties. J. Antibiot. 1983, 36, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Mayer, M.; Thiericke, R. Biosynthetic relationships in the desertomycin family. J. Chem. Soc. Perkin Trans. 1 1993, 2525–2531. [Google Scholar] [CrossRef]
- Ward, A.C.; Bora, N. Diversity and biogeography of marine actinobacteria. Curr. Opin. Microbiol. 2006, 9, 279–286. [Google Scholar] [CrossRef]
- Genilloud, O.; Peláez, F.; González, I.; Díez, M.T. Diversity of actinomycetes and fungi on seaweeds from the Iberian coasts. Microbiologia 1994, 10, 413–422. [Google Scholar]
- Staufenberger, T.; Thiel, V.; Wiese, J.; Imhoff, J.F. Phylogenetic analysis of bacteria associated with Laminaria saccharina. FEMS Microbiol. Ecol. 2008, 64, 65–77. [Google Scholar] [CrossRef]
- Wiese, J.; Thiel, V.; Nagel, K.; Staufenberger, T.; Imhoff, J.F. Diversity of antibiotic-active bacteria associated with the brown alga Laminaria saccharina from the Baltic Sea. Mar. Biotechnol. 2009, 11, 287–300. [Google Scholar] [CrossRef]
- Braña, A.F.; Braña, A.F.; Fiedler, H.-P.; Nava, H.; González, V.; Sarmiento-Vizcaíno, A.; Molina, A.; Acuña, J.L.; García, L.A.; Blanco, G. Two Streptomyces species producing antibiotic, antitumor, and anti-inflammatory compounds are widespread among intertidal macroalgae and deep-sea coral reef invertebrates from the central Cantabrian Sea. Microb. Ecol. 2015, 69, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento-Vizcaíno, A.; Braña, A.F.; González, V.; Nava, H.; Molina, A.; Llera, E.; Fiedler, H.-P.; Rico, J.M.; García-Flórez, L.; Acuña, J.L.; et al. Atmospheric Dispersal of Bioactive Streptomyces albidoflavus Strains among Terrestrial and Marine Environments. Microb. Ecol. 2016, 71, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento-Vizcaíno, A.; González, V.; Braña, A.F.; Palacios, J.J.; Otero, L.; Fernández, J.; Molina, A.; Kulik, A.; Vázquez, F.; Acuña, J.L.; et al. Pharmacological Potential of Phylogenetically Diverse Actinobacteria Isolated from Deep-Sea Coral Ecosystems of the Submarine Avilés Canyon in the Cantabrian Sea. Microb. Ecol. 2017, 73, 338–352. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento-Vizcaíno, A.; Espadas, J.; Martín, J.; Braña, A.F.; Reyes, F.; García, L.A.; Blanco, G. Atmospheric Precipitations, Hailstone and Rainwater, as a Novel Source of Streptomyces Producing Bioactive Natural Products. Front Microbiol 2018, 9, 773. [Google Scholar] [CrossRef] [PubMed]
- Braña, A.F.; Sarmiento-Vizcaíno, A.; Pérez-Victoria, I.; Otero, L.; Fernández, J.; Palacios, J.J.; Martín, J.; de la Cruz, M.; Díaz, C.; Vicente, F.; et al. Branimycins B and C, Antibiotics Produced by the Abyssal Actinobacterium Pseudonocardia carboxydivorans M-227. J. Nat. Prod. 2017, 80, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Braña, A.F.; Sarmiento-Vizcaíno, A.; Osset, M.; Pérez-Victoria, I.; Martín, J.; de Pedro, N.; de la Cruz, M.; Díaz, C.; Vicente, F.; Reyes, F.; et al. Lobophorin K, a New Natural Product with Cytotoxic Activity Produced by Streptomyces sp. M-207 Associated with the Deep-Sea Coral Lophelia pertusa. Mar. Drugs 2017, 15, 144. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento-Vizcaíno, A.; Braña, A.F.; Pérez-Victoria, I.; Martín, J.; de Pedro, N.; de la Cruz, M.; Díaz, C.; Vicente, F.; Acuña, J.L.; Reyes, F.; et al. Paulomycin G, a New Natural Product with Cytotoxic Activity against Tumor Cell Lines Produced by Deep-Sea Sediment Derived Micromonospora matsumotoense M-412 from the Avilés Canyon in the Cantabrian Sea. Mar. Drugs 2017, 15, 271. [Google Scholar] [CrossRef]
- Ortiz-López, F.J.; Alcalde, E.; Sarmiento-Vizcaíno, A.; Díaz, C.; Cautain, B.; García, L.A.; Blanco, G.; Reyes, F. New 3-Hydroxyquinaldic Acid Derivatives from Cultures of the Marine Derived Actinomycete Streptomyces cyaneofuscatus M-157. Mar. Drugs 2018, 16, 371. [Google Scholar] [CrossRef]
- Rodríguez, V.; Martín, J.; Sarmiento-Vizcaíno, A.; de la Cruz, M.; García, L.A.; Blanco, G.; Reyes, F. Anthracimycin B, a Potent Antibiotic against Gram-Positive Bacteria Isolated from Cultures of the Deep-Sea Actinomycete Streptomyces cyaneofuscatus M-169. Mar. Drugs 2018, 16, 406. [Google Scholar] [CrossRef]
- Pérez-Victoria, I.; Martín, J.; Reyes, F. Combined LC/UV/MS and NMR Strategies for the Dereplication of Marine Natural Products. Planta Med. 2016, 82, 857–871. [Google Scholar] [CrossRef]
- Radhakrishnan, M.; Gopikrishnan, V.; Suresh, A.; Selvakumar, N.; Balagurunathan, R.; Kumar, V. Characterization and phylogenetic analysis of antituberculous compound producing actinomycete strain D25 isolated from Thar Desert soil, Rajasthan. Bioinformation 2013, 9, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Bax, A.; Aszalos, A.; Dinya, Z.; Sudo, K. Structure Elucidation of the Antibiotic Desertomycin thorugh the Use of New Two-dimensional NMR Techniques. J. Am. Chem. Soc. 1986, 108, 8056–8063. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014; ISBN 1-56238-897-5. [Google Scholar]
- Clinical and Laboratory Standards Institute. Susceptibility Testing of Mycobacteria, Nocardiae and Other Aerobic Actinomycetes: Approved Standard; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2011; ISBN 978-1-56238-746-4. [Google Scholar]
1H NMR | 13C NMR | 1H NMR | 13C NMR | ||
---|---|---|---|---|---|
Position | δ in ppm (mult, J in Hz) | δ in ppm | Position | δ in ppm (mult, J in Hz) | δ in ppm |
1 | 169.8 | 32 | 1.67 (m) | 41.7 | |
2 | 126.4 | 33 | 4.17 (br d, 9.7) | 70.1 | |
3 | 7.20 (br d, 11.1) | 140.8 | 34 | 1.63 (m); 1.40 (m) | 42.5 |
4 | 6.47 (dd, 14.4, 11.4) | 126.2 | 35 | 4.00 (m) | 66.4 |
5 | 6.23 (dd, 15.0, 7.5) | 148.9 | 36 | 1.51 (m) | 46.4 |
6 | 2.58 (m) | 41.2 | 37 | 4.26 (m) | 69.6 |
7 | 3.48 (dd, 8.7, 3.0) | 78.6 | 38 | 5.57 (dd, 15.5, 4.8) | 138.2 |
8 | 1.77 (m) | 43.0 | 39 | 5.63 (m) | 125.8 |
9 | 3.78 (m) | 74.6 | 40 | 2.46 (m); 2.31 (m) | 34.6 |
10 | 1.62 (m); 1.39 (m) | 34.0 | 41 | 5.11 (m) | 75.7 |
11 | 2.25 (m); 2.06 (m) | 30.4 | 42 | 2.00 (m) | 43.8 |
12 | 5. 48 (m) | 131.5 | 43 | 3.53 (m) | 72.5 |
13 | 5.48 (m) | 134.1 | 44 | 1.65 (m); 1.40 (m) | 30.3 |
14 | 2.19 (m) | 44.0 | 45 | 1.83 (m); 1.67 (m) | 25.6 |
15 | 3.87 (m) | 76.8 | 46 | 2.93 (m) | 40.8 |
16 | 5.49 (m) | 132.1 | 47 | 1.94 (br s) | 12.8 |
17 | 5.49 (m) | 134.6 | 48 | 1.06 (d, 6.6) | 12.8 |
18 | 2.35 (m) | 41.2 | 49 | 0.85 (d, 6.5) | 12.3 |
19 | 3.71 (m) | 83.6 | 50 | 0.96 (m) | 15.5 |
20 | 146.2 | 51 | 1.12 (d, 6.5) | 17.7 | |
21 | 5.40 (br d, 9.8) | 122.9 | 52 | 1.76 (br s) | 12.2 |
22 | 4.56 (dd, 9.9, 3.2) | 72.7 | 53 | 0.85 (d, 6.5) | 11.2 |
23 | 3.77 (m) | 77.3 | 54 | 0.94 (m) | 10.1 |
24 | 1.53 (m) | 41.0 | 55 | 0.78 (d, 6.8) | 11.5 |
25 | 4.29 (m) | 68.9 | 56 | 0.95 (m) | 10.6 |
26 | 1.71 (m); 1.40 (m) | 42.8 | 1′ | 4.86 (m) | 97.7 |
27 | 4.03 (m) | 69.4 | 2′ | 3.77 (m) | 72.3 |
28 | 1.72 (m) | 43.4 | 3′ | 3.75 (m) | 72.7 |
29 | 3.82 (m) | 75.1 | 4′ | 3.63 (dd, 9.2) | 68.8 |
30 | 1.63 (m) | 40.9 | 5′ | 3.56 (m) | 74.9 |
31 | 3.99 (m) | 73.5 | 6′ | 3.85 (m); 3.73 (m) | 62.9 |
Clinical Pathogen | Isolate | Hospital | Year | Antibiotic Resistances | MIC (µg/mL) |
---|---|---|---|---|---|
Gram-positives | |||||
M. tuberculosis H37Rv | ATCC 27294 | - | 16 | ||
M. tuberculosis MDR-1 | 14595 | SNRL-Spain | 2013 | Multiresistance a | 16 |
M. tuberculosis MDR-2 | 14615 | SNRL-Spain | 2013 | Multiresistance b | 16 |
C. perfringens | 103281 * | HUCA | 2013 | - | 16 |
C. urealyticum | 1492 * | Cabueñes | 2014 | Multiresistance c | <0.25 |
E. faecalis | 10544 | Cabueñes | 2015 | Ery, clin, tet | 8 |
E. faecalis | ATCC 51299 | - | - | 8 | |
E. faecalis | ATCC 29212 | - | - | 8 | |
E. faecium | 10701 | Cabueñes | 2015 | Amp, quin, ery | 4 |
S. pneumoniae | 64412 * | HUCA | 2013 | Ery | |
S. pyogenes | 81293 * | HUCA | 2013 | - | |
S. aureus | 11497 | Cabueñes | 2015 | Methicillin sensitive | 4 |
S. aureus | ATCC 43300 | - | - | 4 | |
S. aureus | ATCC 25923 | - | - | 4 | |
Gram-negatives | - | ||||
B. fragilis | 61592 * | HUCA | 2013 | Amo, tet | 32 |
B. fragilis | ATCC 25285 | - | - | 32 | |
H. influenzae | 10996 | Cabueñes | 2015 | Amp, cot, quin | >64 |
H.influenzae | ATCC 49247 | - | - | 64 | |
N. meningitidis | 71327 | HUCA | 2013 | Clin | 64 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braña, A.F.; Sarmiento-Vizcaíno, A.; Pérez-Victoria, I.; Martín, J.; Otero, L.; Palacios-Gutiérrez, J.J.; Fernández, J.; Mohamedi, Y.; Fontanil, T.; Salmón, M.; et al. Desertomycin G, a New Antibiotic with Activity against Mycobacterium tuberculosis and Human Breast Tumor Cell Lines Produced by Streptomyces althioticus MSM3, Isolated from the Cantabrian Sea Intertidal Macroalgae Ulva sp. Mar. Drugs 2019, 17, 114. https://doi.org/10.3390/md17020114
Braña AF, Sarmiento-Vizcaíno A, Pérez-Victoria I, Martín J, Otero L, Palacios-Gutiérrez JJ, Fernández J, Mohamedi Y, Fontanil T, Salmón M, et al. Desertomycin G, a New Antibiotic with Activity against Mycobacterium tuberculosis and Human Breast Tumor Cell Lines Produced by Streptomyces althioticus MSM3, Isolated from the Cantabrian Sea Intertidal Macroalgae Ulva sp. Marine Drugs. 2019; 17(2):114. https://doi.org/10.3390/md17020114
Chicago/Turabian StyleBraña, Alfredo F., Aida Sarmiento-Vizcaíno, Ignacio Pérez-Victoria, Jesús Martín, Luis Otero, Juan José Palacios-Gutiérrez, Jonathan Fernández, Yamina Mohamedi, Tania Fontanil, Marina Salmón, and et al. 2019. "Desertomycin G, a New Antibiotic with Activity against Mycobacterium tuberculosis and Human Breast Tumor Cell Lines Produced by Streptomyces althioticus MSM3, Isolated from the Cantabrian Sea Intertidal Macroalgae Ulva sp." Marine Drugs 17, no. 2: 114. https://doi.org/10.3390/md17020114
APA StyleBraña, A. F., Sarmiento-Vizcaíno, A., Pérez-Victoria, I., Martín, J., Otero, L., Palacios-Gutiérrez, J. J., Fernández, J., Mohamedi, Y., Fontanil, T., Salmón, M., Cal, S., Reyes, F., García, L. A., & Blanco, G. (2019). Desertomycin G, a New Antibiotic with Activity against Mycobacterium tuberculosis and Human Breast Tumor Cell Lines Produced by Streptomyces althioticus MSM3, Isolated from the Cantabrian Sea Intertidal Macroalgae Ulva sp. Marine Drugs, 17(2), 114. https://doi.org/10.3390/md17020114