Curdepsidones B–G, Six Depsidones with Anti-Inflammatory Activities from the Marine-Derived Fungus Curvularia sp. IFB-Z10
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Fermentation, Extraction, and Isolation
3.4. ECD Measurement
3.5. Computational Methods
3.5.1. Conformational Analysis
3.5.2. NMR Calculation
3.5.3. ECD calculation
3.6. Anti-Inflammatory Activity Assay
3.6.1. Cell Culture and Cell Viability Assay
3.6.2. Enzyme-Linked Immunosorbent Assay
3.6.3. Molecular Docking Study
3.6.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blunt, J.W.; Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2018, 35, 8–53. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, S.K.; Prakash, V.; Ranjan, N. Marine Fungi: A Source of Potential Anticancer Compounds. Front. Microbiol. 2018, 8, 2536. [Google Scholar] [CrossRef] [PubMed]
- Song, X.P.; Xiong, Y.; Qi, X.; Tang, W.; Dai, J.J.; Gu, Q.Q.; Li, J. Molecular Targets of Active Anticancer Compounds Derived from Marine Sources. Mar. Drugs 2018, 16, 175. [Google Scholar] [CrossRef] [PubMed]
- Bugni, T.S.; Ireland, C.M. Marine-derived fungi: A chemically and biologically diverse group of microorganisms. Nat. Prod. Rep. 2004, 21, 143–163. [Google Scholar] [CrossRef]
- Liu, J.Y.; Huang, L.L.; Ye, Y.H.; Zou, W.X.; Guo, Z.J.; Tan, R.X. Antifungal and new metabolites of Myrothecium sp Z16, a fungus associated with white croaker Argyrosomus argentatus. J. Appl. Microbiol. 2006, 100, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Han, W.B.; Lu, Y.H.; Zhang, A.H.; Zhang, G.F.; Mei, Y.N.; Jiang, N.; Lei, X.X.; Song, Y.C.; Ng, S.W.; Tan, R.X. Curvulamine, a New Antibacterial Alkaloid Incorporating Two Undescribed Units from a Curvularia Species. Org. Lett. 2014, 16, 5366–5369. [Google Scholar] [PubMed]
- Han, W.B.; Zhang, A.H.; Deng, X.Z.; Lei, X.X.; Tan, R.X. Curindolizine, an Anti-Inflammatory Agent Assembled via Michael Addition of Pyrrole Alkaloids Inside Fungal Cells. Org. Lett. 2016, 18, 1816–1819. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.H.; Ding, Y.; Ji, X.; An, F.L.; Lu, Y.H. Curvulaide A, a bicyclic polyketide with anti-anaerobic bacteria activity from marine-derived Curvularia sp. J. Antibiot. 2019, 72, 111–113. [Google Scholar] [CrossRef] [PubMed]
- An, F.L.; Liu, W.H.; Zhang, Y.; Tao, J.; Lu, Y.H. Spirocurvulaide, a novel spirobicyclic polyketide from a marine fungus Curvularia sp. IFB-Z10. Phytochem. Lett. 2019, 29, 12–16. [Google Scholar] [CrossRef]
- An, F.L.; Liu, W.H.; Wei, X.C.; Pan, Z.H.; Lu, Y.H. Curdepsidone A, a Depsidone from the Marine-Derived Endophytic Fungus Curvularia sp IFB-Z10. Nat. Prod. Commun. 2018, 13, 865–866. [Google Scholar] [CrossRef]
- Bedos-Belval, F.; Rouch, A.; Vanucci-Bacque, C.; Baltas, M. Diaryl ether derivatives as anticancer agents—A review. MedChemComm 2012, 3, 1356–1372. [Google Scholar]
- Zheng, Y.; Xiao, C.J.; Guo, K.; Wang, Y.; Liu, Y.; Luo, S.H.; Li, X.N.; Li, S.H. Lobarioid A, unusual antibacterial depsidone possessing an eight-membered diether ring from the edible lichen Lobaria sp. Tetrahedron Lett. 2018, 59, 743–746. [Google Scholar] [CrossRef]
- Nguyen, D.M.T.; Do, L.M.T.; Nguyen, V.T.; Chavasiri, W.; Mortier, J.; Nguyen, P.P.K. Phenolic Compounds from the Lichen Lobaria orientalis. J. Nat. Prod. 2017, 80, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Talapatra, S.K.; Rath, O.; Clayton, E.; Tomasi, S.; Kozielski, F. Depsidones from Lichens as Natural Product Inhibitors of M-Phase Phosphoprotein 1, a Human Kinesin Required for Cytokinesis. J. Nat. Prod. 2016, 79, 1576–1585. [Google Scholar] [CrossRef] [Green Version]
- Saetang, P.; Rukachaisirikul, V.; Phongpaichit, S.; Preedanon, S.; Sakayaroj, J.; Borwornpinyo, S.; Seemakhan, S.; Muanprasat, C. Depsidones and an alpha-pyrone derivative from Simplicillium sp. PSU-H41, an endophytic fungus from Hevea brasiliensis leaf. Phytochemistry 2017, 143, 115–123. [Google Scholar] [CrossRef]
- Wu, C.M.; Chen, R.; Liu, M.Y.; Liu, D.; Li, X.; Wang, S.; Niu, S.W.; Guo, P.; Lin, W.H. Spiromastixones Inhibit Foam Cell Formation via Regulation of Cholesterol Efflux and Uptake in RAW264.7 Macrophages. Mar. Drugs 2015, 13, 6352–6365. [Google Scholar] [CrossRef] [Green Version]
- Stark, T.D.; Salger, M.; Frank, O.; Balemba, O.B.; Wakamatsu, J.; Hofmann, T. Antioxidative Compounds from Garcinia buchananii Stem Bark. J. Nat. Prod. 2015, 78, 234–240. [Google Scholar] [CrossRef]
- Jia, C.C.; Xue, J.J.; Li, X.Y.; Li, D.H.; Li, Z.L.; Hua, H.M. New depsidone and dichromone from the stems of Garcinia paucinervis with antiproliferative activity. J. Nat. Med. 2019, 73, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Phainuphong, P.; Rukachaisirikul, V.; Phongpaichit, S.; Sakayaroj, J.; Kanjanasirirat, P.; Borwornpinyo, S.; Akrimajirachoote, N.; Yimnual, C.; Muanprasat, C. Depsides and depsidones from the soil-derived fungus Aspergillus unguis PSU-RSPG204. Tetrahedron 2018, 74, 5691–5699. [Google Scholar] [CrossRef]
- Niu, S.W.; Liu, D.; Hu, X.X.; Proksch, P.; Shao, Z.Z.; Lin, W.H. Spiromastixones A-O, Antibacterial Chlorodepsidones from a Deep-Sea-Derived Spiromastix sp. Fungus. J. Nat. Prod. 2014, 77, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Varughese, T.; Rios, N.; Higginbotham, S.; Arnold, A.E.; Coley, P.D.; Kursar, T.A.; Gerwick, W.H.; Cubilla Rios, L. Antifungal depsidone metabolites from Cordyceps dipterigena, an endophytic fungus antagonistic to the phytopathogen Gibberella fujikuroi. Tetrahedron Lett. 2012, 53, 1624–1626. [Google Scholar] [CrossRef]
- Nakashima, K.; Tomida, J.; Kamiya, T.; Hirai, T.; Morita, Y.; Hara, H.; Kawamura, Y.; Adachi, T.; Inoue, M. Diaporthols A and B: Bioactive diphenyl ether derivatives from an endophytic fungus Diaporthe sp. Tetrahedron Lett. 2018, 59, 1212–1215. [Google Scholar] [CrossRef]
- Rajachan, O.; Kanokmedhakul, S.; Kanokmedhakul, K.; Soytong, K. Bioactive Depsidones from the Fungus Pilobolus heterosporus. Planta Med. 2014, 80, 1635–1640. [Google Scholar] [CrossRef]
- Uchida, R.; Nakajyo, K.; Kobayashi, K.; Ohshiro, T.; Terahara, T.; Imada, C.; Tomoda, H. 7-Chlorofolipastatin, an inhibitor of sterol O-acyltransferase, produced by marine-derived Aspergillus ungui NKH-007. J. Antibiot. 2016, 69, 647–651. [Google Scholar] [CrossRef]
- Wu, J.; Lorenzo, P.; Zhong, S.; Ali, M.; Butts, C.P.; Myers, E.L.; Aggarwal, V.K. Synergy of synthesis, computation and NMR reveals correct baulamycin structures. Nature 2017, 547, 436–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauri, J.; Bermel, W.; Buevich, A.V.; Sherer, E.C.; Joyce, L.A.; Sharaf, M.H.M.; Schiff, P.L., Jr.; Parella, T.; Williamson, R.T.; Martin, G.E. Homodecoupled 1,1- and 1,n-ADEQUATE: Pivotal NMR Experiments for the Structure Revision of Cryptospirolepine. Angew. Chem. Int. Ed. 2015, 54, 10160–10164. [Google Scholar] [CrossRef]
- Barra, L.; Ibrom, K.; Dickschat, J.S. Structural Revision and Elucidation of the Biosynthesis of Hypodoratoxide by 13C, 13C COSY NMR Spectroscopy. Angew. Chem. Int. Ed. 2015, 54, 6637–6640. [Google Scholar] [CrossRef]
- Liu, C.; Ang, S.; Huang, X.J.; Tian, H.Y.; Deng, Y.Y.; Zhang, D.M.; Wang, Y.; Ye, W.C.; Wang, L. Meroterpenoids with New Skeletons from Myrtus communis and Structure Revision of Myrtucommulone K. Org. Lett. 2016, 18, 4004–4007. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Yang, J.; Miao, C.P.; Yan, Y.; Ma, Y.T.; Li, X.N.; Zhao, L.X.; Huang, S.X. New duclauxamide from Penicillium manginii YIM PH30375 and structure revision of the duclauxin family. Org. Lett. 2015, 17, 1146–1149. [Google Scholar] [CrossRef]
- Bifulco, G.; Dambruoso, P.; Gomez-Paloma, L.; Riccio, R. Determination of relative configuration in organic compounds by NMR spectroscopy and computational methods. Chem. Rev. 2007, 107, 3744–3779. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, R.; Brückner, R. Asymmetric induction in reductively initiated [2,3]-Wittig and retro [1,4]-brook rearrangements of secondary carbanions. Chem. Ber. 1992, 125, 1471–1484. [Google Scholar] [CrossRef]
- Guo, M.M.; An, F.L.; Wei, X.; Hong, M.H.; Lu, Y.H. Comparative Effects of Schisandrin A, B, and C on Acne-Related Inflammation. Inflammation 2017, 40, 2163–2172. [Google Scholar] [CrossRef]
- Jin, M.S.; Kim, S.E.; Heo, J.Y.; Lee, M.E.; Kim, H.M.; Paik, S.G.; Lee, H.Y.; Lee, J.O. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 2007, 130, 1071–1082. [Google Scholar] [CrossRef]
- Lodewyk, M.W.; Siebert, M.R.; Tantillo, D.J. Computational Prediction of H-1 and C-13 Chemical Shifts: A Useful Tool for Natural Product, Mechanistic, and Synthetic Organic Chemistry. Chem. Rev. 2012, 112, 1839–1862. [Google Scholar] [CrossRef] [PubMed]
- Bruhn, T.; Schaumloeffel, A.; Hemberger, Y.; Bringmann, G. SpecDis: Quantifying the Comparison of Calculated and Experimental Electronic Circular Dichroism Spectra. Chirality 2013, 25, 243–249. [Google Scholar] [CrossRef]
- An, F.L.; Wang, X.B.; Yang, M.H.; Luo, J.; Kong, L.Y. Bioactive A-ring rearranged limonoids from the root barks of Walsura robusta. Acta Pharm. Sin. B 2019, in press. [Google Scholar] [CrossRef]
- Zheng, Y.C.; He, H.; Wei, X.; Ge, S.; Lu, Y.H. Comparison of Regulation Mechanisms of Five Mulberry Ingredients on Insulin Secretion under Oxidative Stress. J. Agric. Food Chem. 2016, 64, 8763–8772. [Google Scholar] [CrossRef]
No. | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
3 | 6.65, s | |||||
8 | 5.65, dd (11.1, 2.9) | 5.65, dd (10.3, 3.8) | 5.72, dd (11.1, 2.9) | 5.74, dd (10.8, 3.5) | 2.35, s | 2.37, s |
9a | 1.93, ddd (14.0,10.5,2.9) | 2.25, ddd (14.8, 5.3, 3.8) | 1.92, ddd (14.0, 10.5, 2.9) | 2.25, m | ||
9b | 2.41, m | 2.45, m | 2.41, m | 2.41, m | ||
10 | 4.53, dd (10.5, 2.7) | 4.36, dd (5.5, 3.8) | 4.54, dd (10.5, 2.7) | 4.35, dd (5.5, 3.0) | ||
12 | 2.38, s | 2.39, s | 2.38, s | 2.39, s | ||
3′ | 6.65, d (3.0) | 6.63, d (3.0) | 6.62, d (3.0) | 6.61, d (3.0) | 6.45, d (3.0) | 6.59, d (3.0) |
5′ | 6.47, d (3.0) | 6.47, d (3.0) | 6.46, d (3.0) | 6.46, d (3.0) | 6.47, d (3.0) | 6.46, d (3.0) |
7′ | 2.46, s | 2.47, s | 2.46, s | 2.47, s | 2.37, s | 2.46, s |
3-CH2OH | 4.94, s | |||||
4-OCH3 | 4.01, s | |||||
5-OCH3 | 3.78, s | 3.81, s | 3.78, s | 3.79, s | 3.72, s | 3.74, s |
8-OCH3 | 3.54, s | 3.40, s | ||||
8-OCH2CH3 | 1.31, t (7.0) | 1.20, t (7.0) | ||||
3.73, q (7.0) | 3.59, q (7.0) | |||||
11-OCH3 | 3.79, s | 3.79, s | 3.80, s | 3.83, s | ||
4-OH | 9.27, s | 9.07, s | 9.57, s | 9.36, s |
No. | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
1 | 113.6, C | 113.7, C | 113.6, C | 113.7, C | 113.9, C | 118.3, C |
2 | 156.2, C | 156.2, C | 155.9, C | 155.8, C | 160.6, C | 156.1, C |
3 | 113.8, C | 113.7, C | 114.5, C | 114.3, C | 106.6, C | 123.5, C |
4 | 154.2, C | 154.2, C | 154.5, C | 154.3, C | 156.5, C | 155.8, C |
5 | 144.5, C | 144.6, C | 144.8, C | 144.8, C | 145.6, C | 148.7, C |
6 | 137.2, C | 137.3, C | 137.1, C | 137.1, C | 137.6, CH | 137.4, C |
7 | 163.8, C | 163.7, C | 163.5, C | 163.5, C | 165.0, C | 163.5, C |
8 | 75.9, CH | 75.4, CH | 74.4, CH | 73.5, CH | 13.9, CH3 | 14.1, CH3 |
9 | 40.2, CH2 | 38.7, CH2 | 38.7, CH2 | 38.4, CH2 | ||
10 | 67.3, CH | 67.4, CH | 67.3, CH | 67.3, CH | ||
11 | 175.4, C | 175.6, C | 175.5, C | 175.8, C | ||
12 | 14.4, CH3 | 14.4, CH3 | 14.4, CH3 | 14.4, CH3 | ||
1′ | 143.4, C | 143.5, C | 143.6, C | 143.7, C | 143.6, C | 143.6, C |
2′ | 144.6, C | 144.7, C | 144.6, C | 144.6, C | 146.1, C | 144.8, C |
3′ | 106.0, CH | 106.0, CH | 106.1, CH | 106.0, CH | 105.8, CH | 105.7, CH |
4′ | 153.3, C | 153.1, C | 153.0, C | 152.8, C | 155.8, C | 153.0, C |
5′ | 114.5, CH | 114.5, CH | 114.4, CH | 114.2, CH | 114.7, CH | 114.5, CH |
6′ | 131.0, C | 131.0, C | 131.0, C | 131.1, C | 132.4, C | 132.1, C |
7′ | 18.2, CH3 | 18.1, CH3 | 18.2, CH3 | 18.0, CH3 | 16.0, CH3 | 17.0, CH3 |
3-CH2OH | 55.3, CH2 | |||||
4-OCH3 | 61.2, CH3 | |||||
5-OCH3 | 52.9, CH3 | 52.8, CH3 | 52.9, CH3 | 52.7, CH3 | 60.7, CH3 | 60.3, CH3 |
8-OCH3 | 58.1, CH3 | 57.9, CH3 | ||||
8-OCH2CH3 | 66.7, CH2 | 66.3, CH2 | ||||
15.3, CH3 | 15.0, CH3 | |||||
11-OCH3 | 60.4, CH3 | 60.4, CH3 | 60.3, CH3 | 60.3, CH3 |
Compound | Safe Concentration (µM) a | IC50 (mean ± SD, n = 3, µM) |
---|---|---|
1 | 6.25 | / b |
2 | 12.5 | 7.47 ± 0.35 |
5 | 50 | / |
6 | 40 | 18.83 ± 0.65 |
Retinoic acid c | 3.38 ± 0.28 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; An, F.; Zhu, X.; Yu, H.; Hao, L.; Lu, Y. Curdepsidones B–G, Six Depsidones with Anti-Inflammatory Activities from the Marine-Derived Fungus Curvularia sp. IFB-Z10. Mar. Drugs 2019, 17, 266. https://doi.org/10.3390/md17050266
Ding Y, An F, Zhu X, Yu H, Hao L, Lu Y. Curdepsidones B–G, Six Depsidones with Anti-Inflammatory Activities from the Marine-Derived Fungus Curvularia sp. IFB-Z10. Marine Drugs. 2019; 17(5):266. https://doi.org/10.3390/md17050266
Chicago/Turabian StyleDing, Yi, Faliang An, Xiaojing Zhu, Haiyuan Yu, Liling Hao, and Yanhua Lu. 2019. "Curdepsidones B–G, Six Depsidones with Anti-Inflammatory Activities from the Marine-Derived Fungus Curvularia sp. IFB-Z10" Marine Drugs 17, no. 5: 266. https://doi.org/10.3390/md17050266
APA StyleDing, Y., An, F., Zhu, X., Yu, H., Hao, L., & Lu, Y. (2019). Curdepsidones B–G, Six Depsidones with Anti-Inflammatory Activities from the Marine-Derived Fungus Curvularia sp. IFB-Z10. Marine Drugs, 17(5), 266. https://doi.org/10.3390/md17050266