Marine-Steroid Derivative 5α-Androst-3β, 5α, 6β-triol Protects Retinal Ganglion Cells from Ischemia–Reperfusion Injury by Activating Nrf2 Pathway
Abstract
:1. Introduction
2. Results
2.1. TRIOL Protects Retina from Ischemic–Reperfusion Injury in a Rat AIH Model
2.2. Nrf2 Pathway Involved in Retinal Protection of TRIOL
2.3. TRIOL Inhibits Inflammatory Activation of Microglia In Vitro and In Vivo
2.4. TRIOL Induces Nuclear Translocation of Nrf2 in Microglia
2.5. TRIOL Upregulates Expression of Nrf2 and HO-1 via Negative Regulation of Keap1
3. Discussion
4. Materials and Methods
4.1. Animals and Ethics Statements
4.2. AIH Model
4.3. Cell Culture and Hypoxia Treatment
4.4. Immunofluorescence Confocal Imaging
4.5. Immunohistochemistry and Hematoxylin–Eosin Staining
4.6. Western Blotting
4.7. Real-Time Reverse Transcript PCR
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jonas, J.B.; Aung, T.; Bourne, R.R.; Bron, A.M.; Ritch, R.; Panda-Jonas, S. Glaucoma. Lancet 2017, 390, 2183–2193. [Google Scholar] [CrossRef]
- Osborne, N.N.; Casson, R.; Wood, J.P.; Chidlow, G.; Graham, M.; Melena, J. Retinal ischemia: Mechanisms of damage and potential therapeutic strategies. Progr. Retinal Eye Res. 2004, 23, 91–147. [Google Scholar] [CrossRef] [PubMed]
- McLeod, D.; Beatty, S. Evidence for an enduring ischaemic penumbra following central retinal artery occlusion, with implications for fibrinolytic therapy. Progr. Retinal Eye Res. 2015, 49, 82–119. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, B.; Heijl, A. Lack of visual field improvement after initiation of intraocular pressure reducing treatment in the early manifest glaucoma trial. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5611–5615. [Google Scholar] [CrossRef]
- Heijl, A.; Leske, M.C.; Bengtsson, B.; Hyman, L.; Bengtsson, B.; Hussein, M. Reduction of intraocular pressure and glaucoma progression: Results from the Early manifest glaucoma trial. Arch. Ophthalmol. 2002, 120, 1268–1279. [Google Scholar] [CrossRef]
- Alm, A.; Grierson, I.; Shields, M.B. Side effects associated with prostaglandin analog therapy. Surv. Ophthalmol. 2008, 53, S93–S105. [Google Scholar] [CrossRef]
- Zimmerman, T.J.; Wheeler, T.M. Miotics: Side effects and ways to avoid them. Ophthalmology 1982, 89, 76–80. [Google Scholar] [CrossRef]
- Pardue, M.T.; Allen, R.S. Neuroprotective strategies for retinal disease. Progr. Retinal Eye Res. 2018, 65, 50–76. [Google Scholar] [CrossRef]
- Wojtal, K.; Trojnar, M.K.; Czuczwar, S.J. Endogenous neuroprotective factors: Neurosteroids. Pharmacol. Rep. 2006, 58, 335–340. [Google Scholar]
- Melcangi, R.C.; Garcia-Segura, L.M.; Mensah-Nyagan, A.G. Neuroactive steroids: State of the art and new perspectives. Cell Mol. Life Sci. 2008, 65, 777–797. [Google Scholar] [CrossRef]
- Lu, W.; Zeng, L.; Su, J. Synthesis of polyhydroxysterols (IV): Synthesis of 24-methylene-cholesta-3beta,5alpha,6beta,19-tetrol, a cytotoxic natural hydroxylated sterol. Steroids 2004, 69, 445–449. [Google Scholar] [CrossRef]
- Xiang, C.; Pengxin, Q.; Xingwen, S.; Qun, L.; Shihai, X.; Guangmei, X. The protection effects of yc-1 on cultured rat cerebellar granule neurons against apoptosis induced by low potassium. Acad. J. SUMS 2000, 21, 161–164. [Google Scholar]
- Leng, T.; Liu, A.; Wang, Y.; Chen, X.; Zhou, S.; Li, Q.; Zhu, W.; Zhou, Y.; Su, X.; Huang, Y.; et al. Naturally occurring marine steroid 24-methylenecholestane-3beta,5alpha,6beta,19-tetraol functions as a novel neuroprotectant. Steroids 2016, 105, 96–105. [Google Scholar] [CrossRef]
- Sun, H.; Liu, F.; Feng, M.R.; Peng, Q.; Liao, X.J.; Liu, T.T.; Zhang, J.; Xu, S.H. Isolation of a new cytotoxic polyhydroxysterol from the South China Sea soft coral Sinularia sp. Nat. Prod. Res. 2016, 30, 2819–2824. [Google Scholar] [CrossRef]
- Wang, P.; Tang, H.; Liu, B.S.; Li, T.J.; Sun, P.; Zhu, W.; Luo, Y.P.; Zhang, W. Tumor cell growth inhibitory activity and structure-activity relationship of polyoxygenated steroids from the gorgonian Menella kanisa. Steroids 2013, 78, 951–958. [Google Scholar] [CrossRef]
- Hu, H.; Zhou, Y.; Leng, T.; Liu, A.; Wang, Y.; You, X.; Chen, J.; Tang, L.; Chen, W.; Qiu, P.; et al. The major cholesterol metabolite cholestane-3beta,5alpha,6beta-triol functions as an endogenous neuroprotectant. J. Neurosci. 2014, 34, 11426–11438. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Wang, Y.; Leng, T.; Sun, H.; Zhou, Y.; Zhu, W.; Qiu, P.; Zhang, J.; Lu, B.; Yan, M.; et al. Cholesterol metabolite cholestane-3beta,5alpha,6beta-triol suppresses epileptic seizures by negative modulation of voltage-gated sodium channels. Steroids 2015, 98, 166–172. [Google Scholar] [CrossRef]
- Liu, H.; Yuan, L.; Xu, S.; Zhang, T.; Wang, K. Cholestane-3beta, 5alpha, 6beta-triol promotes vascular smooth muscle cells calcification. Life Sci. 2004, 76, 533–543. [Google Scholar] [CrossRef]
- Chen, J.; Leng, T.; Chen, W.; Yan, M.; Yin, W.; Huang, Y.; Lin, S.; Duan, D.; Lin, J.; Wu, G.; et al. A synthetic steroid 5alpha-androst-3beta,5,6beta-triol blocks hypoxia/reoxygenation-induced neuronal injuries via protection of mitochondrial function. Steroids 2013, 78, 996–1002. [Google Scholar] [CrossRef]
- Yan, M.; Leng, T.; Tang, L.; Zheng, X.; Lu, B.; Li, Y.; Sheng, L.; Lin, S.; Shi, H.; Yan, G.; et al. Neuroprotectant androst-3beta, 5alpha, 6beta-triol suppresses TNF-alpha-induced endothelial adhesion molecules expression and neutrophil adhesion to endothelial cells by attenuation of CYLD-NF-kappaB pathway. Biochem. Biophys. Res. Commun. 2017, 483, 892–896. [Google Scholar] [CrossRef]
- Dinkova-Kostova, A.T.; Kostov, R.V.; Canning, P. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Arch. Biochem. Biophys. 2017, 617, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Villeneuve, N.F.; Lau, A.; Zhang, D.D. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid. Redox Signal 2010, 13, 1699–1712. [Google Scholar] [CrossRef] [PubMed]
- Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell. Mol. Life Sci. CMLS 2016, 73, 3221–3247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Innamorato, N.G.; Rojo, A.I.; Garcia-Yague, A.J.; Yamamoto, M.; de Ceballos, M.L.; Cuadrado, A. The transcription factor Nrf2 is a therapeutic target against brain inflammation. J. Immunol. 2008, 181, 680–689. [Google Scholar] [CrossRef] [PubMed]
- Thimmulappa, R.K.; Lee, H.; Rangasamy, T.; Reddy, S.P.; Yamamoto, M.; Kensler, T.W.; Biswal, S. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Investig. 2006, 116, 984–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, Y.; Itoh, K.; Morishima, Y.; Kimura, T.; Kiwamoto, T.; Iizuka, T.; Hegab, A.E.; Hosoya, T.; Nomura, A.; Sakamoto, T.; et al. Transcription factor Nrf2 plays a pivotal role in protection against elastase-induced pulmonary inflammation and emphysema. J. Immunol. 2005, 175, 6968–6975. [Google Scholar] [CrossRef] [PubMed]
- Rojo, A.I.; Innamorato, N.G.; Martin-Moreno, A.M.; De Ceballos, M.L.; Yamamoto, M.; Cuadrado, A. Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease. Glia 2010, 58, 588–598. [Google Scholar] [CrossRef]
- Noristani, R.; Kuehn, S.; Stute, G.; Reinehr, S.; Stellbogen, M.; Dick, H.B.; Joachim, S.C. Retinal and optic nerve damage is associated with early glial responses in an experimental autoimmune glaucoma model. J. Mol. Neurosci 2016, 58, 470–482. [Google Scholar] [CrossRef]
- Heuss, N.D.; Pierson, M.J.; Roehrich, H.; McPherson, S.W.; Gram, A.L.; Li, L.; Gregerson, D.S. Optic nerve as a source of activated retinal microglia post-injury. Acta Neuropathol. Commun. 2018, 6, 66. [Google Scholar] [CrossRef]
- Vilhardt, F.; Haslund-Vinding, J.; Jaquet, V.; McBean, G. Microglia antioxidant systems and redox signalling. Br. J. Pharmacol. 2017, 174, 1719–1732. [Google Scholar] [CrossRef]
- Okorji, U.P.; Velagapudi, R.; El-Bakoush, A.; Fiebich, B.L.; Olajide, O.A. Antimalarial drug artemether inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanisms. Mol. Neurobiol. 2016, 53, 6426–6443. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Kensler, T.W.; Motohashi, H. The KEAP1-NRF2 System: A thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 2018, 98, 1169–1203. [Google Scholar] [CrossRef]
- Joganathan, V.; Aboelmagd, S.M.; Eke, T. Prostaglandin-associated enophthalmos: An observer-masked radiological study of patients treated with prostaglandin drops to one eye only. Orbit 2015, 34, 336–337. [Google Scholar] [CrossRef]
- Tan, J.; Berke, S. Latanoprost-induced prostaglandin-associated periorbitopathy. Optom. Vision Sci. Official Publicat. Am. Acad. Optom. 2013, 90, e245–e247. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, R.N.; van Buskirk, E.M.; Cherniack, R.; Drake, M.M. Long-term betaxolol therapy in glaucoma patients with pulmonary disease. Am. J. Ophthalmol. 1988, 106, 162–167. [Google Scholar] [CrossRef]
- Chamberlain, T.J. Myocardial infarction after ophthalmic betaxolol. N. Engl. J. Med. 1989, 321, 1342. [Google Scholar] [PubMed]
- Miller, P.E.; Poulsen, G.L.; Nork, T.M.; Galbreath, E.J.; Dubielzig, R.R. Photoreceptor cell death by apoptosis in spontaneous acute glaucoma in dogs. Investig. Ophthalmol. Vis. Sci. 1997, 38, S163. [Google Scholar]
- Schmid, H.; Renner, M.; Dick, H.B.; Joachim, S.C. Loss of inner retinal neurons after retinal ischemia in rats. Investig. Ophthalmol. Vis. Sci. 2014, 55, 2777–2787. [Google Scholar] [CrossRef] [PubMed]
- Crawford, M.L.; Harwerth, R.S.; Smith, E.L.; Mills, S.; Ewing, B. Experimental glaucoma in primates: Changes in cytochrome oxidase blobs in V1 cortex. Investig. Ophthalmol. Vis. Sci. 2001, 42, 358–364. [Google Scholar]
- Luo, H.; Zhuang, J.; Hu, P.; Ye, W.; Chen, S.; Pang, Y.; Li, N.; Deng, C.; Zhang, X. Resveratrol delays retinal ganglion cell loss and attenuates gliosis-related inflammation from ischemia-reperfusion injury. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3879–3888. [Google Scholar] [CrossRef]
- Liu, X.Q.; Wu, B.J.; Pan, W.H.; Zhang, X.M.; Liu, J.H.; Chen, M.M.; Chao, F.P.; Chao, H.M. Resveratrol mitigates rat retinal ischemic injury: The roles of matrix metalloproteinase-9, inducible nitric oxide, and heme oxygenase-1. J. Ocular Pharmacol. Therapeut. 2013, 29, 33–40. [Google Scholar] [CrossRef]
- Szabo, M.E.; Gallyas, E.; Bak, I.; Rakotovao, A.; Boucher, F.; de Leiris, J.; Nagy, N.; Varga, E.; Tosaki, A. Heme oxygenase-1-related carbon monoxide and flavonoids in ischemic/reperfused rat retina. Investig. Ophthalmol. Vis. Sci. 2004, 45, 3727–3732. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, C.; Barone, E.; Guido, P.; Miceli, F.; Di Domenico, F.; Perluigi, M.; Santangelo, R.; Preziosi, P. Inhibition of lipid peroxidation and protein oxidation by endogenous and exogenous antioxidants in rat brain microsomes in vitro. Neurosci. Lett. 2012, 518, 101–105. [Google Scholar] [CrossRef]
- Kilkenny, W.J.B.C.; Cuthill, C.I.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef] [PubMed]
- Simon, G.J.B.; Bakalash, S.; Aloni, E.; Rosner, M. A rat model for acute rise in intraocular pressure: Immune modulation as a therapeutic strategy. Am. J. Ophthalmol. 2006, 141, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, L.; Lu, B.; Chen, H.; Du, Y.; Chen, C.; Cai, W.; Yang, Y.; Tian, X.; Huang, Z.; Chi, W.; et al. Marine-Steroid Derivative 5α-Androst-3β, 5α, 6β-triol Protects Retinal Ganglion Cells from Ischemia–Reperfusion Injury by Activating Nrf2 Pathway. Mar. Drugs 2019, 17, 267. https://doi.org/10.3390/md17050267
Sheng L, Lu B, Chen H, Du Y, Chen C, Cai W, Yang Y, Tian X, Huang Z, Chi W, et al. Marine-Steroid Derivative 5α-Androst-3β, 5α, 6β-triol Protects Retinal Ganglion Cells from Ischemia–Reperfusion Injury by Activating Nrf2 Pathway. Marine Drugs. 2019; 17(5):267. https://doi.org/10.3390/md17050267
Chicago/Turabian StyleSheng, Longxiang, Bingzheng Lu, Hui Chen, Yun Du, Chen Chen, Wei Cai, Yang Yang, Xuyan Tian, Zhaofeng Huang, Wei Chi, and et al. 2019. "Marine-Steroid Derivative 5α-Androst-3β, 5α, 6β-triol Protects Retinal Ganglion Cells from Ischemia–Reperfusion Injury by Activating Nrf2 Pathway" Marine Drugs 17, no. 5: 267. https://doi.org/10.3390/md17050267
APA StyleSheng, L., Lu, B., Chen, H., Du, Y., Chen, C., Cai, W., Yang, Y., Tian, X., Huang, Z., Chi, W., Lin, S., Yan, G., & Yin, W. (2019). Marine-Steroid Derivative 5α-Androst-3β, 5α, 6β-triol Protects Retinal Ganglion Cells from Ischemia–Reperfusion Injury by Activating Nrf2 Pathway. Marine Drugs, 17(5), 267. https://doi.org/10.3390/md17050267