Integrated Gas Chromatograph-Mass Spectrometry (GC/MS) and MS/MS-Based Molecular Networking Reveals the Analgesic and Anti-Inflammatory Phenotypes of the Sea Slater Ligia exotica
Abstract
:1. Introduction
2. Results
2.1. Solvent Extration and General Analysis of Ligia Extracts
2.2. Biological Activities in Vitro and in Vivo
2.3. Identification of the Lipophilic PE and EE by Gas Chromatograph-Mass Spectrometry (GC-MS)
2.4. HPLC-MS/MS Analysis of the Ligia Extracts and Dereplication by Molecular Networking
3. Discussion
4. Materials and Methods
4.1. Sample Collecting
4.2. Successive Extraction
4.3. High-Performance Liquid Chromatography (HPLC) with Diode Array Detector
4.4. Anti-Inflammatory Activity
4.5. In Vivo Test
4.5.1. Writhing Test
4.5.2. Hot Plate Test
4.6. Antioxidant Activity
4.7. Gas Chromatography-Mass Spectroscopy (GC-MS)
4.8. MS/MS-Based Molecular Networking and Dereplication
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nahin, R.L. Estimates of pain prevalence and severity in adults: United States, 2012. J. Pain 2015, 16, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Breivik, H.; Collett, B.; Ventafridda, V.; Cohen, R.; Gallacher, D. Survey of chronic pain in Europe: Prevalence, impact on daily life, and treatment. Eur. J. Pain 2006, 10, 287–333. [Google Scholar] [CrossRef] [PubMed]
- Renfrey, S.; Downton, C.; Featherstone, J. The painful reality. Nat. Rev. Drug Discov. 2003, 2, 175–176. [Google Scholar] [CrossRef] [PubMed]
- Gaskin, D.J.; Richard, P. The economic costs of pain in the United States. J. Pain 2012, 13, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Zeilhofer, H.U.; Brune, K. Analgesic strategies beyond the inhibition of cyclooxygenases. Trends Pharmacol. Sci. 2006, 27, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Imam, M.Z.; Kuo, A.; Ghassabian, S.; Smith, M.T. Progress in understanding mechanisms of opioid-induced gastrointestinal adverse effects and respiratory depression. Neuropharmacology 2018, 131, 238–255. [Google Scholar] [CrossRef] [PubMed]
- Melnikova, I. Pain market. Nat. Rev. Drug Discov. 2010, 9, 589. [Google Scholar] [CrossRef]
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H.; Chen, Y.; Chan, W.Y. Marine natural products with anti-inflammatory activity. Appl. Microbiol. Biotechnol. 2016, 100, 1645–1666. [Google Scholar] [CrossRef]
- Jean, Y.-H.; Chen, W.-F.; Sung, C.-S.; Duh, C.-Y.; Huang, S.-Y.; Lin, C.-S.; Tai, M.-H.; Tzeng, S.-F.; Wen, Z.-H. Capnellene, a natural marine compound derived from soft coral, attenuates chronic constriction injury-induced neuropathic pain in rats. Br. J. Pharmacol. 2009, 158, 713–725. [Google Scholar] [CrossRef] [Green Version]
- Guzii, A.G.; Makarieva, T.N.; Korolkova, Y.V.; Andreev, Y.A.; Mosharova, I.V.; Tabakmaher, K.M.; Denisenko, V.A.; Dmitrenok, P.S.; Ogurtsova, E.K.; Antonov, A.S.; et al. Isolated from the Far-Eastern marine sponge, Monanchora pulchra: The first marine non-peptide inhibitor of TRPV-1 channels. Tetrahedron Lett. 2013, 54, 1247–1250. [Google Scholar] [CrossRef]
- Look, S.A.; Fenical, W.; Matsumoto, G.K.; Clardy, J. The pseudopterosins—a new class of antiinflammatory and analgesic diterpene pentosides from the marine sea whip Pseudopterogorgia elisabethae (Octocorallia). J. Org. Chem. 1986, 51, 5140–5145. [Google Scholar] [CrossRef]
- Luo, S.L.; Zhangsun, D.T.; Schroeder, C.I.; Zhu, X.P.; Hu, Y.Y.; Wu, Y.; Weltzin, M.M.; Eberhard, S.; Kaas, Q.; Craik, D.J.; et al. A novel alpha 4/7-conotoxin LvIA from Conus lividus that selectively blocks alpha 3 beta 2 vs. alpha 6/alpha 3 beta 2 beta 3 nicotinic acetylcholine receptors. FASEB J. 2014, 28, 1842–1853. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.M.S.; Glaser, K.B.; Cuevas, C.; Jacobs, R.S.; Kem, W.; Little, R.D.; McIntosh, J.M.; Newman, D.J.; Potts, B.C.; Shuster, D.E. The odyssey of marine pharmaceuticals: A current pipeline perspective. Trends Pharmacol. Sci. 2010, 31, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Pan, D.; He, C.; Wang, A.; Yan, J.; Sun, H. Morphological and molecular data confirm species assignment and dispersal of the genus Ligia (Crustacea: Isopoda: Ligiidae) along northeastern coastal China and East Asia. Zool. J. Linn. Soc. 2013, 169, 362–376. [Google Scholar] [CrossRef]
- Warburg, M.R. Behavioral adaptations of terrestrial isopods. Am. Zool. 2015, 8, 545–559. [Google Scholar] [CrossRef]
- Proksch, P. Chinese Marine Materia Medica. Mar. Drugs 2014, 12, 193–195. [Google Scholar] [CrossRef]
- Jun, B.; Weidong, X.; Zhiyong, C.; Dingguo, C. Antitumor effects of extract from Ligia exotica (Roux). Chin. J. Mar. Drugs 2007, 1, 13–15. [Google Scholar]
- Qiuing, F.; Caiguo, H.; Huinan, M.; Binghua, J.; Qinsheng, Y. Screening of bioactive products in twelve kinds of marine animals from Zhoushan archipelago in Zhejiang province. Chin. J. Mar. Drugs 2005, 24, 37–39. [Google Scholar]
- Kim, S.H.; Yoo, S.M.; Park, I.S.; Kim, Y.H. A new inosine disaccharide from the crustacean Ligia exotica: Isolation and structure elucidation by total synthesis. J. Nat. Prod. 2000, 63, 1188–1191. [Google Scholar] [CrossRef] [PubMed]
- Matsuno, T.; Watanabe, T.; Maoka, T.; Takemura, Y. Carotinoids of crustacea—VII. Carotenoids in the sea louse Ligia exotica (Crustacea: Isopoda). Comp. Biochem. Physiol. Part B Comp. Biochem. 1990, 95, 759–761. [Google Scholar] [CrossRef]
- Cury, Y.; Picolo, G.; Gutierrez, V.P.; Ferreira, S.H. Pain and analgesia: The dual effect of nitric oxide in the nociceptive system. Nitric Oxide 2011, 25, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.B.; Rudd, D.; Kotiw, M.; Liu, L.; Benkendorff, K. Correlation between fatty acid profile and anti-Inflammatory activity in common australian seafood by-products. Mar. Drugs 2019, 17, 155. [Google Scholar] [CrossRef] [PubMed]
- Rumora, A.E.; LoGrasso, G.; Hayes, J.M.; Mendelson, F.E.; Tabbey, M.A.; Haidar, J.A.; Lentz, S.I.; Feldman, E.L. The divergent roles of dietary saturated and monounsaturated fatty acids on nerve function in murine models of obesity. J. Neurosci. Off. J. Soc. Neurosci. 2019, 39, 3770–3781. [Google Scholar] [CrossRef] [PubMed]
- Latreille, J.; Kesse-Guyot, E.; Malvy, D.; Andreeva, V.; Galan, P.; Tschachler, E.; Hercberg, S.; Guinot, C.; Ezzedine, K. Dietary monounsaturated fatty acids intake and risk of skin photoaging. PLoS ONE 2012, 7, e44490. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G. Monounsaturated fatty acids and risk of cardiovascular disease: Synopsis of the evidence available from systematic reviews and meta-analyses. Nutrients 2012, 4, 1989–2007. [Google Scholar] [CrossRef] [PubMed]
- Guijas, C.; Meana, C.; Astudillo, A.M.; Balboa, M.A.; Balsinde, J. Foamy monocytes are enriched in cis-7-hexadecenoic fatty acid (16:1n-9), a possible biomarker for early detection of cardiovascular disease. Cell Chem. Biol. 2016, 23, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Astudillo, A.M.; Meana, C.; Guijas, C.; Pereira, L.; Lebrero, P.; Balboa, M.A.; Balsinde, J. Occurrence and biological activity of palmitoleic acid isomers in phagocytic cells. J. Lipid Res. 2018, 59, 237–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderhoek, J.Y.; Lands, W.E.M. Acetylenic inhibitors of sheep vesicular gland oxygenase. Biochim. Biophys. Acta BBA Lipids Lipid Metab. 1973, 296, 374–381. [Google Scholar] [CrossRef]
- Downing, D.T.; Barve, J.A.; Gunstone, F.D.; Jacobsberg, F.R.; Lie Ken Jie, M. Structural requirements of acetylenic fatty acids for inhibition of soybean lipoxygenase and prostaglandin synthetase. Biochim. Biophys. Acta BBA Lipids Lipid Metab. 1972, 280, 343–347. [Google Scholar] [CrossRef]
- Yamada, H.; Yamazaki, Y.; Koike, S.; Hakozaki, M.; Nagahora, N.; Yuki, S.; Yano, A.; Tsurumi, K.; Okumura, T. Lipids, fatty acids and hydroxy-fatty acids of Euphausia pacifica. Sci. Rep. 2017, 7, 9944. [Google Scholar] [CrossRef]
- Kumar, N.; Gupta, G.; Anilkumar, K.; Fatima, N.; Karnati, R.; Reddy, G.V.; Giri, P.V.; Reddanna, P. 15-Lipoxygenase metabolites of alpha-linolenic acid, [13-(S)-HPOTrE and 13-(S)-HOTrE], mediate anti-inflammatory effects by inactivating NLRP3 inflammasome. Sci. Rep. 2016, 6, 31649. [Google Scholar] [CrossRef] [PubMed]
- Haviv, F.; Ratajczyk, J.D.; DeNet, R.W.; Martin, Y.C.; Dyer, R.D.; Carter, G.W. Structural requirements for the inhibition of 5-lipoxygenase by 15-hydroxyeicosa-5,8,11,13-tetraenoic acid analogs. J. Med. Chem. 1987, 30, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Hiley, C.R.; Hoi, P.M. Oleamide: A fatty acid amide signaling molecule in the cardiovascular system? Cardiovasc. Drug Rev. 2007, 25, 46–60. [Google Scholar] [CrossRef] [PubMed]
- Fedorova, I.; Hashimoto, A.; Fecik, R.A.; Hedrick, M.P.; Hanuš, L.R.O.; Boger, D.L.; Rice, K.C.; Basile, A.S. Behavioral evidence for the interaction of oleamide with multiple neurotransmitter systems. J. Pharmacol. Exp. Ther. 2001, 299, 332–342. [Google Scholar] [PubMed]
- Pacher, P.; Bátkai, S.; Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 2006, 58, 389–462. [Google Scholar] [CrossRef] [PubMed]
- Clapper, J.R.; Moreno-Sanz, G.; Russo, R.; Guijarro, A.; Vacondio, F.; Duranti, A.; Tontini, A.; Sanchini, S.; Sciolino, N.R.; Spradley, J.M.; et al. Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism. Nat. Neurosci. 2010, 13, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Felder, C.C.; Briley, E.M.; Axelrod, J.; Simpson, J.T.; Mackie, K.; Devane, W.A. Anandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction. Proc. Natl. Acad. Sci. USA 1993, 90, 7656–7660. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.-Q.; Guo, C.; Zhao, J.-J.; Dong, Y.-Y.; Hu, X.-L.; He, Q.-W.; Zhang, B.-B.; Yan, M.; Wang, H. Anti-inflammatory meroterpenoids from Baeckea frutescens. J. Nat. Prod. 2017, 80, 2204–2214. [Google Scholar] [CrossRef] [PubMed]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints12. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- The Committee—NRC. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press (US): Washington, DC, USA, 2011. [Google Scholar]
- Koster, R.; Anderson, M.; Debeer, E.J. Acetic acid for analgesic screening. Fed. Proc. 1959, 18, 412–417. [Google Scholar]
- Eddy, N.B.; Leimbach, D. Synthetic analgesics. II. Dithienylbutenyl- and dithienylbutylamines. J. Pharmacol. Exp. Ther. 1953, 107, 385–393. [Google Scholar] [PubMed]
- Nothias, L.F.; Nothias-Esposito, M.; da Silva, R.; Wang, M.; Protsyuk, I.; Zhang, Z.; Sarvepalli, A.; Leyssen, P.; Touboul, D.; Costa, J.; et al. Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J. Nat. Prod. 2018, 81, 758–767. [Google Scholar] [CrossRef] [PubMed]
Extracts a | 85% EtOH | PE | EE | ME-1 | ME-2 | ME-3 | 95E | 50E |
---|---|---|---|---|---|---|---|---|
Weight(g) | 540.8 | 76.9 | 8.0 | 111.4 | 180.1 | 61.3 | 22.2 | 80.9 |
%(total weight b) | 100 | 14.2 | 1.5 | 20.6 | 33.3 | 11.3 | 4.1 | 14.9 |
%(wet weight c) | 8.3 | 1.2 | 0.1 | 1.7 | 2.7 | 0.9 | 0.3 | 1.2 |
Groups | Latency Time (s) | ||||
---|---|---|---|---|---|
0 h | 0.5 h | 1 h | 2 h | 48 h | |
BLANK | 11.55 ± 0.61 | 11.87 ± 0.85 | 11.23 ± 0.75 | 12.07 ± 0.75 | — |
PE (200 mg/kg) | 12.37 ± 0.62 | 14.10 ± 0.65 | 16.98 ± 0.69 *** | 16.91 ± 1.10 *** | 12.49 ± 0.64 |
PE (600 mg/kg) | 16.67 ± 1.19 | 27.64 ± 2.15 ### | 24.06 ± 1.56 # | 28.61 ± 2.41 ### | 17.69 ± 1.78 |
Tramadol (20 mg/kg) | 12.50 ± 0.48 | 19.29 ± 1.21 §§§ | 19.02 ± 1.42 §§§ | 19.30 ± 1.28 §§§ | — |
Peak Number | RT a (min) | Compound_Name | Chemical Formula | m/zb (Da) | MD c (%) | PE F1 d | PE F2 d | PEc F3 d | PE F4 d | EE |
---|---|---|---|---|---|---|---|---|---|---|
1 | 12.056 | 1-pentadecene | C15H30 | 210 | 99 | + | ||||
2 | 13.089 | 2(4H)-benzofuranone, 5,6,7,7a-tetrahydro-4,4,7a-trimethyl- | C11H16O2 | 180 | 96 | + | ||||
3 | 16.388 | 8-heptadecene | C17H34 | 238 | 95 | + | ||||
4 | 18.029 | Tetradecanoic acid | C14H28O2 | 228 | 95 | + | ||||
5 | 18.67 | Tetradecanoic acid, ethyl ester | C16H32O2 | 256 | 97 | + | + | |||
6 | 21.762 | Hexadecenoic acid, Z-11- | C16H30O2 | 254 | 99 | + | ||||
7 | 21.927 | Z-9-hexadecenoic acid | C16H30O2 | 254 | 99 | + | + | + | ||
8 | 22.160 | n-hexadecanoic acid | C16H32O2 | 256 | 99 | + | + | |||
9 | 22.207 | Ethyl 9-hexadecenoate | C18H34O2 | 282 | 99 | + | + | + | ||
10 | 22.604 | Hexadecanoic acid, ethyl ester | C18H36O2 | 284 | 97 | + | + | |||
11 | 23.526 | Z-10-heptadecenoic acid | C17H32O2 | 268 | 97 | + | ||||
12 | 24.458 | 10,13-octadecadienoic acid, methyl ester | C19H34O2 | 294 | 99 | + | ||||
13 | 24.564 | 9-octadecenoic acid, methyl ester, (E)- | C19H36O2 | 296 | 99 | + | ||||
14 | 24.675 | cis-13-octadecenoic acid, methyl ester | C19H36O2 | 296 | 99 | + | ||||
15 | 25.204 | 9,12-octadecadienoic acid (Z,Z)- | C18H32O2 | 280 | 99 | + | + | + | + | |
16 | 25.331 | E-13-octadecenoic acid | C18H34O2 | 282 | 99 | + | ||||
17 | 25.390 | 6-Octadecenoic acid | C18H34O2 | 282 | 99 | + | + | + | + | |
17 | 25.432 | 6-Octadecenoic acid, (Z)- | C18H34O2 | 282 | 99 | + | ||||
18 | 25.566 | 9,12-octadecadienoic acid, ethyl ester | C20H36O2 | 308 | 99 | + | ||||
19 | 25.660 | 9,17-octadecadienal, (Z)- | C18H32O | 264 | 96 | + | ||||
20 | 25.665 | Linoleic acid ethyl ester | C20H36O2 | 308 | 99 | + | ||||
21 | 25.766 | Ethyl oleate | C20H38O2 | 310 | 99 | + | + | |||
22 | 28.89 | 5,8,11,14-eicosatetraenoic acid, ethyl ester, (all-Z)- | C22H36O2 | 332 | 95 | + | + | |||
23 | 29.060 | 9,12,15-octadecatrien-1-ol, (Z,Z,Z)- | C18H32O | 264 | 95 | + | ||||
24 | 39.332 | Cholesterol | C27H46O | 386 | 99 | + | + | |||
Sum up | 13 | 15 | 10 | 0 | 3 |
Comps. a | RT b (s) | Precursor MZ c (Da) | Compound_Name | Shared Peaks d | MQScore e |
---|---|---|---|---|---|
1 | 70.802 | 166.087 | Phenylalanine | 6 | 0.956563 |
70.802 | 166.083 | DL-phenylalanine | 17 | 0.926237 | |
2 | 82.189 | 205.098 | Tryptophan | 25 | 0.954918 |
82.189 | 205.097 | l-tryptophan | 30 | 0.952962 | |
3 | 83.523 | 188.07 | Abrine | 10 | 0.920207 |
4 | 83.523 | 188.071 | DL-indole-3-lactic acid | 13 | 0.921548 |
5 | 96.254 | 265.154 | Phe-Val | 19 | 0.787928 |
6 | 127.29 | 231.114 | 1,2,3,4-tetrahydroharmane-3-carboxylic acid | 10 | 0.85109 |
7 | 147.378 | 136.076 | DL-octopamine | 6 | 0.728619 |
8 | 151.331 | 279.17 | Spectral Match to Phe-Leu from NIST14 | 14 | 0.923904 |
9 | 171.655 | 279.169 | Spectral Match to Leu-Phe from NIST14 | 7 | 0.718983 |
10 | 214.147 | 279.169 | Spectral Match to Phe-Ile from NIST14 | 8 | 0.909698 |
11 | 260.648 | 208.097 | N-acetylphenylalanine | 12 | 0.836929 |
260.648 | 208.097 | l-phenylalanine, N-acetyl- from NIST14 | 10 | 0.91052 | |
12 | 287.152 | 245.128 | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl)- | 18 | 0.718626 |
13 | 287.152 | 245.128 | Phenylalanine, prolyl- | 19 | 0.747031 |
14 | 292.27 | 313.155 | Phe-Phe from NIST14 | 9 | 0.95749 |
15 | 393.38 | 164.107 | N-acetyl-2-phenylethylamine | 7 | 0.8942 |
16 | 883.698 | 333.206 | 5-[2-(3-Furyl)ethyl]-8-hydroxy-5,6,8a-trimethyl-3,4,4a,5,6,7,8,8a-octahydro-1-naphthalenecarboxylic acid | 168 | 0.727051 |
17 | 883.698 | 333.206 | 5-[2-(3-Furyl)ethyl]-8a-(hydroxymethyl)-5,6-dimethyl-3,4,4a,5,6,7,8,8a-octahydro-1-naphthalenecarboxylic acid | 169 | 0.730714 |
18 | 1018.02 | 415.211 | 2H-oxireno[1,10a]phenanthro[3,2-b]furan-10(11bH)-one, 5,7-bis(acetyloxy)-3,3a,4,5,6,7,7a,7b,8,8a-decahydro-4,4,7a,11-tetramethyl-, (1aS,3aR,5S,7S,7aR,7bS,8aR,11bR)- | 49 | 0.887886 |
19 | 1018.02 | 415.211 | 6-[3-[(3,4-dimethoxyphenyl)methyl]-4-methoxy-2-(methoxymethyl)butyl]-4-methoxy-1,3-benzodioxole | 25 | 0.896878 |
20 | 1101.95 | 301.215 | Spectral Match to 14(15)-EpETE from NIST14 | 147 | 0.808564 |
21 | 1135.87 | 293.211 | Spectral Match to 9(S)-HpOTrE from NIST14 | 52 | 0.712923 |
22 | 1148.93 | 301.216 | Spectral Match to 17(18)-EpETE from NIST14 | 127 | 0.809739 |
23 | 1148.93 | 301.216 | (.+/-.)-8-Hydroxy-5Z,9E,11Z,14Z,17Z-eicosapentaenoic acid from NIST14 | 134 | 0.814645 |
24 | 1170.15 | 303.231 | 11S-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid | 150 | 0.852725 |
25 | 1170.15 | 303.231 | 15(S)-hydroxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid from NIST14 | 150 | 0.865231 |
26 | 1172.17 | 279.231 | Spectral Match to Pinolenic acid from NIST14 | 96 | 0.773502 |
27 | 1176.45 | 295.226 | 13-keto-9Z,11E-octadecadienoic acid from NIST14 | 86 | 0.820771 |
28 | 1178.25 | 277.216 | 13S-hydroxy-9Z,11E,15Z-octadecatrienoic acid | 68 | 0.76488 |
29 | 1188.09 | 482.36 | 1-hexadecyl-sn-glycero-3-phosphocholine | 7 | 0.887771 |
30 | 1191.89 | 317.211 | 9-hydroxy-1,4a-dimethyl-7-propan-2-yl-2,3,4,9,10, 10a-hexahydrophenanthrene-1-carboxylic acid | 114 | 0.732695 |
31 | 1191.89 | 317.211 | 12-oxopimara-9(11),15-dien-18-oic acid | 132 | 0.727094 |
32 | 1200.88 | 277.216 | 9,12-octadecadiynoic acid from NIST14 | 63 | 0.707527 |
33 | 1211.54 | 317.211 | 7-ethenyl-1,4a,7-trimethyl-6-oxo-2,3,4,8,8a,9,10,10a-octahydrophenanthrene-1-carboxylic acid | 51 | 0.713914 |
34 | 1216.52 | 295.227 | 9-oxo-10E,12Z-octadecadienoic acid from NIST14 | 97 | 0.798115 |
35 | 1222.44 | 303.232 | 8S-hydroxy-5Z,9E,11Z,14Z-eicosatetraenoic acid | 90 | 0.75798 |
36 | 1227.3 | 279.159 | Spectral Match to Dibutyl phthalate from NIST14 | 9 | 0.923685 |
37 | 1290.23 | 323.258 | Spectral Match to Eicosanoids_15-oxoEDE | 45 | 0.722368 |
1290.23 | 323.258 | Spectral Match to 15-OxoEDE from NIST14 | 54 | 0.727381 | |
38 | 1293.26 | 323.258 | 1-Naphthalenecarboxylic acid, decahydro-5-(5-hydroxy-3-methylpentyl)-1,4a-dimethyl-6-methylene-, (1R,4aS,5R,8aS)- | 107 | 0.736152 |
39 | 1316.52 | 552.401 | 1-arachidoyl-2-hydroxy-sn-glycero-3-phosphocholine from NIST14 | 15 | 0.854794 |
40 | 1318.46 | 510.391 | Spectral Match to Lyso-PAF C-18 from NIST14 | 9 | 0.893974 |
35 | 1349.1 | 303.23 | Spectral Match to 8-HETE from NIST14 | 56 | 0.746991 |
41 | 1370.87 | 307.263 | Spectral Match to Linolenic acid ethyl ester | 64 | 0.809892 |
42 | 1389.49 | 402.301 | (Z)-N-hexadec-9-enoyl-L-phenylalanine | 17 | 0.878151 |
43 | 1408.8 | 282.279 | Spectral Match to 9-octadecenamide, (Z)- | 37 | 0.795687 |
44 | 1463.23 | 404.316 | 2-(14-methylpentadecanoylamino)-3-phenylpropanoic acid | 26 | 0.90229 |
45 | 1866.48 | 369.351 | Cholestan-3-one, (5.alpha.)- from NIST14 | 27 | 0.75334 |
46 | 1866.48 | 369.352 | Spectral Match to Cholesterol from NIST14 | 24 | 0.763294 |
47 | 89.587 | 261.123 | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-[(4-hydroxyphenyl)methyl]- | 53 | 0.734621 |
48 | 115.327 | 180.102 | N-acetyltyramine | 9 | 0.811762 |
49 | 334.623 | 197.117 | Loliolide | 38 | 0.765238 |
334.623 | 197.117 | 2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-6-hydroxy-4,4,7a-trimethyl-, (6S,7aR)- | 60 | 0.790237 | |
50 | 354.718 | 146.06 | Spectral Match to 1H-indole-4-carboxaldehyde from NIST14 | 6 | 0.84395 |
51 | 356.703 | 284.139 | cyclo(D-Trp-L-Pro) | 16 | 0.950215 |
356.703 | 284.139 | 3-(1H-indol-3-ylmethyl)-2,3,6,7,8,8a-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione | 17 | 0.933498 | |
52 | 629.326 | 261.159 | cyclo(Phe-Leu) | 34 | 0.737895 |
53 | 662.681 | 334.155 | 3-benzyl-6-(1H-indol-3-ylmethyl)piperazine-2,5-dione | 13 | 0.888409 |
54 | 684.967 | 295.129 | Aspartame|3-amino-4-[(1-benzyl-2-keto-2-methoxy-ethyl)amino]-4-keto-butyric acid | 11 | 0.751393 |
684.967 | 295.129 | Aspartame|3-amino-4-[(1-benzyl-2-keto-2-methoxy-ethyl)amino]-4-keto-butyric acid | 14 | 0.750524 | |
55 | 970.585 | 321.242 | 5-(1,2,4a,5-tetramethyl-7-oxo-3,4,8,8a-tetrahydro-2H-naphthalen-1-yl)-3-methylpentanoic acid | 143 | 0.800957 |
970.585 | 321.242 | 5-[(1S,2R,4aR)-1,2,4a,5-tetramethyl-7-oxo-3,4,8,8a-tetrahydro-2H-naphthalen-1-yl]-3-methylpentanoic acid | 152 | 0.804541 | |
56 | 1187.73 | 327.231 | (.+/-.)-11-hydroxy-4Z,7Z,9E,13Z,16Z,19Z-docosahexaenoic acid from NIST14 | 82 | 0.733423 |
57 | 1187.73 | 327.23 | Spectral Match to 19(20)-EpDPE from NIST14 | 80 | 0.725253 |
58 | 1261.82 | 297.242 | Spectral Match to 9(10)-EpOME from NIST14 | 36 | 0.702697 |
59 | 1322.28 | 304.26 | Spectral Match to Arachidonoyl amide | 74 | 0.857892 |
60 | 1471.59 | 358.31 | Spectral Match to phenylethylamide 357 | 46 | 0.81775 |
61 | 1551.27 | 628.187 | 2-[3,4-bis[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy]phenyl]-5,7-dihydroxychromen-4-one | 28 | 0.741822 |
62 | 132.068 | 263.138 | Spectral Match to Phe-Pro from NIST14 | 14 | 0.772827 |
63 | 386.204 | 352.165 | Spectral Match to Phe-Trp from NIST14 | 9 | 0.880003 |
64 | 506.815 | 352.165 | Spectral Match to Trp-Phe from NIST14 | 9 | 0.815122 |
65 | 75.058 | 229.16 | Spectral Match to Leu-Pro from NIST14 | 6 | 0.792858 |
66 | 200.695 | 332.218 | Spectral Match to Thr-Val-Leu from NIST14 | 7 | 0.732416 |
67 | 207.742 | 277.119 | Spectral Match to PyroGlu-Phe from NIST14 | 16 | 0.73009 |
68 | 62.857 | 182.081 | Spectral Match to L-Tyrosine from NIST14 | 11 | 0.947038 |
69 | 99.71 | 295.128 | Spectral Match to Glu Phe from METLIN | 9 | 0.777446 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, Y.; Zhang, Q.; Wang, J. Integrated Gas Chromatograph-Mass Spectrometry (GC/MS) and MS/MS-Based Molecular Networking Reveals the Analgesic and Anti-Inflammatory Phenotypes of the Sea Slater Ligia exotica. Mar. Drugs 2019, 17, 395. https://doi.org/10.3390/md17070395
Yue Y, Zhang Q, Wang J. Integrated Gas Chromatograph-Mass Spectrometry (GC/MS) and MS/MS-Based Molecular Networking Reveals the Analgesic and Anti-Inflammatory Phenotypes of the Sea Slater Ligia exotica. Marine Drugs. 2019; 17(7):395. https://doi.org/10.3390/md17070395
Chicago/Turabian StyleYue, Yang, Quanbin Zhang, and Jing Wang. 2019. "Integrated Gas Chromatograph-Mass Spectrometry (GC/MS) and MS/MS-Based Molecular Networking Reveals the Analgesic and Anti-Inflammatory Phenotypes of the Sea Slater Ligia exotica" Marine Drugs 17, no. 7: 395. https://doi.org/10.3390/md17070395
APA StyleYue, Y., Zhang, Q., & Wang, J. (2019). Integrated Gas Chromatograph-Mass Spectrometry (GC/MS) and MS/MS-Based Molecular Networking Reveals the Analgesic and Anti-Inflammatory Phenotypes of the Sea Slater Ligia exotica. Marine Drugs, 17(7), 395. https://doi.org/10.3390/md17070395