Circumdatin-Aspyrone Conjugates from the Coral-Associated Aspergillus ochraceus LCJ11-102
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General Experimental Procedures
3.2. Fungus Material
3.3. Fermentation and Extraction
3.4. Purification
3.5. X-Ray Diffraction Data of Compound 6
3.6. Absolute Configuration Determination of Alanine of 5 by Marfey’s Method
3.7. Synthesis of 1–4 from 5 and 6
3.8. Reaction of Compounds 5 and 6 under Neutral and Acidic Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lian, G.; Yu, B. Naturally occurring dimers from chemical perspective. Chem. Biodivers. 2010, 7, 2660–2691. [Google Scholar] [CrossRef] [PubMed]
- Wezeman, T.; Bräse, S.; Masters, K.S. Xanthone dimers: A compound family which is both common and privileged. Nat. Prod. Rep. 2015, 32, 6–28. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.P.; Park, H.; Son, K.H.; Chang, H.W.; Kang, S.S. Biochemical pharmacology of biflavonoids: Implications for anti-inflammatory action. Arch. Pharm. Res. 2008, 31, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Hadden, M.K.; Blagg, B.S.J. Dimeric approaches to anti-cancer chemotherapeutics. Anticancer Agents Med. Chem. 2008, 8, 807–816. [Google Scholar] [CrossRef]
- Yin, G.P.; Wu, Y.R.; Yang, M.H.; Li, T.X.; Wang, X.B.; Zhou, M.M.; Lei, J.L.; Kong, L.Y. Citrifurans A−D, four dimeric aromatic polyketides with new carbon skeletons from the fungus Aspergillus sp. Org. Lett. 2017, 19, 4058–4061. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Zhao, Z.; Ma, S.; Wang, R.; Li, Y.; Liu, Y.; Li, Y.; Li, L.; Qu, J.; Yu, S. Cnidimonins A−C, three types of hybrid dimer from cnidium monnieri: Structural elucidation and semisynthesis. Org. Lett. 2017, 19, 4920–4923. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Potts, M.B.; Colosimo, D.; Herrera-Herrera, M.L.; Legako, A.G.; Yousufuddin, M.; White, M.A.; MacMillan, J.B. Discoipyrroles A−D: Isolation, structure determination, and synthesis of potent migration inhibitors from Bacillus hunanensis. J. Am. Chem. Soc. 2013, 135, 13387–13392. [Google Scholar] [CrossRef]
- Colosimo, D.A.; MacMillan, J.B. Detailed mechanistic study of the non-enzymatic formation of the discoipyrrole family of natural products. J. Am. Chem. Soc. 2016, 138, 2383–2388. [Google Scholar] [CrossRef]
- Fu, P.; Legako, A.; La, S.; MacMillan, J.B. Discovery, characterization, and analogue synthesis of bohemamine dimers generated by non-enzymatic biosynthesis. Chem. Eur. J. 2016, 22, 3491–3495. [Google Scholar] [CrossRef]
- Zhuang, Y.; Teng, X.; Wang, Y.; Liu, P.; Li, G.; Zhu, W. New quinazolinone alkaloids within rare amino acid residue from coral-associated fungus, Aspergillus versicolor LCJ-5-4. Org. Lett. 2011, 13, 1130–1133. [Google Scholar] [CrossRef]
- Zhuang, Y.; Teng, X.; Wang, Y.; Liu, P.; Wang, H.; Li, J.; Li, G.; Zhu, W. Cyclopeptides and polyketides from coral-associated fungus, Aspergillus versicolor LCJ-5-4. Tetrahedron 2011, 67, 7085–7089. [Google Scholar] [CrossRef]
- Fu, P.; Kong, F.; Wang, Y.; Wang, Y.; Liu, P.; Zuo, G.; Zhu, W. Antibiotic metabolites from the coral-associated actinomycete Streptomyces sp. OUCMDZ-1703. Chin. J. Chem. 2013, 31, 100–104. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Liu, P.; Wang, Z.; Zhu, W. Effects of environmental stress on secondary metabolites of Aspergillus ochraceus LCJ11-102 associated with the coral Dichotella gemmacea. Acta Microbiol. Sin. 2010, 50, 1023–1029. [Google Scholar]
- Peng, X.; Wang, Y.; Zhu, T.; Zhu, W. Pyrazinone derivatives from the coral-derived Aspergillus ochraceus LCJ11-102 under high iodide salt. Arch. Pharm. Res. 2018, 41, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Rahbæk, L.; Breinholt, J. Circumdatins D, E, and F: Further fungal benzodiazepine analogues from Aspergillus ochraceus. J. Nat. Prod. 1999, 62, 904–905. [Google Scholar]
- Rahbæk, L.; Breinholt, J.; Frisvad, J.C.; Christophersen, C. Circumdatin A, B, and C: Three new benzodiazepine alkaloids isolated from a culture of the fungus Aspergillus ochraceus. J. Org. Chem. 1999, 64, 1689–1692. [Google Scholar] [CrossRef]
- Dai, J.-R.; Carté, B.K.; Sidebottom, P.J.; Sek Yew, A.L.; Ng, S.-B.; Huang, Y.; Butler, M.S. Circumdatin G, a new alkaloid from the fungus Aspergillus ochraceus. J. Nat. Prod. 2001, 64, 125–126. [Google Scholar] [CrossRef] [PubMed]
- López-Gresa, M.P.; González, M.C.; Primo, J.; Moya, P.; Romero, V.; Estornell, E. Circumdatin H, a new inhibitor of mitochondrial NADH oxidase, from Aspergillus ochraceus. J. Antibiot. 2005, 58, 416–419. [Google Scholar] [CrossRef]
- Ookura, R.; Kito, K.; Ooi, T.; Namikoshi, M.; Kusumi, T. Structure revision of circumdatins A and B, benzodiazepine alkaloids produced by marine fungus Aspergillus ostianus, by X-ray crystallography. J. Org. Chem. 2008, 73, 4245–4247. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, X.; Kang, J.S.; Choi, H.D.; Son, B.W. Circumdatin I, a new ultraviolet-A protecting benzodiazepine alkaloid from a marine isolate of the fungus Exophiala. J. Antibiot. 2008, 61, 40–42. [Google Scholar] [CrossRef]
- Cui, C.-M.; Li, X.-M.; Li, C.-S.; Sun, H.-F.; Gao, S.-S.; Wang, B.-G. Benzodiazepine alkaloids from marine-derived endophytic fungus Aspergillus ochraceus. Helv. Chim. Acta 2009, 92, 1366–1370. [Google Scholar] [CrossRef]
- Kimura, Y.; Nakahara, S.; Fujioka, S. Aspyrone, a nematicidal compound isolated from the fungus, Aspergillus melleus. Biosci. Biotechnol. Biochem. 1996, 60, 1375–1376. [Google Scholar] [CrossRef]
- Marfey, P. Determination of D-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res. Commun. 1984, 49, 591–596. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, X.; Miao, X.; Zhu, K.; Cui, S.; Meng, Q.; Sun, J.; Wang, T. MicroRNA-425-5p regulates chemoresistance in colorectal cancer cells via regulation of Programmed Cell Death 10. J. Cell. Mol. Med. 2016, 20, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lei, B.; Xiang, W.; Wang, H.; Feng, W.; Liu, Y.; Qi, S. Differences in protein expression between the U251 and U87 cell lines. Turk. Neurosurg. 2017, 27, 894–903. [Google Scholar] [PubMed]
- Han, Y.; Wu, Z.; Wu, T.; Huang, Y.; Cheng, Z.; Li, X.; Sun, T.; Xie, X.; Zhou, Y.; Du, Z. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling. Cell Death Dis. 2016, 7, e2123. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Niu, W.; Cheng, C.; Niu, C. Expression of CYP17A1 in glioma cell lines T98G, U87 and U251 and its significance. Chin. J. Stereotact. Funct. Neurosurg. 2016, 29, 344–347. [Google Scholar]
- Zhang, L.; Zhang, J.; Yang, S.; Dong, C.; Fang, D.; Li, J.; Chen, X. Expression of HER2 in glioma cell lines A172, U251, U87 and SHG-44 and its significance. Chin. J. Neurosurg. Dis. Res. 2011, 10, 151–153. [Google Scholar]
No. | 1 a | 2 a | 3 a | 4 b | ||||
---|---|---|---|---|---|---|---|---|
δC | δH, mult. (J in Hz) | δC | δH, mult. (J in Hz) | δC | δH, mult. (J in Hz) | δC | δH, mult. (J in Hz) | |
2 | 166.5, C | 166.5, C | 166.4, C | 166.4, C | ||||
3 | 122.6, C | 122.6, C | 124.5, C | 124.8, C | ||||
4 | 113.1, CH | 7.03, s | 113.3, CH | 7.08, s | 114.4, CH | 7.10, s | 114.7, CH | 7.15, s |
5 | 145.6, C | 145.3, C | 145.9, C | 146.5, C | ||||
6 | 148.7, C | 148.7, C | 146.9, C | 147.4 C | ||||
7 | 115.8, CH | 6.99, s | 115.7, CH | 7.00, s | 114.0, CH | 6.75, s | 114.3, CH | 6.90, s |
8 | 127.3, C | 127.4, C | 125.1, C | 124.9, C | ||||
10 | 161.1, C | 161.1, C | 161.1, C | 161.0, C | ||||
11 | 121.0, C | 120.9, C | 120.9, C | 120.9, C | ||||
12 | 126.9, CH | 8.17, dd (7.9, 1.5) | 126.8, CH | 8.16, d (7.9) | 126.6, CH | 8.12, dd (7.9, 1.5) | 126.9, CH | 8.17, dd (8.0, 1.2) |
13 | 127.4, CH | 7.58, td (8.1, 1.2) | 127.4, CH | 7.58, t (7.5) | 127.4, CH | 7.61, td (8.2, 1.2) | 127.3, CH | 7.56, t (7.9) |
14 | 135.1, CH | 7.89, td (8.4, 1.5) | 135.0, CH | 7.89, t (7.6) | 135.1, CH | 7.84, td (8.4, 1.5) | 135.1, CH | 7.87, td (8.4, 1.5) |
15 | 127.4, CH | 7.72, d (8.2) | 127.4, CH | 7.72, d (8.1) | 127.5, CH | 7.72, d (7.6) | 127.4, CH | 7.71, d (8.0) |
16 | 145.9, C | 145.9, C | 146.1, C | 145.9, C | ||||
18 | 156.8, C | 156.9, C | 157.0, C | 157.0, C | ||||
19 | 49.5, CH | 4.32, m | 49.5, CH | 4.33, m | 49.5, CH | 4.35, m | 49.5, CH | 4.28, m |
20 | 14.9, CH3 | 1.51, d (6.7) | 14.9, CH3 | 1.49, d (6.7) | 15.0, CH3 | 1.49, d (6.7) | 14.9, CH3 | 1.50, d (6.7) |
2’ | 162.9, C | 162.9, C | 163.5, C | 162.9, C | ||||
3’ | 127.4, C | 127.4, C | 126.7, C | 126.5, C | ||||
4’ | 146.4, CH | 6.83, d (2.7) | 147.4, CH | 6.86, brs | 149.0, CH | 6.85, d (1.7) | 147.8, CH | 6.74, s |
5’ | 65.9, CH | 4.19, d (7.8) | 66.6, CH | 4.13, d (9.5) | 67.0, CH | 4.23, d (8.8) | 66.6, CH | 4.03, d (9.8) |
6’ | 79.1, CH | 4.27, m | 78.1, CH | 4.23, m | 78.5, CH | 4.60, m | 78.0, CH | 4.16, m |
7’ | 17.9, CH3 | 1.32, d (6.4) | 17.6, CH3 | 1.34, d (6.2) | 17.8, CH3 | 1.40, d (6.4) | 17.4, CH3 | 1.26, d (6.3) |
8’ | 79.1, CH | 4.88, d (4.2) | 78.1, CH | 5.10, d (4.3) | 78.7, CH | 4.66, d (4.6) | 78.2, CH | 4.97, d (4.6) |
9’ | 68.1, CH | 3.89, qd (6.5, 4.2) | 68.1, CH | 3.99, qd (6.4, 4.3) | 68.2, CH | 3.87, qd (6.4, 4.6) | 67.9, CH | 3.99, qd (6.5, 4.6) |
10’ | 19.6, CH3 | 1.19, d (6.4) | 18.2, CH3 | 1.12, d (6.4) | 19.5, CH3 | 1.11, d (6.4) | 18.3, CH3 | 1.11, d (6.4) |
1-NH | 8.55, d (5.8) | 8.57, d (5.8) | 8.57, d (5.8) | 8.56, d (5.5) | ||||
6/5-OH | 9.77, s | 9.90, s | 9.52, s | |||||
5’-OH | 5.83, s | 5.91, s | 5.81, s | 5.81, s | ||||
9’-OH | 5.21, s | 5.16, s | 5.02, s | 5.02, s |
1 | 2 | 3 | 4 | 5 | 6 | Adramycin | |
---|---|---|---|---|---|---|---|
MV-4-11 | 3.94 | >100 | >100 | >100 | >100 | 2.54 | 0.16 |
K562 | 6.05 | >100 | >100 | >100 | >100 | 5.22 | 0.02 |
A673 | 3.10 | >100 | 8.24 | >100 | >100 | 8.55 | 0.13 |
U87 | 8.67 | >100 | 9.04 | >100 | >100 | >100 | 0.12 |
A549 | 9.62 | >100 | >100 | >100 | >100 | >100 | 0.10 |
N87 | 6.10 | >100 | >100 | >100 | >100 | 4.57 | 0.05 |
H1299 | 7.14 | >100 | >100 | >100 | >100 | 5.83 | 0.49 |
HUCCT1 | 11.32 | >100 | >100 | >100 | >100 | 9.79 | 0.05 |
B16F10 | 11.22 | >100 | >100 | >100 | >100 | 5.89 | 0.02 |
Karpass299 | 5.89 | >100 | >100 | >100 | >100 | 2.57 | 0.39 |
U251 | >100 | 9.91 | >100 | 8.26 | 8.95 | >100 | 0.19 |
Hep3B | >100 | >100 | 10.28 | >100 | >100 | 5.48 | 17.58 |
A431 | >100 | >100 | >100 | >100 | >100 | 5.92 | 0.17 |
143B | >100 | >100 | >100 | >100 | >100 | 6.32 | 0.10 |
MKN-45 | >100 | >100 | >100 | >100 | >100 | 5.79 | 0.20 |
H1975 | >100 | >100 | >100 | >100 | >100 | 2.99 | 0.09 |
HL60 | >100 | >100 | >100 | >100 | >100 | 6.89 | 0.21 |
DU145 | >100 | >100 | >100 | >100 | >100 | 5.61 | 0.05 |
SPC-A1 | >100 | >100 | >100 | >100 | >100 | 9.51 | 0.19 |
HEK-293F b | 12.91 | 73.96 | 76.03 | 54.58 | >100 | 50.35 | 0.05 |
L02 b | 27.42 | >100 | >100 | >100 | >100 | 14.2 | 0.10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Zhou, Y.; Du, Y.; Wang, Y.; Fu, P.; Zhu, W. Circumdatin-Aspyrone Conjugates from the Coral-Associated Aspergillus ochraceus LCJ11-102. Mar. Drugs 2019, 17, 400. https://doi.org/10.3390/md17070400
Fan Y, Zhou Y, Du Y, Wang Y, Fu P, Zhu W. Circumdatin-Aspyrone Conjugates from the Coral-Associated Aspergillus ochraceus LCJ11-102. Marine Drugs. 2019; 17(7):400. https://doi.org/10.3390/md17070400
Chicago/Turabian StyleFan, Yaqin, Yalin Zhou, Yuqi Du, Yi Wang, Peng Fu, and Weiming Zhu. 2019. "Circumdatin-Aspyrone Conjugates from the Coral-Associated Aspergillus ochraceus LCJ11-102" Marine Drugs 17, no. 7: 400. https://doi.org/10.3390/md17070400
APA StyleFan, Y., Zhou, Y., Du, Y., Wang, Y., Fu, P., & Zhu, W. (2019). Circumdatin-Aspyrone Conjugates from the Coral-Associated Aspergillus ochraceus LCJ11-102. Marine Drugs, 17(7), 400. https://doi.org/10.3390/md17070400