Phlorotannins from Undaria pinnatifida Sporophyll: Extraction, Antioxidant, and Anti-Inflammatory Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Single-Factor Experiment
2.1.1. Effect of Ethanol Concentration on Total Phlorotannin Content (TPC) and Antioxidant Activity of the Phlorotannin Extracts from U. pinnatifida Sporophyll (PEUPS)
2.1.2. Effect of Extraction Temperature on TPC and Antioxidant Activity of the PEUPS
2.1.3. Effect of Extraction Time on TPC and Antioxidant Activity of the PEUPS
2.2. Response Surface Method (RSM) Model
2.3. Antioxidant Activity of the PEUPS Evaluated with RAW 264.7 Macrophages
2.4. Anti-Inflammatory Activity of PEUPS in the RAW 264.7 Macrophages
3. Materials and Methods
3.1. Samples and Chemicals
3.2. Sample Preparation
3.3. Extraction of PEUPS
3.4. Experimental Design
3.5. TPC Measurement (Folin–Ciocalteu Method)
3.6. Trolox Equivalents Antioxidant Capacity Assay (TEAC)
3.7. Cell Culture
3.8. Antioxidant Activity Analysis
3.9. Determination of Nitric Oxide Production
3.10. Western Blot Analysis
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PEUPS | Phlorotannins extracts from U. pinnatifida sporophyll |
RSM | Response surface method |
EGCG | Epigallocatechin gallate |
ROS | Reactive oxygen species |
iNOS | Inducible nitricoxide synthase |
COX-2 | Cyclooxygenase-2 |
TPC | Total phlorotannin content |
GAE | Gallic acid equivalent |
TEAC | Trolox equivalents antioxidant capacity assay |
HBSS | Hank’s Balanced Salt Solution |
NO | Nitric oxide |
TBST | Tris-buffered saline Tween-20 |
GAE/g DW | Gallic acid equivalent/g Dry weight |
References
- Gan, C.Y.; Latiff, A.A. Optimisation of the solvent extraction of bioactive compounds from Parkia speciosa pod using response surface methodology. Food Chem. 2011, 124, 1277–1283. [Google Scholar] [CrossRef]
- Heo, S.J.; Ko, S.C.; Cha, S.H.; Kang, D.H.; Park, H.S.; Choi, Y.U.; Kim, D.; Jung, W.K.; Jeon, Y.J. Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicol. In Vitro 2009, 23, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Moure, A.; Cruz, J.M.; Franco, D.; Domínguez, J.; Sineiro, J.; Domínguez, H.; Núñez, M.J.; Parajó, J.C. Natural antioxidants from residual sources. Food Chem. 2001, 72, 145–171. [Google Scholar] [CrossRef]
- Garrote, G.; Cruz, J.; Moure, A.; Domínguez, H.; Parajó, J.C. Antioxidant activity of byproducts from the hydrolytic processing of selected lignocellulosic materials. Trends Food Sci. Technol. 2004, 15, 191–200. [Google Scholar] [CrossRef]
- Peschel, W.; Sánchez-Rabaneda, F.; Diekmann, W.; Plescher, A.; Gartzía, I.; Jimenez, D.; Lamuela-Raventos, R.M.; Buxaderas, S.; Codina, C. An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem. 2006, 97, 137–150. [Google Scholar] [CrossRef]
- Rioux, L.E.; Turgeon, S.L.; Beaulieu, M. Effect of season on the composition of bioactive polysaccharides from the brown seaweed Saccharina longicruris. Phytochemistry 2009, 70, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. Environ. Boil. Fishes 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Li, Y.X.; Kim, S.K. Utilization of seaweed derived ingredients as potential antioxidants and functional ingredients in the food industry: An overview. Food Sci. Biotechnol. 2011, 20, 1461–1466. [Google Scholar] [CrossRef]
- Montero, L.; Herrero, M.; Ibáñez, E. Separation and characterization of phlorotannins from brown algae Cystoseira abies-marina by comprehensive two-dimensional liquid chromatography. Electrophoresis 2014, 35, 1644–1651. [Google Scholar] [CrossRef]
- Tanniou, A.; Vandanjon, L.; Incera, M.; Serrano león, E.; Husa, V.; Le Grand, J.; Nicolas, J.-L.; Poupart, N.; Kervarec, N.; Engelen, A.; et al. Assessment of the spatial variability of phenolic contents and associated bioactivities in the invasive alga Sargassum muticum sampled along its European range from Norway to Portugal. J. Appl. Phycol. 2013, 26, 1215–1230. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Jónsdóttir, R.; Liu, H.; Gu, L.; Kristinsson, H.G.; Raghavan, S.; Ólafsdóttir, G. Antioxidant Capacities of Phlorotannins Extracted from the Brown Algae Fucus vesiculosus. J. Agric. Food Chem. 2012, 60, 5874–5883. [Google Scholar] [CrossRef] [PubMed]
- Lopes, G.; Pinto, E.; Andrade, P.B.; Valentão, P. Antifungal Activity of Phlorotannins against Dermatophytes and Yeasts: Approaches to the Mechanism of Action and Influence on Candida albicans Virulence Factor. PLoS ONE 2013, 8, e72203. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Jeon, Y.J. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 2013, 86, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Nwosu, F.; Morris, J.; Lund, V.A.; Stewart, D.; Ross, H.A.; McDougall, G.J. Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem. 2011, 126, 1006–1012. [Google Scholar] [CrossRef]
- Lee, H.A.; Lee, J.H.; Han, J.S. A phlorotannin constituent of Ecklonia cava alleviates postprandial hyperglycemia in diabetic mice. Pharm. Boil. 2017, 55, 1149–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, G.; Andrade, P.B.; Valentão, P. Phlorotannins: Towards New Pharmacological Interventions for Diabetes Mellitus Type 2. Molecules 2016, 22, 56. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, Z.; Mi, N.; Yuan, F.; Zou, L.; Lin, H.; Pavase, T. Effects of brown algal phlorotannins and ascorbic acid on the physiochemical properties of minced fish (Pagrosomus major) during freeze-thaw cycles. Int. J. Food Sci. Technol. 2017, 52, 706–713. [Google Scholar] [CrossRef]
- Kim, S.M.; Kang, S.W.; Jeon, J.S.; Jung, Y.J.; Kim, W.R.; Kim, C.Y.; Um, B.H. Determination of major phlorotannins in Eisenia bicyclis using hydrophilic interaction chromatography: Seasonal variation and extraction characteristics. Food Chem. 2013, 138, 2399–2406. [Google Scholar] [CrossRef]
- Bureau of Fisheries in Ministry of Agriculture. Production. In China Fishery Statistical Yearbook; China Agriculture Press: Beijing, China, 2016; p. 29. [Google Scholar]
- Fung, A.; Hamid, N.; Lu, J. Fucoxanthin content and antioxidant properties of Undaria pinnatifida. Food Chem. 2013, 136, 1055–1062. [Google Scholar] [CrossRef]
- Qi, H.; Xu, Z.; Li, Y.; Ji, X.; Dong, X.; Yu, C.P. Seafood flavourings characterization as prepared from the enzymatic hydrolysis of Undaria pinnatifida sporophyll by-product. Int. J. Food Prop. 2017, 20, 2867–2876. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Camargo, A.D.P.; Montero, L.; Stiger-Pouvreau, V.; Tanniou, A.; Cifuentes, A.; Herrero, M.; Ibáñez, E. Considerations on the use of enzyme-assisted extraction in combination with pressurized liquids to recover bioactive compounds from algae. Food Chem. 2016, 192, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Montero, L.; Sánchez-Camargo, A.P.; García-Cañas, V.; Tanniou, A.; Stiger-Pouvreau, V.; Russo, M.; Rastrelli, L.; Cifuentes, A.; Herrero, M.; Ibáñez, E.; et al. Anti-proliferative activity and chemical characterization by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry of phlorotannins from the brown macroalga Sargassum muticum collected on North-Atlantic coasts. J. Chromatogr. A 2016, 1428, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Durling, N.; Catchpole, O.; Grey, J.; Webby, R.; Mitchell, K.; Foo, L.; Perry, N. Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol–water mixtures. Food Chem. 2007, 101, 1417–1424. [Google Scholar] [CrossRef]
- Kim, E.M.; Yang, H.S.; Kang, S.W.; Ho, J.-N.; Lee, S.B.; Um, H.D. Amplification of the γ-irradiation-induced cell death pathway by reactive oxygen species in human U937 cells. Cell Signal. 2008, 20, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Sonja, D.; Jasna, Č.B.; Gordana, Ć. By-products of fruits processing as a source of phytochemicals. Chem. Ind. Chem. Eng. Q. 2009, 15, 191–202. [Google Scholar] [CrossRef]
- Kim, A.R.; Shin, T.S.; Lee, M.S.; Park, J.Y.; Park, K.E.; Yoon, N.Y.; Kim, J.S.; Choi, J.S.; Jang, B.C.; Byun, D.S.; et al. Isolation and Identification of Phlorotannins from Ecklonia stolonifera with Antioxidant and Anti-inflammatory Properties. J. Agric. Food Chem. 2009, 57, 3483–3489. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, W.A.J.P.; Ahn, G.; Lee, W.W.; Kang, M.C.; Kim, E.A.; Jeon, Y.J. Anti-inflammatory activity of phlorotannin-rich fermented Ecklonia cava processing by-product extract in lipopolysaccharide-stimulated RAW 264.7 macrophages. J. Appl. Phycol. 2013, 25, 1207–1213. [Google Scholar] [CrossRef]
- D’Acquisto, F.; Iuvone, T.; Rombolà, L.; Sautebin, L.; Di Rosa, M.; Carnuccio, R. Involvement of NF-κB in the regulation of cyclooxygenase-2 protein expression in LPS-stimulated J774 macrophages. FEBS Lett. 1997, 418, 175–178. [Google Scholar] [CrossRef]
- Marks-Konczalik, J.; Chu, S.C.; Moss, J. Cytokine-mediated Transcriptional Induction of the Human Inducible Nitric Oxide Synthase Gene Requires Both Activator Protein 1 and Nuclear Factor B-binding Sites. J. Boil. Chem. 1998, 273, 22201–22208. [Google Scholar] [CrossRef]
- Xie, Q.W. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J. Exp. Med. 1993, 177, 1779–1784. [Google Scholar] [CrossRef]
Factor | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
Temperature (°C) | 100 | 150 | 200 |
Ethanol concentration (%) | 25 | 50 | 75 |
Time (h) | 1 | 4 | 7 |
No. | Temperature | Ethanol Concentration | Time | TPC (mg GAE/g DW) |
---|---|---|---|---|
1 | 0 | 1 | −1 | 1.7 |
2 | −1 | −1 | 0 | 1.6 |
3 | 0 | −1 | 1 | 8.9 |
4 | 0 | 0 | 0 | 10.3 |
5 | 1 | 1 | 0 | 6.7 |
6 | −1 | 0 | 1 | 2.6 |
7 | 1 | 0 | 1 | 6.9 |
8 | 0 | 0 | 0 | 9.5 |
9 | 0 | 1 | 1 | 10.3 |
10 | 1 | −1 | 0 | 6.6 |
11 | 0 | 0 | 0 | 10.3 |
12 | 0 | −1 | −1 | 1.9 |
13 | −1 | 0 | −1 | 0.9 |
14 | 1 | 0 | −1 | 10.4 |
15 | −1 | 1 | 0 | 1.2 |
16 | 0 | 0 | 0 | 10.2 |
17 | 0 | 0 | 0 | 10.1 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | Significance Level |
---|---|---|---|---|---|---|
Model | 205.06 | 9 | 22.78 | 4.03 | 0.0399 | * |
A-Temperature | 73.80 | 1 | 73.80 | 13.04 | 0.0086 | ** |
B-Ethanol concentration | 0.16 | 1 | 0.16 | 0.028 | 0.8715 | |
C-Time | 24.36 | 1 | 24.36 | 4.31 | 0.0767 | |
AB | 0.068 | 1 | 0.068 | 0.012 | 0.9159 | |
AC | 6.81 | 1 | 6.81 | 1.20 | 0.3089 | |
BC | 0.67 | 1 | 0.67 | 0.12 | 0.7403 | |
AA | 45.65 | 1 | 45.65 | 8.07 | 0.0250 | * |
BB | 32.95 | 1 | 32.95 | 5.82 | 0.0466 | * |
CC | 11.07 | 1 | 11.07 | 1.96 | 0.2046 | |
Residual | 39.61 | 7 | 5.66 | |||
Lack of Fit | 39.20 | 3 | 13.07 | 127.14 | 0.062 | |
Pure Error | 0.41 | 4 | 0.10 | |||
Cor Total | 244.67 | 16 |
Reaction Condition | TPC of PEUPS (mg GAE/g DW) | |
---|---|---|
Observed | Predicted | |
A = 169.2 °C, B = 52%, C = 5.2 h | - | 11.0 |
A = 170 °C, B = 52%, C = 5.2 h | 10.7 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Bai, Y.; Xu, Z.; Shi, Y.; Sun, Y.; Janaswamy, S.; Yu, C.; Qi, H. Phlorotannins from Undaria pinnatifida Sporophyll: Extraction, Antioxidant, and Anti-Inflammatory Activities. Mar. Drugs 2019, 17, 434. https://doi.org/10.3390/md17080434
Dong X, Bai Y, Xu Z, Shi Y, Sun Y, Janaswamy S, Yu C, Qi H. Phlorotannins from Undaria pinnatifida Sporophyll: Extraction, Antioxidant, and Anti-Inflammatory Activities. Marine Drugs. 2019; 17(8):434. https://doi.org/10.3390/md17080434
Chicago/Turabian StyleDong, Xiufang, Ying Bai, Zhe Xu, Yixin Shi, Yihan Sun, Srinivas Janaswamy, Chenxu Yu, and Hang Qi. 2019. "Phlorotannins from Undaria pinnatifida Sporophyll: Extraction, Antioxidant, and Anti-Inflammatory Activities" Marine Drugs 17, no. 8: 434. https://doi.org/10.3390/md17080434
APA StyleDong, X., Bai, Y., Xu, Z., Shi, Y., Sun, Y., Janaswamy, S., Yu, C., & Qi, H. (2019). Phlorotannins from Undaria pinnatifida Sporophyll: Extraction, Antioxidant, and Anti-Inflammatory Activities. Marine Drugs, 17(8), 434. https://doi.org/10.3390/md17080434