Inhibition Effect of Triglyceride Accumulation by Large Yellow Croaker Roe DHA-PC in HepG2 Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of DHA-PC Liposomes
2.2. Cytotoxicity Evaluation
2.3. OA Induced HepG2 Cells to Establish a High-Fat Model in Vitro
2.4. Effect of DHA-PC on the Accumulation of Triglyceride in HepG2 Cells Induced by OA
2.5. Effect of DHA-PC on the mRNA Expression of Lipid Metabolism-Related Genes in HepG2 Cells
2.5.1. mRNA Expression of Lipid Metabolism-Related Genes (FAS) in HepG2 Cells
2.5.2. mRNA Expression of Lipid Metabolism-Related Genes (CPT1A) in HepG2 Cells
2.5.3. mRNA Expression of Lipid Metabolism-Related Genes (PPARα) in HepG2 Cells
2.6. Effect of DHA-PC on the Expression of Lipid Metabolism-Related Proteins in HepG2 Cells
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of DHA-PC Liposomes
3.3. Characterization of DHA-PC Liposomes
3.4. Cell Culture and Treatment
3.5. Cytotoxicity Evaluation
3.5.1. Determination of HepG2 Cell Viability Affected by Different DHA-PC Liposome Concentrations
3.5.2. Determination of Lactate Dehydrogenase
3.6. OA Induced HepG2 Cells to Establish a High-Fat Model in Vitro
3.6.1. Determination of HepG2 Cell Viability Induced by Different Concentrations of OA
3.6.2. Determination of TG content in HepG2 Cells
3.6.3. Oil Red O Staining of Intracellular Lipids
3.7. Detection of mRNA Expression of HepG2 Cell-Related Genes by RT-qPCR
3.8. Detection of Protein Expression of HepG2 Cell-Related Genes by Western Blot
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PLs | phospholipids |
P. Crocea | large yellow croaker |
DHA | docosahexaenoic acid |
DHA-PC | DHA-containing phosphatidylcholine |
OA | oleic acid |
FAS | fatty acid synthase |
CPT1A | carnitine palmitoyl transferase 1A |
PPARα | peroxisome proliferator-activated receptor α |
PC | phosphatidylcholine |
n-3 PUFAs | n-3 polyunsaturated fatty acids |
EPA | eico-sapentaenoic acid |
PUFAs | polyunsaturated fatty acids |
PAF | Platelet-activating factor |
PL | phospholipid |
DHA-PL | DHA-containing phospholipids |
PE | phosphatidylethanolamine |
PDI | polydispersity index |
IR | inhibition rate |
LDH | lactate dehydrogenase |
OD | optical density |
TG | triglyceride |
n-3-PC | n-3 PUFAs-containing PC |
TC | total cholesterol |
NC | nitrocellulose filter |
References
- Shirai, N.; Higuchi, T.; Suzuki, H. Analysis of lipid classes and the fatty acid composition of the salted fish roe food products, Ikura, Tarako, Tobiko and Kazunoko. Food Chem. 2006, 94, 61–67. [Google Scholar] [CrossRef]
- Body, D.R. The lipid composition of the roe tissues from four common New Zealand marine fish species. J. Food Compos. Anal. 1989, 2, 350–355. [Google Scholar] [CrossRef]
- Jensen, M.M.; Skarsfeldt, T.; Høy, C.E. Correlation between level of (n-3) polyunsaturated fatty acids in brain phospholipids and learning ability in rats. A multiple generation study. Biochim. Biophys. Acta Lipids Lipid Metab. 1996, 1300, 203–209. [Google Scholar] [CrossRef]
- Iwata, T.; Hoshi, S.; Takehisa, F.; Tsutsumi, K.; Furukawa, Y.; Kimura, S. The effect of dietary safflower phospholipid and soybean phospholipid on plasma and liver lipids in rats fed a hypercholesterolemic diet. J. Nutr. Sci. Vitaminol. 1992, 38, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Bowen, K.J.; Harris, W.S.; Kris-Etherton, P.M. Omega-3 Fatty Acids and Cardiovascular Disease: Are There Benefits? Curr. Treat. Options Cardiovasc. Med. 2016, 18, 69. [Google Scholar] [CrossRef]
- Buoite, S.A.; Gortan, C.G.; Barazzoni, R.; Zanetti, M. Update on the Impact of Omega 3 Fatty Acids on Inflammation, Insulin Resistance and Sarcopenia: A Review. Int. J. Mol. Sci. 2018, 19, 218. [Google Scholar] [Green Version]
- Gu, Z.; Kai, S.; Chen, H.; Chen, Y.Q. n-3 Polyunsaturated Fatty Acids and Their Role in Cancer Chemoprevention. Curr. Pharmacol. Rep. 2015, 1, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Zou, L.; Liu, W.; Li, Z.; Wei, L.; Hu, X.; Xing, C.; Liu, C. Hybrid liposomes composed of amphiphilic chitosan and phospholipid: Preparation, stability and bioavailability as a carrier for curcumin. Carbohydr. Polym. 2017, 156, 322–332. [Google Scholar] [CrossRef]
- Weilin, L.; Jianhua, L.; Wei, L.; Ti, L.; Chengmei, L. Improved physical and in vitro digestion stability of a polyelectrolyte delivery system based on layer-by-layer self-assembly alginate-chitosan-coated nanoliposomes. J. Agric. Food Chem. 2013, 61, 4133–4144. [Google Scholar]
- Liu, W.; Tian, M.; Kong, Y.; Lu, J.; Li, N.; Han, J. Multilayered vitamin C nanoliposomes by self-assembly of alginate and chitosan: Long-term stability and feasibility application in mandarin juice. LWT Food Sci. Technol. 2017, 75, 608–615. [Google Scholar] [CrossRef]
- Tan, C.; Feng, B.; Zhang, X.; Xia, W.; Xia, S. Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocoll. 2016, 52, 774–784. [Google Scholar] [CrossRef]
- He, Y.; Zhang, L.; Song, C. Luteinizing hormone-releasing hormone receptor-mediated delivery of mitoxantrone using LHRH analogs modified with PEGylated liposomes. Nanomedicine 2010, 5, 697–705. [Google Scholar] [Green Version]
- Chiang, Y.T.; Lo, C.L. pH-responsive polymer-liposomes for intracellular drug delivery and tumor extracellular matrix switched-on targeted cancer therapy. Biomaterials 2014, 35, 5414–5424. [Google Scholar] [CrossRef] [PubMed]
- Assanhou, A.G.; Li, W.; Zhang, L.; Xue, L.; Kong, L.; Sun, H.; Mo, R.; Zhang, C. Reversal of multidrug resistance by co-delivery of paclitaxel and lonidamine using a TPGS and hyaluronic acid dual-functionalized liposome for cancer treatment. Biomaterials 2015, 73, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Deshantri, A.K.; Kooijmans, S.A.A.; Kuijpers, S.A.; Coimbra, M.; Hoeppener, A.; Storm, G.; Fens, M.H.A.M.; Schiffelers, R.M. Liposomal prednisolone inhibits tumor growth in a spontaneous mouse mammary carcinoma model. J. Control. Release 2016, 243, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Rajendran, S.R.; He, Q.S.; Bazinet, L.; Udenigwe, C.C. Encapsulation of food protein hydrolysates and peptides: A review. RSC Adv. 2015, 5, 79270–79278. [Google Scholar] [CrossRef]
- Kitson, A.P.; Metherel, A.H.; Chen, C.T.; Domenichiello, A.F.; Trépanier, M.O.; Berger, A.; Bazinet, R.P. Effect of dietary docosahexaenoic acid (DHA) in phospholipids or triglycerides on brain DHA uptake and accretion. J. Nutr. Biochem. 2016, 33, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Coste, T.C.; Gerbi, A.; Vague, P.; Pieroni, G.; Raccah, D. Neuroprotective effect of docosahexaenoic acid-enriched phospholipids in experimental diabetic neuropathy. Diabetes 2003, 52, 2578–2585. [Google Scholar] [CrossRef] [PubMed]
- Burri, L.; Hoem, N.; Banni, S.; Berge, K. Marine omega-3 phospholipids: Metabolism and biological activities. Int. J. Mol. Sci. 2012, 13, 15401–15419. [Google Scholar] [CrossRef]
- Tsoupras, A.; Lordan, R.; Shiels, K.; Saha, S.K.; Nasopoulou, C.; Zabetakis, I. In vitro antithrombotic properties of salmon (salmo salar) phospholipids in a novel food-grade extract. Mar. Drugs 2019, 17, 62. [Google Scholar] [CrossRef]
- Nasopoulou, C.; Tsoupras, A.B.; Karantonis, H.C.; Demopoulos, C.A.; Zabetakis, I. Fish polar lipids retard atherosclerosis in rabbits by down-regulating PAF biosynthesis and up-regulating PAF catabolism. Lipids Health Dis. 2011, 10, 213. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Tanaka, Y.; Hibino, H.; Umeda, Y.; Kawamitsu, H.; Fujimoto, H.; Amakawa, T. Beneficial Effect of Salmon Roe Phosphatidylcholine in Chronic Liver Disease. Curr. Med. Res. Opin. 1999, 15, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Rossmeisl, M.; Medrikova, D.; van Schothorst, E.M.; Pavlisova, J.; Kuda, O.; Hensler, M.; Bardova, K.; Flachs, P.; Stankova, B.; Vecka, M. Omega-3 phospholipids from fish suppress hepatic steatosis by integrated inhibition of biosynthetic pathways in dietary obese mice. Biochim. Biophys. Acta 2014, 1841, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Shirouchi, B.; Nagao, K.; Inoue, N.; Ohkubo, T.; Hibino, H.; Yanagita, T. Effect of dietary omega 3 phosphatidylcholine on obesity-related disorders in obese Otsuka Long-Evans Tokushima fatty rats. J. Agric. Food Chem. 2007, 55, 7170–7176. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Bhattacharyya, D.K. Dietary effect of eicosapentaenoic acid (EPA) containing soyphospholipid. J. Oleo Sci. 2007, 56, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.G.P.; Balaswamy, K.; Rao, G.N.; Jyothirmayi, T.; Karuna, M.S.L.; Prasad, R.B.N. Lipid classes, fatty acid and phospholipid composition of roe lipids from Catla catla and Cirrhinus mrigala. Int. Food Res. J. 2013, 20, 275–279. [Google Scholar]
- Chizuru, K.; Kenichi, Y.; Kohsuke, H.; Li, H.; Tomoko, T.; Yoshihiko, K. Effects of krill oil containing n-3 polyunsaturated fatty acids in phospholipid form on human brain function: A randomized controlled trial in healthy elderly volunteers. Clin. Interv. Aging 2013, 8, 1247. [Google Scholar]
- Liu, Y.; Chen, X.; Hu, J.; Chen, Z.W.; Zhang, L.; Cao, M.J.; Liu, G.M. Purification and characterization of protamine and its components, the allergen from the milt of large yellow croaker (Pseudosciaena crocea). J. Agric. Food Chem. 2016, 64, 1999–2011. [Google Scholar] [CrossRef]
- Hui, G.; Liu, W.; Feng, H.; Li, J.; Gao, Y. Effects of chitosan combined with nisin treatment on storage quality of large yellow croaker (Pseudosciaena crocea). Food Chem. 2016, 203, 276–282. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Cao, M.J.; Zhang, M.L.; Hu, J.W.; Zhang, Y.X.; Zhang, L.J.; Liu, G.M. Purification, characterization and immunoreactivity of β’-component, a major allergen from the roe of large yellow croaker (Pseudosciaena crocea). Food Chem. Toxicol. 2014, 72, 111–121. [Google Scholar] [CrossRef]
- Liang, P.; Cheng, X.; Xu, Y.; Cheng, W.; Chen, L. Determination of Fatty Acid Composition and Phospholipid Molecular Species of Large Yellow Croaker (Pseudosciaena crocea) Roe from China. J. Aquat. Food Prod. Technol. 2016, 26, 1259–1265. [Google Scholar] [CrossRef]
- Peng, L.; Min, Z.; Lin, W.; Chen, L. Proteomic analysis of the effect of DHA-phospholipids from large yellow croaker roe on hyperlipidemic mice. J. Agric. Food Chem. 2017, 65, 5107–5113. [Google Scholar]
- Wang, Q.; Xue, C.; Li, Z.; Xu, J. Analysis of DHA-rich phospholipids from egg of squid Sthenoteuthis oualaniensis. J. Food Compos. Anal. 2008, 21, 356–359. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Lee, E.J.; Kim, H.R.; Hwang, K. NF-κB-Targeted Anti-Inflammatory Activity of Prunella vulgaris var. lilacina in Macrophages RAW 264.7. Int. J. Mol. Sci. 2013, 14, 21489–21503. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Lechón, M.J.; Donato, M.T.; Martínez-Romero, A.; Jiménez, N.; Castell, J.V.; O’Connor, J.E. A human hepatocellular in vitro model to investigate steatosis. Chem. Biol. Interact. 2007, 165, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, Y.M.; Chen, S.H.; Li, W.P. An in vitro hepatic steatosis cell model for study of non-alcoholic fatty liver disease. J. Zhejiang Univ. Med. Sci. 2009, 38, 626. [Google Scholar]
- Feldstein, A.E.; Canbay, A.; Guicciardi, M.E.; Higuchi, H.; Bronk, S.F.; Gores, G.J. Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in mice. J. Hepatol. 2003, 39, 978–983. [Google Scholar] [CrossRef]
- Araya, J.; Rodrigo, R.; Videla, L.A.; Thielemann, L.; Orellana, M.; Pettinelli, P.; Poniachik, J. Increase in long-chain polyunsaturated fatty acid n-6/n-3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin. Sci. 2004, 106, 635–643. [Google Scholar] [CrossRef]
- Ricchi, M.; Odoardi, M.R.; Carulli, L.; Anzivino, C.; Ballestri, S.; Pinetti, A.; Fantoni, L.I.; Marra, F.; Bertolotti, M.; Banni, S. Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J. Gastroenterol. Hepatol. 2009, 24, 830–840. [Google Scholar] [CrossRef]
- Chen, X.; Li, L.; Liu, X.; Luo, R.; Liao, G.; Li, L.; Liu, J.; Cheng, J.; Lu, Y.; Chen, Y. Oleic acid protects saturated fatty acid mediated lipotoxicity in hepatocytes and rat of non-alcoholic steatohepatitis. Life Sci. 2018, 203, 291. [Google Scholar] [CrossRef]
- Niu, Y.; Li, S.; Na, L.; Feng, R.; Liu, L.; Ying, L.; Sun, C. Mangiferin Decreases Plasma Free Fatty Acids through Promoting Its Catabolism in Liver by Activation of AMPK. PLoS ONE 2012, 7, e30782. [Google Scholar] [CrossRef]
- Yang, Y. Bioactivity-guided fractionation of the triglyceride-lowering component and in vivo and in vitro evaluation of hypolipidemic effects of Calyx seu Fructus Physalis. Lipids Health Dis. 2012, 11, 38. [Google Scholar] [CrossRef]
- Tung, Y.-T.; Lyu, K.-N.; Chen, Y.C.; Chien, Y.-W. Supplementation comprising dietary fish oil with all-trans retinoic acid decreased blood lipids and fat accumulation in C57BL/6J mice. J. Funct. Foods 2019, 52, 310–315. [Google Scholar] [CrossRef]
- Wang, C.-C.; Guo, Y.; Zhou, M.-M.; Xue, C.-H.; Chang, Y.-G.; Zhang, T.-T.; Wang, Y.-M. Comparative studies of DHA-enriched phosphatidylcholine and recombination of DHA-ethyl ester with egg phosphatidylcholine on ameliorating memory and cognitive deficiency in SAMP8 mice. Food Funct. 2019, 10, 938–950. [Google Scholar] [CrossRef]
- Smith, S. The animal fatty acid synthase: One gene, one polypeptide, seven enzymes. FASEB J. 1994, 8, 1248–1259. [Google Scholar] [CrossRef]
- Bungo, S.; Koji, N.; Nao, I.; Takeshi, O.; Hidehiko, H.A.; Teruyoshi, Y. Effect of Dietary Omega 3 Phosphatidylcholine on Obesity-Related Disorders in Obese Otsuka Long-Evans Tokushima Fatty Rats. J. Agric. Food Chem. 2007, 55, 7170–7176. [Google Scholar]
- Britton, C.H.; Schultz, R.A.; Zhang, B.; Esser, V.; Foster, D.W.; Mcgarry, J.D. Human Liver Mitochondrial Carnitine Palmitoyltransferase I: Characterization of its cDNA and Chromosomal Localization and Partial Analysis of the Gene. Proc. Natl. Acad. Sci. USA 1995, 92, 1984–1988. [Google Scholar] [CrossRef]
- Weis, B.C.; Esser, V.; Foster, D.W.; McGarry, J.D. Rat heart expresses two forms of mitochondrial carnitine palmitoyltransferase I. The minor component is identical to the liver enzyme. J. Biol. Chem. 1994, 269, 18712–18715. [Google Scholar]
- Liu, J.F.; Ma, Y.; Wang, Y.; Du, Z.Y.; Shen, J.K.; Peng, H.L. Reduction of lipid accumulation in HepG2 cells by luteolin is associated with activation of AMPK and mitigation of oxidative stress. Phytother. Res. 2011, 25, 588–596. [Google Scholar] [CrossRef]
- Kliewer, S.A.; Forman, B.M.; Blumberg, B.; Ong, E.S.; Borgmeyer, U.; Mangelsdorf, D.J.; Umesono, K.; Evans, R.M. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci. USA 1994, 91, 7355–7359. [Google Scholar] [CrossRef]
- Philippe, L.; Giulia, C.; Jean-Charles, F.; Bart, S. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J. Clin. Investig. 2006, 116, 571–580. [Google Scholar]
- Pawlak, M.; Lefebvre, P.; Staels, B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 2015, 62, 720–733. [Google Scholar] [CrossRef]
- Hofbauer, H.F.; Schopf, F.H.; Schleifer, H.; Knittelfelder, O.L.; Pieber, B.; Rechberger, G.N.; Mechtler, K.; Wolinski, H.; Gaspar, L.M.; Kappe, C.O.; et al. Regulation of Gene Expression through a Transcriptional Repressor that Senses Acyl-Chain Length in Membrane Phospholipids. Dev. Cell 2014, 29, 729–739. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Jia, Y.; Lee, J.H.; Jun, H.J.; Lee, H.S.; Hwang, K.Y.; Lee, S.J. Trans-Caryophyllene is a natural agonistic ligand for peroxisome proliferator-activated receptor-α. Bioorganic Med. Chem. Lett. 2014, 24, 3168–3174. [Google Scholar] [CrossRef]
- Lee, J.H.; Jun, H.-J.; Hoang, M.-H.; Jia, Y.; Han, X.H.; Lee, D.-H.; Lee, H.-J.; Hwang, B.Y.; Lee, S.-J. Catalposide is a natural agonistic ligand of peroxisome proliferator-activated receptor-α. Biochem. Biophys. Res. Commun. 2012, 422, 568–572. [Google Scholar] [CrossRef]
- Jia, Y.; Bhuiyan, M.J.H.; Jun, H.J.; Lee, J.H.; Hoang, M.H.; Lee, H.J.; Kim, N.; Lee, D.; Hwang, K.Y.; Hwang, B.Y. Ursolic acid is a PPAR-α agonist that regulates hepatic lipid metabolism. Bioorganic Med. Chem. Lett. 2011, 21, 5876–5880. [Google Scholar] [CrossRef]
- Cheng, X.; Liang, P.; Sun, H.; Zhao, H.; Jin, H.; Cheng, W.; Chen, L. Isolation and purification of phosphatidylcholine from large yellow croaker roe. J. Fujian Agric. For. Univ. 2017, 46, 228–233. [Google Scholar]
- Gharib, R.; Greige-Gerges, H.; Jraij, A.; Auezova, L.; Charcosset, C. Preparation of drug-in-cyclodextrin-in-liposomes at a large scale using a membrane contactor: Application to trans-anethole. Carbohydr. Polym. 2016, 154, 276–286. [Google Scholar] [CrossRef]
- Cui, W.; Chen, S.L.; Hu, K.Q. Quantification and mechanisms of oleic acid-induced steatosis in HepG2 cells. Am. J. Transl. Res. 2010, 2, 95–104. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Zhong, R.; Sun, H.; Zheng, B.; Chen, L.; Miao, S.; Liang, P. Inhibition Effect of Triglyceride Accumulation by Large Yellow Croaker Roe DHA-PC in HepG2 Cells. Mar. Drugs 2019, 17, 485. https://doi.org/10.3390/md17090485
Lu X, Zhong R, Sun H, Zheng B, Chen L, Miao S, Liang P. Inhibition Effect of Triglyceride Accumulation by Large Yellow Croaker Roe DHA-PC in HepG2 Cells. Marine Drugs. 2019; 17(9):485. https://doi.org/10.3390/md17090485
Chicago/Turabian StyleLu, Xiaodan, Rongbin Zhong, He Sun, Baodong Zheng, Lijiao Chen, Song Miao, and Peng Liang. 2019. "Inhibition Effect of Triglyceride Accumulation by Large Yellow Croaker Roe DHA-PC in HepG2 Cells" Marine Drugs 17, no. 9: 485. https://doi.org/10.3390/md17090485
APA StyleLu, X., Zhong, R., Sun, H., Zheng, B., Chen, L., Miao, S., & Liang, P. (2019). Inhibition Effect of Triglyceride Accumulation by Large Yellow Croaker Roe DHA-PC in HepG2 Cells. Marine Drugs, 17(9), 485. https://doi.org/10.3390/md17090485