Supporting Information

Pyrenosetins A–C, New Decalinoylspirotetramic Acid Derivatives Isolated by Bioactivity-Based Molecular Networking from the Seaweed-Derived Fungus *Pyrenochaetopsis* sp. FVE-001

Bicheng Fan ¹, Pradeep Dewapriya ¹, Fengjie Li ¹, Martina Blümel ¹ and Deniz Tasdemir ^{1,2,*}

- ¹ GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; bfan@geomar.de (B.F.); pdewapriya@geomar.de (P.D.); fli@geomar.de (F.L.); mbluemel@geomar.de (M.B.)
- ² Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
- * Correspondence: dtasdemir@geomar.de; Tel.: +49-431-600-4430

List of Tables

Table S1. In vitro anticancer activity (%) of Kupchan subextracts (KH, KC, KM) and SPE fractions against cancer cell lines (A-375, A-549, HT-29, HCT-116, MB-231) and non-cancerous HaCaT cell line.

Table S2. The $\Delta\delta(\delta s \cdot \delta R)$ data for the *S*- and *R*-MTPA esters **6-9** in ¹H NMR (CDCl₃, 500 MHz).

Table S3. The distance (Å) between protons H-5′, H-15 and H₃-17 in the tetramic acid portion of the compounds 1-3. The red marking indicates the assigned relative stereochemistry based on the measured distances allowing observable NOE correlations (up to 4 Å) between relevant protons.

List of Figures

Figure S1. ¹H NMR spectrum of compound 1 (600 MHz, CDCl₃).

Figure S2. ¹³C NMR spectrum of compound 1 (150 MHz, CDCl₃).

Figure S3. DEPT-HSQC spectrum of compound 1 (600 MHz, CDCl₃).

Figure S4. COSY spectrum of compound 1 (600 MHz, CDCl₃).

Figure S5. HMBC spectrum of compound 1 (600 MHz, CDCl₃).

Figure S6. NOESY spectrum of compound 1 (600 MHz, CDCl₃).

Figure S7. HR-ESIMS spectrum of compound 1.

Figure S8. FT-IR spectrum of compound 1.

Figure S9. 1H NMR spectrum of compound 2 (600 MHz, CDCl3).

Figure S10. ¹³C NMR spectrum of compound 2 (150 MHz, CDCl₃).

Figure S11. DEPT-HSQC spectrum of compound 2 (600 MHz, CDCl₃).

Figure S12. COSY spectrum of compound 2 (600 MHz, CDCl₃).

- Figure S13. HMBC spectrum of compound 2 (600 MHz, CDCl₃).
- Figure S14. NOESY spectrum of compound 2 (600 MHz, CDCl₃).
- Figure S15. HR-ESIMS spectrum of compound 2.
- Figure S16. FT-IR spectrum of compound 2.
- Figure S17. ¹H NMR spectrum of compound 3 (600 MHz, CDCl₃).
- Figure S18. ¹³C NMR spectrum of compound 3 (150 MHz, CDCl₃).
- Figure S19. DEPT-HSQC spectrum of compound 3 (600 MHz, CDCl₃).
- Figure S20. COSY spectrum of compound 3 (600 MHz, CDCl₃).
- Figure S21. HMBC spectrum of compound 3 (600 MHz, CDCl₃).
- Figure S22. NOESY spectrum of compound 3 (600 MHz, CDCl₃).
- Figure S23. HR-ESIMS spectrum of compound 3.
- Figure S24. FT-IR spectrum of compound 3.
- Figure S25. ¹H NMR spectrum of 16-(*S*)-MTPA ester 6 (500 MHz, CDCl₃).
- Figure S26. ¹H NMR spectrum of 16-(*R*)-MTPA ester 7 (500 MHz, CDCl₃).
- Figure S27. ¹H NMR spectrum of 16-(*S*)-MTPA ester 8 (500 MHz, CDCl₃).
- Figure S28. ¹H NMR spectrum of 16-(*R*)-MTPA ester 9 (500 MHz, CDCl₃).
- **Figure S29.** $\Delta\delta(\delta s \cdot \delta R)$ values (ppm) obtained from 16-MTPA esters (6 and 7) of compound 1.
- **Figure S30.** $\Delta\delta(\delta_{S},\delta_{R})$ values (ppm) obtained from 16-MTPA esters (8 and 9) of compound 2.

Cell growth inhibition (%)							
	A-375	A-549	HT-29	HCT-116	MB-231	HaCaT	
	(100 µg/ml)						
KH	31	0	29	0	0	31	
KC	98	99	99	76	99	66	
KM	0	0	0	0	0	0	
KC Fr.0	0	0	0	0	0	0	
KC Fr.1	0	0	0	0	0	0	
KC Fr.2	0	0	0	0	0	0	
KC Fr.3	0	0	0	0	0	0	
KC Fr.4	0	0	0	0	0	0	
KC Fr.5	85	54	99	0	63	44	
KC Fr.6	99	99	99	99	99	99	
KC Fr.7	99	99	99	99	99	99	
KC Fr.8	43	0	0	0	0	0	
KC Fr.9	0	0	0	0	0	0	
KC Fr.10	0	0	0	0	0	0	

Table S1. In vitro anticancer activity (%) of Kupchan subextracts (KH, KC, KM) and SPE fractions against cancer cell lines (A-375, A-549, HT-29, HCT-116, MB-231) and non-cancerous HaCaT cell line.

Table S2. The $\Delta\delta(\delta s \cdot \delta R)$ data for the *S*- and *R*-MTPA esters **6–9** in ¹H NMR (CDCl₃, 500 MHz).

	6 (S)	7 (R)	$\Delta \delta_{S-R}$	8 (S)	9 (R)	$\Delta \delta_{S-R}$
С	δн, mult (J in Hz)	δн, mult (J in Hz)		δн, mult (J in Hz)	δн, mult (J in Hz)	
13	3.39, m	3.35, dd (11.5, 9.5)	0.04	3.27, dd (11.3, 9.7)	3.28, dd (11.4, 9.4)	-0.01
14	5.92, dd (15.5, 9.5)	5.84, dd (15.4, 9.8)	0.08	6.09, dd (14.8, 9.7)	6.10, dd (15.3, 9.7)	-0.01
15	5.65, dd (15.5, 6.4)	5.58, dd (15.4, 6.4)	0.07	5.39, dd (14.9, 7.8)	5.52, dd (15.3, 7.6)	-0.13
16	5.46, m	5.45, m	0.01	5.34, m	5.38, m	-0.04
17	1.22, d (6.5)	1.30, d (6.5)	-0.08	1.31, d (6.3)	1.27, d (6.5)	0.04

Table S3. The distance (Å) between protons H-5', H-15 and H₃-17 in the tetramic acid portion of the compounds **1-3**. The red marking indicates the assigned relative stereochemistry based on measured the distances allowing observable NOE correlations (up to 4 Å) between relevant protons.

Compd	2D Structure	3D model	H-5′	Distance	NOE	Distance	NOE
			orientation	H_5//H_	H-5//H-15	H_5//H	H_5//Ha-
				11-5 /11-	11-5/11-15	11-5 /113-	11-5 /113-
						1/	
1 (5′-β)	OH	X	β	2.96 Å	YES	3.28 Å	YES
	0 5' N	71					
		X S S					
		1					
		ALEX L					
	✓ ✓ H						
1 (5'-α)	ОН	E.	α	4.83 Å		5.07 Å	
	0 5' N						
		× 115 pr					
		XIII ~ L					
		TX					
2 (5'-β)	ОН	\sim	β	2.88 Å		3.33 Å	
		-X					
	0 0 0 5 1						
	H III	X					
		TX TAT IS V					
	ОН	The					
	Ĥ	. 1 /2					
2 (5'-α)	OH	5	α	5.14 Å	NO	6.84 Å	NO
	0 5' N						
	H 13 17	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX					
	И ОН	A LAN					
	► THE H	/ ×					
3 (5'-β)	OH E	>	β	3.80 Å		5.11 Å	
	o s	\prec					
		× - (5)					
		X TXXX					
3 (5'-α)	ОН	<	α	5.41 Å	NO	6.77 Å	NO
		1 L HL					
	""""""""""""""""""""""""""""""""""""""						
		THEY					
	н						

Figure S1. ¹H NMR spectrum of compound 1 (600 MHz, CDCl₃).

Figure S2. ¹³C NMR spectrum of compound 1 (150 MHz, CDCl₃).

Figure S3. DEPT-HSQC spectrum of compound 1 (600 MHz, CDCl₃).

Figure S4. COSY spectrum of compound 1 (600 MHz, CDCl₃).

Figure S5. HMBC spectrum of compound 1 (600 MHz, CDCl₃).

Figure S6. NOESY spectrum of compound 1 (600 MHz, CDCl₃).

Figure S7. HR-ESIMS spectrum of compound 1.

Figure S8. FT-IR spectrum of compound 1.

Figure S9. ¹H NMR spectrum of compound 2 (600 MHz, CDCl₃).

Figure S10. ¹³C NMR spectrum of compound 2 (150 MHz, CDCl₃).

Figure S11. DEPT-HSQC spectrum of compound 2 (600 MHz, CDCl₃).

Figure S12. COSY spectrum of compound 2 (600 MHz, CDCl₃).

Figure S13. HMBC spectrum of compound 2 (600 MHz, CDCl₃).

Figure S14. NOESY spectrum of compound 2 (600 MHz, CDCl₃).

Figure S15. HR-ESIMS spectrum of compound 2.

Figure S16. FT-IR spectrum of compound **2**.

Figure S17. ¹H NMR spectrum of compound 3 (600 MHz, CDCl₃).

Figure S18. ¹³C NMR spectrum of compound 3 (150 MHz, CDCl₃).

Figure S19. DEPT-HSQC spectrum of compound 3 (600 MHz, CDCl₃).

Figure S20. COSY spectrum of compound 3 (600 MHz, CDCl₃).

Figure S21. HMBC spectrum of compound 3 (600 MHz, CDCl₃).

Figure S22. NOESY spectrum of compound 3 (600 MHz, CDCl₃).

Figure S23. HR-ESIMS spectrum of compound 3.

Figure S24. FT-IR spectrum of compound **3**.

Figure S25. ¹H NMR spectrum of 16-(*S*)-MTPA ester 6 (500 MHz, CDCl₃).

Figure S26. ¹H NMR spectrum of 16-(*R*)-MTPA ester 7 (500 MHz, CDCl₃).

Figure S27. ¹H NMR spectrum of 16-(*S*)-MTPA ester 8 (500 MHz, CDCl₃).

Figure S28. ¹H NMR spectrum of 16-(*R*)-MTPA ester 9 (500 MHz, CDCl₃).

Figure S29. $\Delta\delta(\delta_{S}-\delta_{R})$ values (ppm) obtained from 16-MTPA esters (6 and 7) of compound 1.

Figure S30. $\Delta\delta(\delta_{S}-\delta_{R})$ values (ppm) obtained from 16-MTPA esters (8 and 9) of compound 2.

