Characterization of a Robust and pH-Stable Tannase from Mangrove-Derived Yeast Rhodosporidium diobovatum Q95
Abstract
:1. Introduction
2. Results
2.1. Strain Q95 Derived from Mangrove Has the Ability to Degrade Tannic Acid at Low pH
2.2. Identification of Strain Q95
2.3. Bioinformatics Analysis of TanRd
2.4. Expression of TanRd in Y. lipolytica
2.5. Temperature Properties of TanRd
2.6. pH Properties of TanRd
2.7. Effects of Ions on the TanRd Activity
2.8. Substrate Specificity of TanRd
3. Materials and Methods
3.1. Materials, Strains, and Mediums
3.2. Screening Tannase-Producing Strains at Low Temperature
3.3. Strain Identification
3.4. Bioinformatics Analysis of TanRd
3.5. Secretory Expression and Purification of TanRd
3.6. Effects of Temperature and pH on TanRd Activity and Stability
3.7. Effects of Some Chemical Compounds, Metal Ions, and NaCl on TanRd Activity
3.8. Determination of Gallic Acid and Ester by HPLC
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lekha, P.K.; Lonsane, B.K. Production and application of tannin acyl hydrolase: State of the art. Rev. Adv. Appl. Microbiol. 1997, 44, 215–260. [Google Scholar]
- Buzzini, P.; Arapitsas, P.; Goretti, M.; Branda, E.; Turchetti, B.; Pinelli, P.; Ieri, F.; Romani, A. Antimicrobial and antiviral activity of hydrolysable tannins. Rev. Mini Rev. Med. Chem. 2008, 8, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, C.N.; Rodríguez, R.; Gutiérrez-Sánchez, G.; Augur, C.; Favela-Torres, E.; Prado-Barragan, L.A.; Contreras-Esquivel, J.C. Microbial tannases: Advances and perspectives. Appl. Microbiol. Biotechnol. 2007, 76, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Chávez-González, M.; Rodríguez-Durán, L.V.; Balagurusamy, N.; Prado-Barragán, A.; Rodríguez, R.; Contreras, J.C.; Aguilar, C.N. Biotechnological advances and challenges of tannase: An overview. Food Bioprocess Technol. 2012, 5, 445–459. [Google Scholar] [CrossRef]
- Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for Glycogenomics. Nucleic Acids Res. 2009, 37, D233–D238. [Google Scholar] [CrossRef] [PubMed]
- Jana, A.; Halder, S.K.; Banerjee, A.; Paul, T.; Pati, B.R.; Mondal, K.C.; Mohapatra, P.K.D. Biosynthesis, structural architecture and biotechnological potential of bacterial tannase: A molecular advancement. Bioresour. Technol. 2014, 157, 327–340. [Google Scholar] [CrossRef]
- Böer, E.; Bode, R.; Mock, H.P.; Piontek, M.; Kunze, G. Atan1p-an extracellular tannase from the dimorphic yeast Arxula adeninivorans: Molecular cloning of the ATAN1 gene and characterization of the recombinant enzyme. Yeast 2009, 26, 323–337. [Google Scholar] [CrossRef]
- Hatamoto, O.; Watarai, T.; Kikuchi, M.; Mizusawa, K.; Sekine, H. Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene 1996, 175, 215–221. [Google Scholar] [CrossRef]
- Koseki, T.; Ichikawa, K.; Sasaki, K.; Shiono, Y. Characterization of a novel Aspergillus oryzae tannase expressed in Pichia pastoris. J. Biosci. Bioeng. 2018, 126, 553–558. [Google Scholar] [CrossRef]
- Belmares, R.; Contreras-Esquivel, J.C.; Rodríguez-Herrera, R.; Coronel, A.R.; Aguilar, C.N. Microbial production of tannase: An enzyme with potential use in food industry. LWT Food Sci. Technol. 2004, 37, 857–864. [Google Scholar] [CrossRef]
- Mahmoud, A.E.; Fathy, S.A.; Rashad, M.M.; Ezz, M.K.; Mohammed, A.T. Purification and characterization of a novel tannase produced by Kluyveromyces marxianus using olive pomace as solid support, and its promising role in gallic acid production. Int. J. Biol. Macromol. 2018, 107, 2342–2350. [Google Scholar] [CrossRef] [PubMed]
- Raghuwanshi, S.; Dutt, K.; Gupta, P.; Misra, S.; Saxena, R.K. Bacillus sphaericus: The highest bacterial tannase producer with potential for gallic acid synthesis. J. Biosci. Bioeng. 2011, 111, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, B.; Patil, S. A new approach to microbial production of gallic acid. Braz. J. Microbiol. 2008, 39, 708–711. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Choe, J.H.; Kim, B.; Yun, H.; Kruk, Z.A.; Jo, C. Effect of dietary mixture of gallic acid and linoleic acid on antioxidative potential and quality of breastmeat from broilers. Meat Sci. 2010, 86, 520–526. [Google Scholar] [CrossRef]
- Huang, W.; Ni, J.; Borthwick, A.G. Biosynthesis of valonia tannin hydrolase and hydrolysis of valonia tannin to ellagic acid by Aspergillus SHL 6. Process Biochem. 2005, 40, 1245–1249. [Google Scholar] [CrossRef]
- Aguilar, C.N.; Augur, C.; Favela-Torres, E.; Viniegra-González, G. Induction and repression patterns of fungal tannase in solid-state and submerged cultures. Process Biochem. 2001, 36, 565–570. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, Y.-H.; Zhang, F.; Yang, Q.-M.; Weng, H.-F.; Xiao, Q.; Xiao, A.-F. Thermostable Tannase from Aspergillus Niger and Its Application in the Enzymatic Extraction of Green Tea. Molecules 2020, 25, 952. [Google Scholar] [CrossRef] [Green Version]
- García-Conesa, M.T.; Østergaard, P.; Kauppinen, S.; Williamson, G. Hydrolysis of diethyl diferulates by a tannase from Aspergillus oryzae. Carbohyd. Polym. 2001, 44, 319–324. [Google Scholar] [CrossRef]
- Mata-Gomez, M.; Rodriguez, L.V.; Ramos, E.L.; Renovato, J.; Cruz-Hernandez, M.A.; Rodriguez, R.; Contreras, J.; Aguilar, C.N. A novel tannase from the xerophilic fungus Aspergillus niger GH1. J. Microbiol. Biotechnol. 2009, 19, 987–996. [Google Scholar]
- Mohapatra, P.D.; Mondal, K.C.; Pati, B.R. Production of tannase through submerged fermentation of tannin-containing plant extracts by Bacillus licheniformis KBR6. J. Microbiol. 2006, 300, 297–301. [Google Scholar]
- Kanpiengjai, A.; Chui-Chai, N.; Chaikaew, S.; Khanongnuch, C. Distribution of tannin-’tolerant yeasts isolated from Miang, a traditional fermented tea leaf (Camellia sinensis var. assamica) in northern Thailand. Int. J. Food Microbiol. 2016, 238, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; He, Q.; Yao, K.; Huang, W.; Li, Q. Production of ellagic acid from degradation of valonea tannins by Aspergillus niger and Candida utilis. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2005, 80, 1154–1159. [Google Scholar]
- Meier, A.K.; Worch, S.; Böer, E.; Hartmann, A.; Mascher, M.; Marzec, M.; Bode, R. Agdc1p–a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans. Front. Microbiol. 2017, 8, 1777. [Google Scholar] [CrossRef]
- Zhang, L.L.; Li, J.; Wang, Y.L.; Liu, S.; Wang, Z.P.; Yu, X.J. Integrated Approaches to Reveal Genes Crucial for Tannin Degradation in Aureobasidium melanogenum T9. Biomolecules 2019, 9, 439. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M. The influence of mangrove-derived tannins on intertidal meiobenthos in tropical estuaries. Oecologia 1987, 71, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.C.; Fu, W.J.; Liu, G.L.; Wang, Z.P.; Chi, Z.M. High-level pullulan production by Aureobasidium pullulans var. melanogenium P16 isolated from mangrove system. Appl. Microbiol. Biotechnol. 2014, 98, 4865–4873. [Google Scholar] [CrossRef]
- Sharma, S.; Bhat, T.K.; Dawra, R.K. A Spectrophotometric Method for Assay of Tannase Using Rhodanine. Anal. Biochem. 2000, 279, 85–89. [Google Scholar] [CrossRef]
- Ni, H.; Chen, F.; Jiang, Z.D.; Cai, M.Y.; Yang, Y.F.; Xiao, A.F.; Cai, H.N. Biotransformation of tea catechins using Aspergillus niger tannase prepared by solid state fermentation on tea byproduct. LWT Food Sci. Technol. 2015, 60, 1206–1213. [Google Scholar] [CrossRef]
- Suzuki, K.; Hori, A.; Kawamoto, K.; Thangudu, R.R.; Ishida, T.; Igarashi, K.; Samejima, M.; Yamada, C.; Arakawa, T.; Wakagi, T.; et al. Crystal structure of a feruloyl esterase belonging to the tannase family: A disulfide bond near a catalytic triad. Proteins Struct. Funct. Bioinform. 2014, 8, 2857–2867. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Z.P.; Sheng, J.; Zheng, Y.; Ji, X.F.; Zhou, H.X.; Liu, X.Y.; Chi, Z.M. High and efficient isomaltulose production using an engineered Yarrowia lipolytica strain. Bioresour. Technol. 2018, 265, 577–580. [Google Scholar] [CrossRef]
- Ichikawa, K.; Shiono, Y.; Shintani, T.; Watanabe, A.; Kanzaki, H.; Gomi, K.; Koseki, T. Efficient production of recombinant tannase in Aspergillus oryzae using an improved glucoamylase gene promoter. J. Biosci. Bioeng. 2020, 129, 150–154. [Google Scholar] [CrossRef]
- Kanpiengjai, A.; Khanongnuch, C.; Lumyong, S.; Haltrich, D.; Nguyen, T.H.; Kittibunchakul, S. Co-production of gallic acid and a novel cell-associated tannase by a pigment-producing yeast, Sporidiobolus ruineniae A45.2. Microb. Cell Fact. 2020, 19, 95. [Google Scholar] [CrossRef]
- Gayen, S.; Ghosh, U. Purification and Characterization of Tannin Acyl Hydrolase Produced by Mixed Solid State Fermentation of Wheat Bran and Marigold Flower by Penicillium notatum NCIM 923. BioMed Res. Int. 2013, 2013, 596380. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, H.B.; Riul, A.J.; Terenzi, H.F.; Jorge, J.A.; Guimarães, L.H.S. Extracellular tannase from Emericella nidulans showing hypertolerance to temperature and organic solvents. J. Mol. Catal. B Enzym. 2011, 71, 29–35. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, J.; Chen, J.; Wang, F.; Du, Q.; Jiang, Y.; Xu, Y. Improving the sweet aftertaste of green tea infusion with tannase. Food Chem. 2016, 192, 470–476. [Google Scholar] [CrossRef]
Microorganisms | Optimal pH/Temperature (°C) | pH-Stable Range | Ref. |
---|---|---|---|
Penicillium notatum | 5.0/35–40 | 3.0–8.0 | [33] |
Emericella nidulans | 5.0/45 | 4.0–5.0 | [34] |
Aspergillus phoenicis | 6.0/60 | 2.5–7.0 | [34] |
Aspergillus niger | 6.0/80 | 3.0–8.0 | [17] |
Sporidiobolus ruineniae | 7.0/40 | 5.0–9.0 | [32] |
Kluyveromyces marxianus | 4.5, 8.5/35 | 4.0–6.0 | [11] |
Rhodosporidium diobovatum | 4.5/40 | 3.0–8.0 | This study |
Substrate | Specific Activity (U/mg) | Km (mM) |
---|---|---|
TA | 676.4 | 1.87 |
PG | 872.3 | 1.49 |
EGCG | 572.1 | 2.19 |
ECG | 721.3 | 1.65 |
CG | 723.8 | 1.67 |
MG | 473.6 | 2.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Wang, N.-N.; Yin, X.-J.; Liang, X.-L.; Wang, Z.-P. Characterization of a Robust and pH-Stable Tannase from Mangrove-Derived Yeast Rhodosporidium diobovatum Q95. Mar. Drugs 2020, 18, 546. https://doi.org/10.3390/md18110546
Pan J, Wang N-N, Yin X-J, Liang X-L, Wang Z-P. Characterization of a Robust and pH-Stable Tannase from Mangrove-Derived Yeast Rhodosporidium diobovatum Q95. Marine Drugs. 2020; 18(11):546. https://doi.org/10.3390/md18110546
Chicago/Turabian StylePan, Jie, Ni-Na Wang, Xue-Jing Yin, Xiao-Ling Liang, and Zhi-Peng Wang. 2020. "Characterization of a Robust and pH-Stable Tannase from Mangrove-Derived Yeast Rhodosporidium diobovatum Q95" Marine Drugs 18, no. 11: 546. https://doi.org/10.3390/md18110546
APA StylePan, J., Wang, N. -N., Yin, X. -J., Liang, X. -L., & Wang, Z. -P. (2020). Characterization of a Robust and pH-Stable Tannase from Mangrove-Derived Yeast Rhodosporidium diobovatum Q95. Marine Drugs, 18(11), 546. https://doi.org/10.3390/md18110546