Microwave-Assisted Extraction of Phlorotannins from Fucus vesiculosus
Abstract
:1. Introduction
2. Results
2.1. Single-Factor Experiment on MAE
2.2. Analysis of the Response Surface Methodology
2.2.1. Fitting the Model
2.2.2. Effect of the Independent Variables on TPhC
2.2.3. Optimization and Validation of the Models
2.3. Comparison between MAE and Conventional Solvent Extraction
2.3.1. Phlorotannins
2.3.2. Bioactive Potential
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Single-Factor Experiments Using Microwave-Assisted Extraction (MAE)
4.2.2. Experimental Design for the Optimization of Phlorotannins Microwave-Assisted Extraction
4.2.3. Extraction of Phlorotannins under Optimal MAE and Conventional Solvent Extraction
4.2.4. Characterization of Phlorotannins
4.2.5. Antioxidant Properties
ABTS•+ Discoloration Assay
Superoxide Scavenging Assay
4.2.6. Enzymatic Assays
α-Glucosidase Inhibition Assay
Xanthine Oxidase Assay
4.2.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shibata, T.; Ishimaru, K.; Kawaguchi, S.; Yoshikawa, H.; Hama, Y. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. J. Appl. Phycol. 2008, 20, 705–711. [Google Scholar] [CrossRef]
- Kim, A.-R.; Shin, T.-S.; Lee, M.-S.; Park, J.-Y.; Park, K.-E.; Yoon, N.-Y.; Kim, J.-S.; Choi, J.-S.; Jang, B.-C.; Byun, D.-S.; et al. Isolation and Identification of Phlorotannins from Ecklonia stolonifera with Antioxidant and Anti-inflammatory Properties. J. Agric. Food Chem. 2009, 57, 3483–3489. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-C.; Cha, S.H.; Wijesinghe, W.A.J.P.; Kang, S.-M.; Lee, S.-H.; Kim, E.-A.; Song, C.B.; Jeon, Y.-J. Protective effect of marine algae phlorotannins against AAPH-induced oxidative stress in zebrafish embryo. Food Chem. 2013, 138, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.-R.; Lee, M.-S.; Shin, T.-S.; Hua, H.; Jang, B.-C.; Choi, J.-S.; Byun, D.-S.; Utsuki, T.; Ingram, D.; Kim, H.-R. Phlorofucofuroeckol A inhibits the LPS-stimulated iNOS and COX-2 expressions in macrophages via inhibition of NF-κB, Akt, and p38 MAPK. Toxicol. Vitr. 2011, 25, 1789–1795. [Google Scholar] [CrossRef]
- Yayeh, T.; Im, E.J.; Kwon, T.-H.; Roh, S.-S.; Kim, S.; Kim, J.H.; Hong, S.-B.; Cho, J.Y.; Park, N.-H.; Rhee, M.H. Hemeoxygenase 1 partly mediates the anti-inflammatory effect of dieckol in lipopolysaccharide stimulated murine macrophages. Int. Immunopharmacol. 2014, 22, 51–58. [Google Scholar] [CrossRef]
- Eom, S.-H.; Kim, D.-H.; Lee, S.-H.; Yoon, N.-Y.; Kim, J.H.; Kim, T.H.; Chung, Y.-H.; Kim, S.-B.; Kim, Y.-M.; Kim, H.-W.; et al. In Vitro Antibacterial Activity and Synergistic Antibiotic Effects of Phlorotannins Isolated from Eisenia bicyclis Against Methicillin-Resistant Staphylococcus aureus. Phytother. Res. 2013, 27, 1260–1264. [Google Scholar] [CrossRef]
- Parys, S.; Kehraus, S.; Krick, A.; Glombitza, K.-W.; Carmeli, S.; Klimo, K.; Gerhäuser, C.; König, G.M. In vitro chemopreventive potential of fucophlorethols from the brown alga Fucus vesiculosus L. by anti-oxidant activity and inhibition of selected cytochrome P450 enzymes. Phytochemistry 2010, 71, 221–229. [Google Scholar] [CrossRef]
- Catarino, M.; Silva, A.; Mateus, N.; Cardoso, S. Optimization of Phlorotannins Extraction from Fucus vesiculosus and Evaluation of Their Potential to Prevent Metabolic Disorders. Mar. Drugs 2019, 17, 162. [Google Scholar] [CrossRef] [Green Version]
- Lopes, G.; Sousa, C.; Silva, L.R.; Pinto, E.; Andrade, P.B.; Bernardo, J.; Mouga, T.; Valentão, P. Can Phlorotannins Purified Extracts Constitute a Novel Pharmacological Alternative for Microbial Infections with Associated Inflammatory Conditions? PLoS ONE 2012, 7, e31145. [Google Scholar] [CrossRef]
- Isaza Martínez, J.H.; Torres Castañeda, H.G. Preparation and Chromatographic Analysis of Phlorotannins. J. Chromatogr. Sci. 2013, 51, 825–838. [Google Scholar] [CrossRef] [Green Version]
- Pal Singh, I.; Bharate, S.B. Phloroglucinol compounds of natural origin. Nat. Prod. Rep. 2006, 23, 558. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, M.; Yuen, A.K.L.; Zhang, R.; Wright, J.T.; Taylor, R.B.; Maschmeyer, T.; de Nys, R. A comparative assessment of microwave assisted (MAE) and conventional solid-liquid (SLE) techniques for the extraction of phloroglucinol from brown seaweed. Algal Res. 2017, 23, 28–36. [Google Scholar] [CrossRef]
- Catarino, M.D.; Silva, A.M.S.; Cruz, M.T.; Cardoso, S.M. Antioxidant and anti-inflammatory activities of Geranium robertianum L. decoctions. Food Funct. 2017, 8, 3355–3365. [Google Scholar] [CrossRef] [PubMed]
- Koivikko, R.; Loponen, J.; Pihlaja, K.; Jormalainen, V. High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus Vesiculosus. Phytochem. Anal. 2007, 18, 326–332. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, A.M.; O’Callaghan, Y.C.; O’Grady, M.N.; Queguineur, B.; Hanniffy, D.; Troy, D.J.; Kerry, J.P.; O’Brien, N.M. In vitro and cellular antioxidant activities of seaweed extracts prepared from five brown seaweeds harvested in spring from the west coast of Ireland. Food Chem. 2011, 126, 1064–1070. [Google Scholar] [CrossRef]
- Bahar, B.; O’Doherty, J.V.; Smyth, T.J.; Sweeney, T. A comparison of the effects of an Ascophyllum nodosum ethanol extract and its molecular weight fractions on the inflammatory immune gene expression in-vitro and ex-vivo. Innov. Food Sci. Emerg. Technol. 2016, 37, 276–285. [Google Scholar] [CrossRef]
- Arnold, T.M.; Targett, N.M. To grow and defend: Lack of tradeoffs for brown algal phlorotannins. Oikos 2003, 100, 406–408. [Google Scholar] [CrossRef]
- Schoenwaelder, M.E.A. The occurrence and cellular significance of physodes in brown algae. Phycologia 2002, 41, 125–139. [Google Scholar] [CrossRef]
- Subra, P.; Boissinot, P. Supercritical fluid extraction from a brown alga by stagewise pressure increase. J. Chromatogr. A 1991, 543, 413–424. [Google Scholar] [CrossRef]
- Saravana, P.S.; Getachew, A.T.; Cho, Y.-J.; Choi, J.H.; Park, Y.B.; Woo, H.C.; Chun, B.S. Influence of co-solvents on fucoxanthin and phlorotannin recovery from brown seaweed using supercritical CO2. J. Supercrit. Fluids 2017, 120, 295–303. [Google Scholar] [CrossRef]
- Boisvert, C.; Beaulieu, L.; Bonnet, C.; Pelletier, É. Assessment of the Antioxidant and Antibacterial Activities of Three Species of Edible Seaweeds. J. Food Biochem. 2015, 39, 377–387. [Google Scholar] [CrossRef]
- He, Z.; Chen, Y.; Chen, Y.; Liu, H.; Yuan, G.; Fan, Y.; Chen, K. Optimization of the microwave-assisted extraction of phlorotannins from Saccharina japonica Aresch and evaluation of the inhibitory effects of phlorotannin-containing extracts on HepG2 cancer cells. Chin. J. Ocean. Limnol. 2013, 31, 1045–1054. [Google Scholar] [CrossRef]
- Dang, T.T.; Van Vuong, Q.; Schreider, M.J.; Bowyer, M.C.; Van Altena, I.A.; Scarlett, C.J. Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant activities of the alga Hormosira banksii using response surface methodology. J. Appl. Phycol. 2017, 29, 3161–3173. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; Smyth, T.J.; O’Donnell, C.P. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrason. Sonochemistry 2015, 23, 308–316. [Google Scholar] [CrossRef]
- Song, J.; Li, D.; Liu, C.; Zhang, Y. Optimized microwave-assisted extraction of total phenolics (TP) from Ipomoea batatas leaves and its antioxidant activity. Innov. Food Sci. Emerg. Technol. 2011, 12, 282–287. [Google Scholar] [CrossRef]
- Cheok, C.Y.; Chin, N.L.; Yusof, Y.A.; Talib, R.A.; Law, C.L. Optimization of total phenolic content extracted from Garcinia mangostana Linn. hull using response surface methodology versus artificial neural network. Ind. Crop. Prod. 2012, 40, 247–253. [Google Scholar] [CrossRef]
- Dahmoune, F.; Spigno, G.; Moussi, K.; Remini, H.; Cherbal, A.; Madani, K. Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind. Crop. Prod. 2014, 61, 31–40. [Google Scholar] [CrossRef]
- Alothman, M.; Bhat, R.; Karim, A.A. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem. 2009, 115, 785–788. [Google Scholar] [CrossRef]
- Heffernan, N.; Brunton, N.; FitzGerald, R.; Smyth, T. Profiling of the Molecular Weight and Structural Isomer Abundance of Macroalgae-Derived Phlorotannins. Mar. Drugs 2015, 13, 509–528. [Google Scholar] [CrossRef]
- Zaragozá, M.C.; López, D.; Sáiz, M.P.; Poquet, M.; Pérez, J.; Puig-Parellada, P.; Màrmol, F.; Simonetti, P.; Gardana, C.; Lerat, Y.; et al. Toxicity and Antioxidant Activity in Vitro and in Vivo of Two Fucus vesiculosus Extracts. J. Agric. Food Chem. 2008, 56, 7773–7780. [Google Scholar] [CrossRef]
- Catarino, M.D.; Silva, A.; Cruz, M.T.; Mateus, N.; Silva, A.M.S.; Cardoso, S.M. Phlorotannins from Fucus vesiculosus: Modulation of Inflammatory Response by Blocking NF-κB Signaling Pathway. Int. J. Mol. Sci. 2020, 21, 6897. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jónsdóttir, R.; Ólafsdóttir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- Barbosa, M.; Lopes, G.; Ferreres, F.; Andrade, P.B.; Pereira, D.M.; Gil-Izquierdo, Á.; Valentão, P. Phlorotannin extracts from Fucales: Marine polyphenols as bioregulators engaged in inflammation-related mediators and enzymes. Algal Res. 2017, 28, 1–8. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; O’Callaghan, Y.C.; O’Grady, M.N.; Hayes, M.; Kerry, J.P.; O’Brien, N.M. The effect of solvents on the antioxidant activity in Caco-2 cells of Irish brown seaweed extracts prepared using accelerated solvent extraction (ASE®). J. Funct. Foods 2013, 5, 940–948. [Google Scholar] [CrossRef]
- Paradis, M.-E.; Couture, P.; Lamarche, B. A randomised crossover placebo-controlled trial investigating the effect of brown seaweed (Ascophyllum nodosum and Fucus vesiculosus) on postchallenge plasma glucose and insulin levels in men and women. Appl. Physiol. Nutr. Metab. 2011, 36, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Lordan, S.; Smyth, T.J.; Soler-Vila, A.; Stanton, C.; Ross, R.P. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem. 2013, 141, 2170–2176. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Kongstad, K.T.; Wiese, S.; Jäger, A.K.; Staerk, D. Edible seaweed as future functional food: Identification of α-glucosidase inhibitors by combined use of high-resolution α-glucosidase inhibition profiling and HPLC–HRMS–SPE–NMR. Food Chem. 2016, 203, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.C.; Duh, P.D. Scavenging Effect of Methanolic Extracts of Peanut Hulls on Free-Radical and Active-Oxygen Species. J. Agric. Food Chem. 1994, 42, 629–632. [Google Scholar] [CrossRef]
- Neto, R.; Marçal, C.; Queirós, A.; Abreu, H.; Silva, A.; Cardoso, S. Screening of Ulva rigida, Gracilaria sp., Fucus vesiculosus and Saccharina latissima as Functional Ingredients. Int. J. Mol. Sci. 2018, 19, 2987. [Google Scholar] [CrossRef] [Green Version]
- Pereira, O.; Catarino, M.; Afonso, A.; Silva, A.; Cardoso, S. Salvia elegans, Salvia greggii and Salvia officinalis Decoctions: Antioxidant Activities and Inhibition of Carbohydrate and Lipid Metabolic Enzymes. Molecules 2018, 23, 3169. [Google Scholar] [CrossRef] [Green Version]
Extract No. | Independent Variables | Experimental TPhC (mg PGE/g DWalgae) | ||
---|---|---|---|---|
X1 | X2 | X3 | ||
1 | 40 | 125 | 3 | 1.17 ± 0.39 |
2 | 60 | 100 | 3 | 2.58 ± 0.36 |
3 | 80 | 125 | 3 | 1.61 ± 0.20 |
4 | 60 | 75 | 5 | 3.09 ± 0.34 |
5 | 80 | 100 | 5 | 1.99 ± 0.35 |
6 | 60 | 125 | 1 | 2.37 ± 0.25 |
7 | 80 | 75 | 3 | 2.16 ± 0.54 |
8 | 60 | 100 | 3 | 2.58 ± 0.36 |
9 | 40 | 100 | 1 | 2.60 ± 0.23 |
10 | 40 | 100 | 5 | 1.95 ± 0.37 |
11 | 60 | 125 | 5 | 0.85 ± 0.22 |
12 | 60 | 75 | 1 | 2.52 ± 0.21 |
13 | 40 | 75 | 3 | 2.42 ± 0.24 |
14 | 60 | 100 | 3 | 2.58 ± 0.36 |
15 | 80 | 100 | 1 | 2.35 ± 0.33 |
Parameter | Regression Coefficient |
---|---|
β0 | 2.58 *** |
X1 | −0.004 |
X2 | −0.52 *** |
X3 | −0.24 ** |
X1X2 | 0.17 * |
X1X3 | 0.073 |
X2X3 | −0.52 *** |
X1X1 | −0.36 ** |
X2X2 | −0.38 ** |
X3X3 | −0.0001 |
R2 | 0.99 |
R2Adj | 0.96 |
Model F-value | 43.77 |
Model p-value | <0.001 |
RT (min) | [M − H]− | MS2 Main Fragments | Probable Compound | CONV | MAE |
---|---|---|---|---|---|
1.3 | 317 | 225, 165, 207, 125, 249, 153 | Phlorotannin derivative | D | D |
1.9 | 497 | 479, 331, 461, 435, 395, 165 | Tetrafucol | D | D |
2.5 | 247 | 203, 121, 81 | Dibenzodioxine-1,3,6,8-tetraol | D | D |
2.7 | 621 | 603, 455, 585, 331, 529, 559, 577 | Pentafucol | D | D |
4.4 | 745 | 727, 455, 579, 709, 289, 701, 683 | Hexafucol | D | D |
5.3 | 623 | 495, 477, 605, 577, 601, 496 | Phlorotannin derivative | D | D |
6.2 | 869 | 851, 579, 455, 833, 785, 703 | Heptafucol | D | D |
6.4 | 479 | 461, 433, 315, 389, 435, 401 | Fucofurodiphlorethol | D | D |
10.0 | 363 | 345, 257, 319, 138, 182 | Phlorotannin derivative | D | D |
11.0 | 637 | 619, 496, 593, 601, 591, 335 | Pentafuhalol | D | D |
11.7 | 497 | 451, 479, 437, 453, 336, 335, 461 | Tetrafucol | D | D |
11.8 | 529 | 485, 511, 471, 467, 493, 403, 389, 373 | Hydroxytetrafuhalol | D | D |
12.9 | 635 | 575, 617, 557, 335, 466, 273, 531, 229 | Phlorotannin derivative | D | D |
13.3 | 587 | 507, 523, 505, 383, 277, 229 | Unidentified | D | D |
13.5 | 723 | 679, 701, 405, 714, 497, 678, 331 | Unidentified | D | D |
14.2 | 635 | 575, 617, 557,335, 466 | Phlorotannin derivative | D | D |
14.8 | 587 | 507 | Unidentified | D | D |
14.8 | 507 | 277, 461, 439, 489, 479, 382, 229, 275, 231 | Phlorotannin derivative | D | D |
15.0 | 950 | 904 | Unidentified | D | D |
16.4 | 603 | 585, 559, 543, 567, 269, 523, 313 | Fucofurotriphlorethol | D | D |
18.5 | 610 | 225, 538, 299, 592, 226, 486 | Unidentified | ND | D |
19.9 | 771 | 753, 727, 761, 725, 749, 610 | Phlorotannin derivative | ND | D |
Total Phlorotannins (mg/gextract) (1) | 11.1 ± 1.3 | 9.8 ± 1.8 |
Sample | IC50 (µg/mL) | |||
---|---|---|---|---|
ABTS•+ | O2•− | Xanthine Oxidase | α-Glucosidase | |
MAE | 95.99 ± 3.40 | 527.30 ± 47.78 | 23.07 ± 3.40 | 6.86 ± 0.70 |
Conventional | 62.55 ± 1.93 | 457.18 ± 23.97 | 6.36 ± 2.20 | 1.73 ± 0.13 |
Reference compound * | 5.07 ± 0.25 | 5.07 ± 0.77 | 0.05 ± 0.005 | 789.93 ± 41.08 |
Symbols | Independent Variables | Levels | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
X1 | Solvent concentration (%, v/v) | 40 | 60 | 100 |
X2 | Temperature (°C) | 75 | 100 | 125 |
X3 | Time (min) | 1 | 3 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amarante, S.J.; Catarino, M.D.; Marçal, C.; Silva, A.M.S.; Ferreira, R.; Cardoso, S.M. Microwave-Assisted Extraction of Phlorotannins from Fucus vesiculosus. Mar. Drugs 2020, 18, 559. https://doi.org/10.3390/md18110559
Amarante SJ, Catarino MD, Marçal C, Silva AMS, Ferreira R, Cardoso SM. Microwave-Assisted Extraction of Phlorotannins from Fucus vesiculosus. Marine Drugs. 2020; 18(11):559. https://doi.org/10.3390/md18110559
Chicago/Turabian StyleAmarante, Sónia J., Marcelo D. Catarino, Catarina Marçal, Artur M. S. Silva, Rita Ferreira, and Susana M. Cardoso. 2020. "Microwave-Assisted Extraction of Phlorotannins from Fucus vesiculosus" Marine Drugs 18, no. 11: 559. https://doi.org/10.3390/md18110559
APA StyleAmarante, S. J., Catarino, M. D., Marçal, C., Silva, A. M. S., Ferreira, R., & Cardoso, S. M. (2020). Microwave-Assisted Extraction of Phlorotannins from Fucus vesiculosus. Marine Drugs, 18(11), 559. https://doi.org/10.3390/md18110559