Antimicrobial Meroterpenoids and Erythritol Derivatives Isolated from the Marine-Algal-Derived Endophytic Fungus Penicillium chrysogenum XNM-12
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Elucidation of New Compounds
2.2. Antimicrobial Activity of Compounds 1–7
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Fermentation, Extraction, and Isolation
3.4. Antimicrobial Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bugni, T.S.; Ireland, C.M. Marine-derived fungi: A chemically and biologically diverse group of microorganisms. Nat. Prod. Rep. 2004, 21, 143–163. [Google Scholar] [CrossRef] [PubMed]
- Rateb, M.E.M.; Ebel, R. Secondary metabolites of fungi from marine habitats. Nat. Prod. Rep. 2011, 28, 290–344. [Google Scholar] [CrossRef] [PubMed]
- Uzma, F.; Mohan, C.D.; Hashem, A.; Konappa, N.M.; Rangappa, S.; Kamath, P.V.; Singh, B.P.; Mudili, V.; Gupta, V.K.; Siddaiah, C.N.; et al. Endophytic Fungi—Alternative Sources of Cytotoxic Compounds: A Review. Front. Pharmacol. 2018, 9, 309–345. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-F.; Sun, Z.-C.; Xiao, L.; Zhou, Y.-M.; Du, F.-Y. Herbicidal Polyketides and Diketopiperazine Derivatives from Penicillium viridicatum. J. Agric. Food Chem. 2019, 67, 14102–14109. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-F.; Yue, Y.-F.; Feng, L.-X.; Zhu, H.-J.; Cao, F. Asperienes A–D, Bioactive Sesquiterpenes from the Marine-Derived Fungus Aspergillus flavus. Mar. Drugs 2019, 17, 550. [Google Scholar] [CrossRef] [Green Version]
- Ji, N.-Y.; Wang, B.-G. Mycochemistry of marine algicolous fungi. Fungal Divers. 2016, 80, 301–342. [Google Scholar] [CrossRef]
- Soldatou, S.; Baker, B.J. Cold-water marine natural products, 2006 to 2016. Nat. Prod. Rep. 2017, 34, 585–626. [Google Scholar] [CrossRef]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2019, 36, 122–173. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Bao, B.; Ma, M.; Wu, W. Progress in polyketides isolated from marine sponge-associated fungi. Med. Res. 2018, 2, 180006. [Google Scholar] [CrossRef]
- Strobel, G.; Daisy, B. Bioprospecting for Microbial Endophytes and Their Natural Products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Schulz, B.; Boyle, C.; Draeger, S.; Römmert, A.-K.; Krohn, K. Endophytic fungi: A source of novel biologically active secondary metabolites. Mycol. Res. 2002, 106, 996–1004. [Google Scholar] [CrossRef]
- Strobel, G.; Daisy, B.; Castillo, U.; Harper, J. Natural Products from Endophytic Microorganisms. J. Nat. Prod. 2004, 67, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, X.; Wang, B.-G. Secondary Metabolites from the Marine Algal-Derived Endophytic Fungi: Chemical Diversity and Biological Activity. Planta Med. 2016, 82, 832–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ubillas, R.; Barnes, C.L.; Gracz, H.; Rottinghaus, G.E.; Tempesta, M.S. X-Ray crystal structure of oxalicine A, a novel alkaloid from Penicillium oxalicum. J. Chem. Soc. Chem. Commun. 1989, 21, 1618–1619. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Swenson, D.C.; Gloer, J.B.; Wicklow, D.T.; Dowd, P.F. Novel Antiinsectan Oxalicine Alkaloids from Two Undescribed Fungicolous Penicillium spp. Org. Lett. 2003, 5, 773–776. [Google Scholar] [CrossRef]
- Li, C.; Gloer, J.B.; Wicklow, D.T.; Dowd, P.F. Antiinsectan Decaturin and Oxalicine Analogues from Penicillium thiersii. J. Nat. Prod. 2005, 68, 319–322. [Google Scholar] [CrossRef]
- Wang, P.-L.; Li, D.-Y.; Xie, L.-R.; Wu, X.; Hua, H.-M.; Li, Z.-L. Novel Decaturin Alkaloids from the Marine-Derived Fungus Penicillium Oxalicum. Nat. Prod. Commun. 2013, 8, 1397–1398, No reported. [Google Scholar] [CrossRef] [Green Version]
- Feige, G.B.; Kremer, B.P. Unusual carbohydrate pattern in Trentepohlia species. Phytochemistry 1980, 19, 1844–1845. [Google Scholar] [CrossRef]
- Duong, T.H.; Huynh, B.L.C.; Chavasiri, W.; Chollet-Krugler, M.; Nguyen, V.K.; Nguyen, T.H.T.; Hansen, P.E.; Le Pogam, P.; Thüs, H.; Boustie, J.; et al. New erythritol derivatives from the fertile form of Roccella montagnei. Phytochemistry 2017, 137, 156–164. [Google Scholar] [CrossRef]
- Mallavadhani, U.V.; Sudhakar, A.V.S. Roccellatol, a new β-orcinol based metabolite from the lichen Roccella montagnei. Nat. Prod. Res. 2017, 32, 268–274. [Google Scholar] [CrossRef]
- Xu, K.; Yang, P.-F.; Yang, Y.-N.; Feng, Z.-M.; Jiang, J.-S.; Zhang, P.-C. Direct Assignment of the Threo and Erythro Configurations in Polyacetylene Glycosides by 1H NMR Spectroscopy. Org. Lett. 2017, 19, 686–689. [Google Scholar] [CrossRef] [PubMed]
- Mallavadhani, U.V.; Boddu, R.; Rathod, B.B.; Setty, P.R. Stereoselective synthesis of the lichen metabolite, (+)-montagnetol and its congeners as antimicrobial agents. Synth. Commun. 2018, 48, 2992–2999. [Google Scholar] [CrossRef]
- Basset, J.-F.; Leslie, C.; Hamprecht, D.; White, A.J.; Barrett, A.G.M. Studies on the resorcylates: Biomimetic total syntheses of (+)-montagnetol and (+)-erythrin. Tetrahedron Lett. 2010, 51, 783–785. [Google Scholar] [CrossRef]
- Kumbaraci, V.; Gunduz, H.; Karadeniz, M. Facile syntheses of (−)-montagnetol and (−)-erythrin. Tetrahedron Lett. 2013, 54, 6328–6330. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, Q.; Gao, Y.-Q.; Tang, J.-J.; Zhang, A.-L.; Gao, J.-M. Secondary Metabolites from the Endophytic Botryosphaeria dothidea of Melia azedarach and Their Antifungal, Antibacterial, Antioxidant, and Cytotoxic Activities. J. Agric. Food Chem. 2014, 62, 3584–3590. [Google Scholar] [CrossRef]
Position | δH (Mult, J in Hz) | δC, Type | Position | δH (Mult, J in Hz) | δC, Type |
---|---|---|---|---|---|
2 | 8.89 (s) | 148.3, CH | 21a | 1.89 (t, 12.5) | 25.3, CH2 |
3 | 128.5, C | 21b | 0.77 (d, 12.5) | ||
4 | 8.14 (d, 8.0) | 135.0, CH | 22a | 2.18 (t, 14.0) | 27.6, CH2 |
5 | 7.50 (m) | 123.5, CH | 22b | 1.31 (d, 14.0) | |
6 | 8.66 (d, 4.5) | 151.4, CH | 23 | 75.1, C | |
7 | 186.4, C | 24 | 44.0, C | ||
9 | 164.3, C | 25a | 2.27 (overlap) | 25.8, CH2 | |
10 | 140.5, C | 25b | 1.45 (d, 15.5) | ||
11 | 170.5, C | 26a | 2.42 (dt, 14.0, 5.0) | 29.7, CH2 | |
12 | 7.09 (s) | 94.0, CH | 26b | 2.20 (overlap) | |
14 | 99.0, C | 27 | 173.6, C | ||
15 | 7.32 (s) | 148.4, CH | 29 | 4.43 (s) | 67.0, CH2 |
16 | 135.6, C | 30 | 1.36 (s) | 19.5, CH3 | |
17 | 5.75 (s) | 127.8, CH | 31 | 0.94 (s) | 18.1, CH3 |
18a | 2.29 (overlap) | 23.6, CH2 | 32 | 150.5, C | |
18b | 2.06 (d, 18.0) | 33a | 5.08 (s) | 114.3, CH2 | |
19 | 2.57 (dd, 5.0, 12.0) | 41.5, CH | 33b | 4.84 (s) | |
20 | 40.4, C | 34 | 1.75 (s) | 21.7, CH3 |
No. | Compound 6 | Compound 7 | ||
---|---|---|---|---|
δH (mult, J in Hz) | δC, type | δH (mult, J in Hz) | δC, type | |
1a | 4.44 (d, 11.0) | 67.2, CH2 | 4.24 (d, 11.0) | 66.2, CH2 |
1b | 4.26 (dd, 11.0, 7.0) | 4.01 (dd, 11.0, 7.5) | ||
2 | 3.71 (m) | 69.2, CH | 3.59 (m) | 69.4, CH |
3 | 3.42 (overlap) | 72.5, CH | 3.38 (overlap) | 72.3, CH |
4a | 3.58 (m) | 63.0, CH2 | 3.55 (m) | 63.1, CH2 |
4b | 3.36 (overlap) | 3.39 (overlap) | ||
1′ | 103.6, C | 166.5, C | ||
2′ | 161.1, C | 5.88 (d, 15.5) | 119.3, CH | |
3′ | 108.2, C | 7.24 (dd, 15.5, 10.0) | 145.0, CH | |
4′ | 160.7, C | 6.27 (overlap) | 129.8, CH | |
5′ | 6.30 (s) | 109.2, CH | 6.25 (overlap) | 142.0, CH |
6′ | 145.1, C | 2.22 (m) | 42.6, CH2 | |
7′ | 171.0, C | 3.70 (m) | 65.6, CH | |
8′ | 1.93 (s) | 8.2, CH3 | 1.05 (d, 6.0) | 23.3, CH3 |
9′ | 2.78 (m) | 28.6, CH2 | ||
10′ | 1.10 (t, 7.5) | 16.2, CH3 |
Strains | MIC (µg/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | Ch a | Pr b | ||
Bacteria | E. coli | 8 | >64 | 32 | >64 | >64 | 16 | 32 | 1 | – |
M. luteus | 8 | >64 | 16 | >64 | 32 | 8 | 16 | 1 | ||
P. aeruginosa | 16 | 32 | >64 | >64 | 16 | 8 | >64 | 2 | ||
R. solanacearum | 8 | >64 | 32 | 32 | 16 | 4 | >64 | 8 | ||
Fungi | A. alternata | >64 | >64 | 32 | 32 | >64 | 8 | >64 | – | 16 |
B. cinerea | 32 | >64 | 16 | 32 | 32 | 16 | >64 | 8 | ||
F. oxysporum | >64 | >64 | 16 | >64 | 32 | 32 | 32 | 8 | ||
P. digitatum | 32 | >64 | >64 | 16 | >64 | 32 | 16 | 16 | ||
V. mali | 16 | >64 | >64 | 16 | 32 | 16 | 16 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, K.; Wei, X.-L.; Xue, L.; Zhang, Z.-F.; Zhang, P. Antimicrobial Meroterpenoids and Erythritol Derivatives Isolated from the Marine-Algal-Derived Endophytic Fungus Penicillium chrysogenum XNM-12. Mar. Drugs 2020, 18, 578. https://doi.org/10.3390/md18110578
Xu K, Wei X-L, Xue L, Zhang Z-F, Zhang P. Antimicrobial Meroterpenoids and Erythritol Derivatives Isolated from the Marine-Algal-Derived Endophytic Fungus Penicillium chrysogenum XNM-12. Marine Drugs. 2020; 18(11):578. https://doi.org/10.3390/md18110578
Chicago/Turabian StyleXu, Kuo, Xu-Lun Wei, Lin Xue, Zhong-Feng Zhang, and Peng Zhang. 2020. "Antimicrobial Meroterpenoids and Erythritol Derivatives Isolated from the Marine-Algal-Derived Endophytic Fungus Penicillium chrysogenum XNM-12" Marine Drugs 18, no. 11: 578. https://doi.org/10.3390/md18110578
APA StyleXu, K., Wei, X. -L., Xue, L., Zhang, Z. -F., & Zhang, P. (2020). Antimicrobial Meroterpenoids and Erythritol Derivatives Isolated from the Marine-Algal-Derived Endophytic Fungus Penicillium chrysogenum XNM-12. Marine Drugs, 18(11), 578. https://doi.org/10.3390/md18110578