Bioactive Compounds from Marine Heterobranchs
Abstract
:1. Background
2. Ecological Activity
2.1. Predation
2.1.1. Nudibranchia
Doridacea
Dendronotida
Euarminida
Aeolidida
2.1.2. Pleurobranchoidea
2.1.3. Tylodinoidea
2.1.4. Cephalaspidea
2.1.5. Anaspidea
2.1.6. Pteropoda
2.1.7. Sacoglossa
2.1.8. Pulmonata
2.2. Toxicity
2.2.1. Nudibranchia
Doridacea
Dendronotida
Euarminida
2.2.2. Tylodinoidea
2.2.3. Cephalaspidea
2.2.4. Anaspidea
2.2.5. Sacoglossa
2.2.6. Pulmonata
2.3. Antimicrobials
2.3.1. Nudibranchia
Doridacea
Dendronotida
Aeolidida
2.3.2. Cephalaspidea
2.3.3. Anaspidea
2.3.4. Pulmonata
2.4. Antifouling
2.4.1. Nudibranchia
Doridacea
Dendronotida
Aeolidida
2.4.2. Cephalaspidea
2.5. Trail Following and Alarm Pheromones
2.5.1. Nudibranchia
Doridacea
2.5.2. Cephalaspidea
2.5.3. Anaspidea
2.6. Sunscreens and UV Protection
2.6.1. Anaspidea
2.6.2. Pteropoda
2.6.3. Sacoglossa
2.7. Tissue Regeneration
2.7.1. Nudibranchia
Doridacea
Dendronotida
2.7.2. Sacoglossa
2.8. Other Ecological Activities
2.8.1. Nudibranchia
Doridacea
Dendronotida
Euarminida
3. Pharmacological Activity
3.1. Cytotoxicity and Antitumoral Activity
3.1.1. Nudibranchia
Doridacea
Dendronotida
Euarminida
Aeolidida
3.1.2. Pleurobranchoidea
3.1.3. Tylodinoidea
3.1.4. Cephalaspidea
3.1.5. Anaspidea
3.1.6. Sacoglossa
3.1.7. Pulmonata
3.2. Antibiotic Activity
3.2.1. Nudibranchia
Doridacea
Euarminida
3.2.2. Tylodinoidea
3.2.3. Anaspidea
3.2.4. Sacoglossa
3.2.5. Pulmonata
3.3. Antiparasitic Activity
3.3.1. Nudibranchia
Doridacea
3.3.2. Sacoglossa
3.4. Antiviral Activity
3.4.1. Nudibranchia
Doridacea
3.4.2. Anaspidea
3.4.3. Sacoglossa
3.5. Anti-Inflammatory Activity
3.5.1. Nudibranchia
Doridacea
Dendronotida
3.5.2. Anaspidea
3.6. Against Neurodegenerative Diseases
3.7. Other Pharmacological Activities
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer Disease |
ADCs | Antibody-drug conjugates |
ADMET | Absortion, Distribution, Metabolism, Excretion, and Toxicity |
ADR | Adriamycin resistant |
BGCs | Biosynthetic Gene Clusters |
cAMP | Cyclic Adenosine Monophosphate |
EC50 | Half maximal Effective Concentration |
ED50 | Half effective dose |
EGF | Epidermal Groth Factor |
EGFR | Epidermal Groth Factor Receptor |
ERK | Extracellular signal-regulated kinases |
FDA | Food and Drugs Administration |
GI50 | Maximal inhibition of cell proliferation |
HCCLs | Human Colon Cancer Cell Lines |
HEL | Human Erythroleukemia cells |
HeLa | Henrietta_Lacks cell line from cervical cancer cells |
HIF-1 | Hypoxia Inducible Factor 1 |
HTCLs | Human Tumor Cell Lines |
KB | Subline of the KERATIN-forming tumor cell line HeLa |
IC50 | Half minimal Inhibitory Concentration |
LD | Lethal Dose |
LRA | Latency Reversal Agent |
MAAs | Mycosporine-like Amino Acids |
MAPK | Mitogen-Activated Protein Kinase |
MDA | Microtubule-Desestabilizing Agent |
MDFs | Mantle Dermal Formations |
MDR | Multidrug resistant variant |
MIC | Minimum Inhibitory Concentration |
MNPs | Marine Natural Products |
MTT | Dimethyl Thiazolyl Diphenyl Tetrazolium Bromide |
NCI | National Cancer Institute |
NPs | Natural Products |
NSCLC | Nonsmall Cell Lung Cancer |
PBM | Peripheral Blood Mononuclear |
PG | Prostaglandins |
PKC | Protein Kinase C |
PSMA-ADC | Prostate-specific membrane antigen antibody–drug conjugate |
PTPRK | Protein Tyrosine Phosphatase Receptor type K |
TRAIL | Tumor necrosis factor-related apoptosis-inducing ligand |
TTX | Tetrodotoxin |
UVR | Ultra-Violet Radiation |
VCR | Vincristine resistant |
References
- Avila, C.; Núñez-Pons, L.; Moles, J. From the tropics to the poles: Chemical defensive strategies in sea slugs (Mollusca: Heterobranchia). In Chemical Ecology: The Ecological Impacts of Marine Natural Products; Puglisi, M.P., Becerro, M.A., Eds.; CRC Press: Boca Raton, FL, USA; Taylor and Francis: Abingdon, UK, 2018. [Google Scholar]
- Avila, C. Natural products of opisthobranch molluscs: A biological review. Oceanogr. Mar. Biol. Annu. Rev. 1995, 33, 487–559. [Google Scholar]
- Avila, C. A preliminary catalogue of natural substances of opistobranch molluscs from Western Mediterranean and near Atlantic. Sci. Mar. 1992, 56, 373–382. [Google Scholar]
- Avila, C. Terpenoids in Marine Heterobranch Molluscs. Mar. Drugs 2020, 8, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blunt, J.W.; Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2018, 35, 8–53. [Google Scholar] [CrossRef] [Green Version]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2020, 37, 175–223. [Google Scholar] [CrossRef]
- Puglisi, M.P.; Becerro, M.A. Chemical Ecology: The Ecological Impacts of Marine Natural Products; CRC Press: Boca Raton, FL, USA; Taylor and Francis: Abingdon, UK, 2018. [Google Scholar]
- McClintock, J.B.; Baker, P.J. Marine Chemical Ecology; CRC Marine Science Series Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Ianora, A.; Boersma, M.; Casotti, R.; Fontana, A.; Harder, J.; Hoffmann, F.; Pavia, H.; Potin, P.; Poulet, S.A.; Toth, G. New trends in marine chemical ecology. Estuar. Coasts 2006, 29, 531–551. [Google Scholar] [CrossRef] [Green Version]
- Puglisi, M.P.; Sneed, J.M.; Sharp, K.H.; Ritson-Williams, R.; Paul, V.J. Marine chemical ecology in benthic environments. Nat. Prod. Rep. 2014, 31, 1510–1553. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Y.-L.; Zhao, F.-C. Secondary metabolites from polar organisms. Mar. Drugs 2017, 15, 28. [Google Scholar] [CrossRef] [Green Version]
- Cimino, G.; Gavagnin, M. (Eds.) Progress in Molecular and Subcellular Biology; Subseries Marine Molecular Biotechnology; Springer: Berlin/Heidelberg, Germany, 2006; Volume 43. [Google Scholar]
- Benkendorff, K. Molluscan biological and chemical diversity: Secondary metabolites and medicinal resources produced by marine molluscs. Biol. Rev. 2010, 85, 757–775. [Google Scholar] [CrossRef]
- Kandyuk, R.P. Sterols and their functional role in Mollusks (a review). Hydrobiol. J. 2006, 42, 56–66. [Google Scholar] [CrossRef]
- Garson, M. Marine natural products as antifeedants. In Comprehensive Natural Products II. Chemistry and Biology; Mander, L., Liu, H.W., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2010; pp. 503–537. [Google Scholar]
- Cimino, G.; Ghiselin, M.T. Marine natural products chemistry as an evolutionary narrative. In Marine Chemical Ecology; McClintock, J.B., Baker, P.J., Eds.; CRC Marine Science Series Press: Boca Raton, FL, USA, 2001; pp. 115–154. [Google Scholar]
- McClintock, J.B.; Amsler, C.D.; Baker, B.J. Overview of the chemical ecology of benthic marine invertebrates along the Western Antarctic peninsula. Integr. Comp. Biol. 2010, 50, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Pons, L.; Avila, C. Natural products mediating ecological interactions in Antarctic benthic communities: A mini-review of the known molecules. Nat. Prod. Rep. 2015, 32, 1114–1130. [Google Scholar] [CrossRef] [PubMed]
- Cimino, G.; Ghiselin, M.T. Chemical defense and the evolution of opisthobranch gastropods. Proc. Calif. Acad. Sci. 2009, 60, 175–422. [Google Scholar]
- Garson, M.J. Marine mollusks from Australia and New Zealand: Chemical and ecological studies. In Progress in Molecular and Subcellular Biology; Cimino, G., Gavagnin, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 43, pp. 159–174. [Google Scholar]
- Davies-Coleman, M.T. Secondary metabolites from the marine gastropod molluscs of Antarctica, Southern Africa and South America. In Progress in Molecular and Subcellular Biology; Cimino, G., Gavagnin, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 43, pp. 133–157. [Google Scholar]
- Wahidulla, S.; Guo, Y.W.; Fakhr, I.M.I.; Mollo, E. Chemical diversity in opisthobranch molluscs from scarcely investigated Indo-Pacific areas. In Progress in Molecular and Subcellular Biology; Cimino, G., Gavagnin, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 43, pp. 175–198. [Google Scholar]
- Miyamoto, T. Selected bioactive compounds from Japanese anaspideans and nudibranchs. In Progress in Molecular and Subcellular Biology; Cimino, G., Gavagnin, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 43, pp. 199–214. [Google Scholar]
- Wang, J.R.; He, W.F.; Guo, Y.W. Chemistry, chemoecology, and bioactivity of the South China Sea opisthobranch molluscs and their dietary organisms. J. Asian Nat. Prod. Res. 2013, 15, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Andersen, R.J.; Desjardine, K.; Woods, K. Skin chemistry of nudibranchs from the West Coast of North America. In Progress in Molecular and Subcellular Biology; Cimino, G., Gavagnin, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 43, pp. 277–301. [Google Scholar]
- Kamiya, H.; Sakai, R.; Jimbo, M. Bioactive molecules from sea hares. In Progress in Molecular and Subcellular Biology; Cimino, G., Gavagnin, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 43, pp. 215–239. [Google Scholar]
- Darias, J.; Cueto, M.; Díaz-Marrero, A.R. The chemistry of marine pulmonate gastropods. In Progress in Molecular and Subcellular Biology; Cimino, G., Gavagnin, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 43, pp. 105–131. [Google Scholar]
- Dean, L.J.; Prinsep, M.R. The chemistry and chemical ecology of nudibranchs. Nat. Prod. Rep. 2017, 34, 1359–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avila, C.; Taboada, S.; Núñez-Pons, L. Antarctic marine chemical ecology: What is next? Mar. Ecol. 2008, 29, 1–71. [Google Scholar] [CrossRef]
- Paul, V.J. Ecological Roles of Marine Natural Products; Comstock Publishications Association: Ithaka, NY, USA, 1992. [Google Scholar]
- Ruiz-Torres, V.; Encinar, J.A.; Herranz-López, M.; Pérez-Sánchez, A.; Galiano, V.; Barrajón-Catalán, E.; Micol, V. An updated review on marine anticancer compounds: The use of virtual screening for the discovery of small-molecule cancer drugs. Molecules 2017, 22, 1037. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 2004, 67, 1216–1238. [Google Scholar] [CrossRef]
- Baker, B.J. Marine Biomedicine: From Beach to Bedside; CRC Press: Boca Raton, FL, USA; Taylor and Francis: Abingdon, UK, 2015. [Google Scholar]
- Haefner, B. Drugs from the deep: Marine natural products as drug candidates. Drug Discov. Today 2003, 8, 536–544. [Google Scholar] [CrossRef]
- Clardy, J.; Walsh, C. Lessons from natural molecules. Nature 2004, 432, 829–837. [Google Scholar] [CrossRef]
- Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine natural products. Nature Rev. Drug Discov. 2009, 8, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Cragg, G.M.; Grothaus, P.G.; Newman, D.J. New horizons for old drugs and drug leads. J. Nat. Prod. 2014, 77, 703–723. [Google Scholar] [CrossRef] [PubMed]
- Mudit, M.; El Sayed, K.A. Cancer control potential of marine natural product scaffolds through inhibition of tumor cell migration and invasion. Drug Discov. Today 2016, 21, 1745–1760. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, J. Drug Addiction: From Basic Research to Therapy. Drug Alcohol. Rev. 2009, 28, 455. [Google Scholar] [CrossRef]
- Khalifa, S.A.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.E.; Moustafa, M.S.; El-Wahed, A.; Al-Mousawi, S.M.; Musharraf, S.G.; et al. Marine natural products: A source of novel anticancer drugs. Mar. Drugs 2019, 17, 491. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Marine-sourced anti-cancer and cancer pain control agents in clinical and late preclinical development. Mar. Drugs 2014, 12, 255–278. [Google Scholar] [CrossRef] [Green Version]
- Gross, H.; König, G.M. Terpenoids from marine organisms: Unique structures and their pharmacological potential. Phytochem. Rev. 2006, 5, 115–141. [Google Scholar] [CrossRef]
- Faircloth, G.; Cuevas, M.C. Kahalalide F and ES285: Potent anticancer agents from marine molluscs. In Progress in Molecular and Subcellular Biology; Cimino, G., Gavagnin, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 43, pp. 363–379. [Google Scholar]
- Kigoshi, H.; Kita, M. Antitumor effects of sea hare-derived compounds in cancer. In Handbook of Anticancer Drugs from Marine Origin; Kim, S.K., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 701–739. [Google Scholar]
- Schrödl, M.; Jörger, K.M.; Klussmann-Kolb, A.; Wilson, N.G. Bye bye ‘Opisthobranchia’! A review on the contribution of mesopsammic sea slugs to euthyneuran systematics. Thalassas 2011, 27, 101–112. [Google Scholar]
- Medina, M.; Lal, S.; Vallès, Y.; Takaoka, T.L.; Dayrat, B.A.; Boore, J.L.; Gosliner, T. Crawling through time: Transition of snails to slugs dating back to the Paleozoic, based on mitochondrial phylogenomics. Mar. Genom. 2011, 4, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Wägele, H.; Klussmann-Kolb, A.; Verbeek, E.; Schrödl, M. Flashback and foreshadowing; a review of the taxon Opisthobranchia. Org. Div. Evol. 2014, 14, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Zapata, F.; Wilson, N.G.; Howison, M.; Andrade, S.C.; Jörger, K.M.; Schrödl, M.; Goetz, F.E.; Giribet, G.; Dunn, C.W. Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WoRMS. World Register of Marine Species, Database. Available online: http://www.marinespecies.org (accessed on 11 November 2020).
- Avila, C. Molluscan natural products as biological models: Chemical ecology, histology, and laboratory culture. In Progress in Molecular and Subcellular Biology; Cimino, G., Gavagnin, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 43, pp. 1–23. [Google Scholar]
- Iken, K.; Avila, C.; Ciavatta, M.L.; Fontana, A.; Cimino, G. Hodgsonal, a new drimane sesquiterpene from the mantle of the Antarctic nudibranch Bathydoris hodgsoni. Tetrahedron Lett. 1998, 39, 5635–5638. [Google Scholar] [CrossRef]
- Avila, C.; Iken, K.; Fontana, A.; Cimino, G. Chemical ecology of the Antarctic nudibranch Bathydoris hodgsoni Eliot, 1907: Defensive role and origin of its natural products. J. Exp. Mar. Biol. Ecol. 2000, 252, 27–44. [Google Scholar] [CrossRef]
- Loughlin, W.A.; Muderawan, I.W.; McCleary, M.A.; Volter, K.E.; King, M.D. Studies towards the synthesis of phorbazoles A–D: Formation of the pyrrole oxazole skeleton. Aust. J. Chem. 1999, 52, 231–234. [Google Scholar] [CrossRef]
- Radspieler, A.; Liebscher, J. Total synthesis of phorbazole C. Tetrahedron 2001, 57, 4867–4871. [Google Scholar] [CrossRef]
- Moles, J.; Wägele, H.; Cutignano, A.; Fontana, A.; Ballesteros, M.; Avila, C. Giant embryos and hatchlings of Antarctic nudibranchs (Mollusca: Gastropoda: Heterobranchia). Mar. Biol. 2017, 164, 114. [Google Scholar] [CrossRef]
- Gavagnin, M.; De Napoli, A.; Castelluccio, F.; Cimino, G. Austrodorin-A and-B: First tricyclic diterpenoid 2′-monoglyceryl esters from an Antarctic nudibranch. Tetrahedron Lett. 1999, 40, 8471–8475. [Google Scholar] [CrossRef]
- Gavagnin, M.; De Napoli, A.; Cimino, G.; Iken, K.; Avila, C.; Garcia, F.J. Absolute configuration of diterpenoid diacylglycerols from the Antarctic nudibranch Austrodoris kerguelenensis. Tetrahedron Asym. 1999, 10, 2647–2650. [Google Scholar] [CrossRef]
- Iken, K.; Avila, C.; Fontana, A.; Gavagnin, M. Chemical ecology and origin of defensive compounds in the Antarctic nudibranch Austrodoris kerguelenensis (Opisthobranchia: Gastropoda). Mar. Biol. 2002, 141, 101–109. [Google Scholar]
- Carte, B.; Faulkner, D. Role of Secondary Metabolites in Feeding Associations between a Predatory Nudibranch, 2 Grazing Nudibranchs, and a Bryozoan. J. Chem. Ecol. 1986, 12, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Davies-Coleman, M.T.; Faulkner, D.J. New diterpenoic acid glycerides from the Antarctic nudibranch Austrodoris kerguelensis. Tetrahedron 1991, 47, 9743–9750. [Google Scholar] [CrossRef]
- Gavagnin, M.; Trivellone, E.; Castelluccio, F.; Cimino, G.; Cattaneo-Vietti, R. Glyceryl ester of a new halimane diterpenoic acid from the skin of the antarctic nudibranch Austrodoris kerguelenensis. Tetrahedron Lett. 1995, 36, 7319–7322. [Google Scholar] [CrossRef]
- Gavagnin, M.; Carbone, M.; Mollo, E.; Cimino, G. Austrodoral and austrodoric acid: Nor-sesquiterpenes with a new carbon skeleton from the Antarctic nudibranch Austrodoris kerguelenensis. Tetrahedron Lett. 2003, 44, 1495–1498. [Google Scholar] [CrossRef]
- Gavagnin, M.; Carbone, M.; Mollo, E.; Cimino, G. Further chemical studies on the Antarctic nudibranch Austrodoris kerguelenensis: New terpenoid acylglycerols and revision of the previous stereochemistry. Tetrahedron 2003, 59, 5579–5583. [Google Scholar] [CrossRef]
- Diyabalanage, T.; Iken, K.B.; McClintock, J.B.; Amsler, C.D.; Baker, B.J. Palmadorins A− C, diterpene glycerides from the Antarctic nudibranch Austrodoris kerguelenensis. J. Nat. Prod. 2010, 73, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Maschek, J.A.; Mevers, E.; Diyabalanage, T.; Chen, L.; Ren, Y.; McClintock, J.B.; Amsler, C.D.; Wu, J.; Baker, B.J. Palmadorin chemodiversity from the Antarctic nudibranch Austrodoris kerguelenensis and inhibition of Jak2/STAT5-dependent HEL leukemia cells. Tetrahedron 2012, 68, 9095–9104. [Google Scholar] [CrossRef]
- Cutignano, A.; Zhang, W.; Avila, C.; Cimino, G.; Fontana, A. Intrapopulation variability in the terpene metabolism of the Antarctic opisthobranch mollusc Austrodoris kerguelenensis. Eur. J. Org. Chem. 2011, 5383–5389. [Google Scholar] [CrossRef]
- Wilson, N.G.; Maschek, J.A.; Baker, B.J. A species flock driven by predation? Secondary metabolites support diversification of slugs in Antarctica. PLoS ONE 2013, 8, e80277. [Google Scholar] [CrossRef] [Green Version]
- Gavagnin, M.; Fontana, A.; Ciavatta, M.L.; Cimino, G. Chemical studies on Antarctic nudibranch molluscs. Italian J. Zool. 2000, 1, 101–109. [Google Scholar] [CrossRef]
- Graziani, E.I.; Andersen, R.J.; Krug, P.J.; Faulkner, D.J. Stable isotope incorporation evidence for the de novo biosynthesis of terpenoic acid glycerides by dorid nudibranchs. Tetrahedron 1996, 52, 6869–6878. [Google Scholar] [CrossRef]
- Granato, A.C.; Berlinck, R.G.S.; Magalhaes, A.; Schefer, A.B.; Ferreira, A.G.; De Sanctis, B.; De Freitas, J.C.; Hajdu, E.; Migotto, A.E. Natural products from the marine sponges Aaptos sp. and Hymeniacidon aff. heliophila, and from the nudibranch Doris aff. verrucosa. Quim. Nov. 2000, 23, 594–599. [Google Scholar]
- Ayer, S.W.; Andersen, R.J. Steroidal antifeedants from the dorid nudibranch Aldisa sanguinea cooperi. Tetrahedron Lett. 1982, 23, 1039–1042. [Google Scholar] [CrossRef]
- Gavagnin, M.; Ungur, N.; Mollo, E.; Templado, J.; Cimino, G. Structure and synthesis of a progesterone homologue from the skin of the dorid nudibranch Aldisa smaragdina. Eur. J. Org. Chem. 2002, 9, 1500–1504. [Google Scholar] [CrossRef]
- Nuzzo, G.; Ciavatta, M.L.; Kiss, R.; Mathieu, V.; Leclercqz, H.; Manzo, E.; Villani, G.; Mollo, E.; Lefranc, F.; D'Souza, L.; et al. Chemistry of the nudibranch Aldisa andersoni: Structure and biological activity of phorbazole metabolites. Mar. Drugs 2012, 10, 1799–1811. [Google Scholar] [CrossRef]
- Rudi, A.; Stein, Z.; Green, S.; Goldberg, I.; Kashman, Y.; Benayahu, Y.; Schleyer, M. Phorbazoles A–D, novel chlorinated phenylpyrrolyloxazoles from the marine sponge Phorbas aff. clathrata. Tetrahedron Lett. 1994, 35, 2589–2592. [Google Scholar] [CrossRef]
- Mollo, E.; Gavagnin, M.; Carbone, M.; Castelluccio, F.; Pozone, F.; Roussis, V.; Templado, J.; Ghiselin, M.T.; Cimino, G. Factors promoting marine invasions: A chemoecological approach. Proc. Natl. Acad. Sci. USA 2008, 105, 4582–4586. [Google Scholar] [CrossRef] [Green Version]
- Krug, P.J.; Boyd, K.G.; Faulkner, D.J. Isolation and synthesis of tanyolides A and B, metabolites of the nudibranch Sclerodoris tanya. Tetrahedron 1995, 51, 11063–11074. [Google Scholar] [CrossRef]
- Marín, A.; López-Belluga, M.D.; Scognamiglio, G.; Cimino, G. Morphological and chemical camouflage of the Mediterranean nudibranch Discodoris indecora on the sponges Ircinia variabilis and Ircinia fasciculata. J. Mollus. Stud. 1997, 63, 431–439. [Google Scholar] [CrossRef]
- Cimino, G.; De Rosa, S.; De Stefano, S.; Sodano, G.; Villani, G. Dorid nudibranch elaborates its own chemical defense. Science 1983, 219, 1237–1238. [Google Scholar] [CrossRef] [PubMed]
- Gavagnin, M.; Mollo, E.; Castelluccio, F.; Ghiselin, M.T.; Calado, G.; Cimino, G. Can molluscs biosynthesize typical sponge metabolites? The case of the nudibranch Doriopsilla areolata. Tetrahedron 2001, 57, 8913–8916. [Google Scholar] [CrossRef]
- Kubo, I.; Nakanishi, K. Insect antifeedants and repellents from African plants. In Host Plant Resistance to Pests; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1977; Volume 62, pp. 165–178. [Google Scholar]
- Cimino, G.; De Rosa, S.; De Stefano, S.; Sodano, G. Observations on the toxicity and metabolic relationships of polygodial, the chemical defense of the nudibranch Dendrodoris limbata. Experientia 1985, 41, 1335–1336. [Google Scholar] [CrossRef]
- Cimino, G.; Sodano, G.; Spinella, A. Occurrence of olepupuane in two Mediterranean nudibranchs: A protected form of polygodial. J. Nat. Prod. 1988, 51, 1010–1011. [Google Scholar] [CrossRef] [PubMed]
- Cimino, G.; De Rosa, S.; De Stefano, S.; Sodano, G. Novel sesquiterpenoid esters from the nudibranch Dendrodoris limbata. Tetrahedron Letters. 1981, 22, 1271–1272. [Google Scholar] [CrossRef]
- Sakio, Y.; Hirano, Y.J.; Hayashi, M.; Komiyama, K.; Ishibashi, M. Dendocarbins A–N, new drimane sesquiterpenes from the nudibranch Dendrodoris carbunculosa. J. Nat. Prod. 2001, 64, 726–731. [Google Scholar] [CrossRef]
- Fontana, A.; Ciavatta, M.L.; Miyamoto, T.; Spinella, A.; Cimino, G. Biosynthesis of drimane terpenoids in dorid molluscs: Pivotal role of 7-deacetoxyolepupuane in two species of Dendrodoris nudibranchs. Tetrahedron 1999, 55, 5937–5946. [Google Scholar] [CrossRef]
- Grkovic, T.; Appleton, D.R.; Copp, B.R. Chemistry and chemical ecology of some of the common opisthobranch molluscs found on the shores of NE New Zealand. Chem. N. Z. 2005, 69, 12–15. [Google Scholar]
- Gavagnin, M.; Mollo, E.; Calado, G.; Fahey, S.; Ghiselin, M.T.; Ortea, J.; Cimino, G. Chemical studies of porostome nudibranchs: Comparative and ecological aspects. Chemoecology 2001, 11, 131–136. [Google Scholar] [CrossRef]
- Avila, C.; Cimino, G.; Crispino, A.; Spinella, A. Drimane sesquiterpenoids in Mediterranean Dendrodoris nudibranchs: Anatomical distribution and biological role. Experientia 1991, 47, 306–310. [Google Scholar] [CrossRef]
- Okuda, R.K.; Scheuer, P.J.; Hochlowski, J.E.; Walker, R.P.; Faulkner, D.J. Sesquiterpenoid constituents of eight porostome nudibranchs. J. Org. Chem. 1983, 48, 1866–1869. [Google Scholar] [CrossRef]
- Karuso, P. Chemical ecology of the nudibranchs. In BioorganicMarine Chemistry; Scheuer, P.P.J., Ed.; Bioorganic Marine Chemistry; Springer: Berlin/Heidelberg, Germany, 1987; pp. 31–60. [Google Scholar]
- Cimino, G.; Ghiselin, M.T. Chemical defense and evolutionary trends in biosynthetic capacity among Dorid nudibranchs (Mollusca: Gastropoda: Opisthobranchia). Chemoecology 1999, 9, 187–207. [Google Scholar] [CrossRef]
- Faulkner, D.J. Marine Natural Products. Nat. Prod. Rep. 2001, 18, 1–49. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, H.; Gavagnin, M.; Calado, G.; Castelluccio, F.; Mollo, E.; Cimino, G. Pelseneeriol-1 and-2: New furanosesquiterpene alcohols from porostome nudibranch Doriopsilla pelseneeri. Tetrahedron 2005, 61, 11032–11037. [Google Scholar] [CrossRef]
- Fontana, A.; Tramice, A.; Cutignano, A.; d’Ippolito, G.; Gavagnin, M.; Cimino, G. Terpene biosynthesis in the nudibranch Doriopsilla areolata. J. Org. Chem. 2003, 68, 2405–2409. [Google Scholar] [CrossRef]
- Spinella, A.; Alvarez, L.A.; Avila, C.; Cimino, G. New acetoxy-ent-pallescensin-A sesquiterpenoids from the skin of the porostome nudibranch Doriopsilla areolata. Tetrahedron Lett. 1994, 35, 8665–8668. [Google Scholar] [CrossRef]
- Long, J.D.; Hay, M.E. Fishes learn aversions to a nudibranch’s chemical defense. Mar. Ecol. Progr. Ser. 2006, 307, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, H.; Cutignano, A.; Ferreira, T.; Calado, G.; Cimino, G.; Fontana, A. Biosynthetic evidence supporting the generation of terpene chemodiversity in marine mollusks of the genus Doriopsilla. J. Nat. Prod. 2008, 71, 2053–2056. [Google Scholar] [CrossRef]
- Brunckhorst, D.J. The systematics and phylogeny of phyllidiid nudibranchs (Doridoidea). Rec. Aust. Mus. Suppl. 1993, 16, 1–107. [Google Scholar] [CrossRef] [Green Version]
- Fusetani, N.; Wolstenholme, H.J.; Matsunaga, S.; Hirota, H. Two new sesquiterpene isonitriles from the nudibranch Phyllidia pustulosa. Tetrahedron Lett. 1991, 32, 7291–7294. [Google Scholar] [CrossRef]
- Okino, T.; Yoshimura, E.; Hirota, H.; Fusetani, N. New antifouling sesquiterpenes from four nudibranchs of the family Phyllidiidae. Tetrahedron 1996, 52, 9447–9454. [Google Scholar] [CrossRef]
- Hirota, H.; Okino, T.; Yoshimura, E.; Fusetani, N. Five new antifouling sesquiterpenes from two marine sponges of the genus Axinyssa and the nudibranch Phyllidia pustulosa. Tetrahedron 1998, 54, 13971–13980. [Google Scholar] [CrossRef]
- Cimino, G.; Fontana, A.; Gavagnin, M. Marine opisthobranch molluscs: Chemistry and ecology in sacoglossan and dorids. Curr. Org. Chem. 1999, 3, 327–372. [Google Scholar]
- Garson, M.J.; Simpson, J.S. Marine isocyanides and related natural products—Structure, biosynthesis and ecology. Nat. Prod. Rep. 2004, 21, 164–179. [Google Scholar] [CrossRef]
- Burreson, B.J.; Scheuer, P.J.; Finer, J.; Clardy, J. 9-Isocyanopupukeanane, a marine invertebrate allomone with a new sesquiterpene skeleton. J. Am. Chem. Soc. 1975, 97, 4763–4764. [Google Scholar] [CrossRef]
- Hagadone, M.R.; Burreson, B.J.; Scheuer, P.J.; Finer, J.S.; Clardy, J. Defense allomones of the nudibranch Phyllidia varicosa Lamarck 1801. Helv. Chim. Acta 1979, 62, 2484–2494. [Google Scholar] [CrossRef]
- Ungur, N.; Gavagnin, M.; Fontana, A.; Cimino, G. Absolute stereochemistry of natural sesquiterpenoid diacylglycerols. Tetrahedron Asymmetry 1999, 10, 1263–1273. [Google Scholar] [CrossRef]
- Ritson-Williams, R.; Paul, V.J. Marine benthic invertebrates use multimodal cues for defense against reef fish. Mar. Ecol. Progr. Ser. 2007, 340, 29–39. [Google Scholar] [CrossRef]
- Yasman, Y.; Edrada, R.A.; Wray, V.; Proksch, P. New 9-thiocyanatopupukeanane sesquiterpenes from the nudibranch Phyllidia varicosa and its sponge-prey Axinyssa aculeata. J. Nat. Prod. 2003, 66, 1512–1514. [Google Scholar] [CrossRef]
- Jaisamut, S.; Prabpai, S.; Tancharoen, C.; Yuenyongsawad, S.; Hannongbua, S.; Kongsaeree, P.; Plubrukarn, A. Bridged tricyclic sesquiterpenes from the tubercle nudibranch Phyllidia coelestis Bergh. J. Nat. Prod. 2013, 76, 2158–2161. [Google Scholar] [CrossRef]
- Sim, D.C.-M.; Mudianta, I.W.; White, A.M.; Martiningsih, N.W.; Loh, J.J.M.; Cheney, K.L.; Garson, M.J. New sesquiterpenoid isonitriles from three species of phyllidid nudibranchs. Fitoterapia 2018, 126, 69–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwashima, M.; Terada, I.; Iguchi, K.; Yamori, T. New biologically active marine sesquiterpenoid and steroid from the Okinawan sponge of the genus Axinyssa. Chem. Pharm. Bull. 2002, 50, 1286–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulavita, N.K.; De Silva, E.D.; Hagadone, M.R.; Karuso, P.; Scheuer, P.J.; van Duyne, G.D.; Clardy, J. Nitrogenous bisabolene sesquiterpenes from marine invertebrates. J. Org. Chem. 1986, 51, 5136–5139. [Google Scholar] [CrossRef]
- Kitano, Y.; Ito, T.; Suzuki, T.; Nogata, Y.; Shinshima, K.; Yoshimura, E.; Chiba, K.; Tada, M.; Sakaguchi, I. (2002) Synthesis and antifouling activity of 3-isocyanotheonellin and its analogues. J. Chem. Soc. Perkin Trans. 2002, 1, 2251–2255. [Google Scholar] [CrossRef]
- Fusetani, N.; Hirota, H.; Okino, T.; Tomono, Y.; Yoshimura, E. Antifouling activity of isocyanoterpenoids and related compounds isolated from a marine sponge and nudibranchs. J. Nat. Toxins 1996, 5, 249–259. [Google Scholar]
- Wu, Q.; Chen, W.-T.; Li, S.-W.; Ye, J.-Y.; Huan, X.-J.; Gavagnin, M.; Yao, L.-G.; Wang, H.; Miao, Z.-H.; Li, X.-W.; et al. Cytotoxic nitrogenous terpenoids from two South China Sea nudibranchs Phyllidiella pustulosa, Phyllidia coelestis, and their sponge-prey Acanthella cavernosa. Mar. Drugs 2019, 17, 56. [Google Scholar] [CrossRef] [Green Version]
- Wright, A.D. GC-MS and NMR analysis of Phyllidiella pustulosa and one of its dietary sources, the sponge Phakellia carduus. Comp. Biochem. Physiol. 2003, 134A, 307–313. [Google Scholar] [CrossRef]
- Dumdei, E.J.; Flowers, A.E.; Garson, M.J.; Moore, C.J. The biosynthesis of sesquiterpene isocyanides and isothiocyanates in the marine sponge Acanthella cavernosa (Dendy); evidence for dietary transfer to the dorid nudibranch Phyllidiella pustulosa. Comp. Biochem. Physiol. 1997, 118, 1385–1392. [Google Scholar] [CrossRef]
- Manzo, E.; Ciavatta, M.L.; Gavagnin, M.; Mollo, E.; Guo, Y.-W.; Cimino, G. Isocyanide terpene metabolites of Phyllidiella pustulosa, a nudibranch from the South China Sea. J. Nat. Prod. 2004, 67, 1701–1704. [Google Scholar] [CrossRef]
- Shimomura, M.; Miyaoka, H.; Yamada, Y. Absolute configuration of marine diterpenoid kalihinol A. Tetrahedron Lett. 1999, 40, 8015–8017. [Google Scholar] [CrossRef]
- Lyakhova, E.G.; Kolesnikova, S.A.; Kalinovskii, A.I.; Stonik, V.A. Secondary metabolites of the Vietnamese nudibranch mollusc Phyllidiella pustulosa. Chem. Nat. Comp. 2010, 46, 534–538. [Google Scholar] [CrossRef]
- Fisch, K.M.; Hertzer, C.; Böhringer, N.; Wuisan, Z.G.; Schillo, D.; Bara, R.; Kaligis, F.; Wägele, H.; König, G.M.; Schäberle, T.F. The potential of Indonesian heterobranchs found around Bunaken Island for the production of bioactive compounds. Mar. Drugs 2017, 15, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wägele, H.; Ballesteros, M.; Avila, C. Defensive glandular structures in opisthobranch molluscs-from histology to ecology. Oceanogr. Mar. Biol. 2006, 44, 197. [Google Scholar]
- Johnson, R.F.; Gosliner, T.M. Traditional taxonomic groupings mask evolutionary history: A molecular phylogeny and new classification of the chromodorid nudibranchs. PLoS ONE 2012, 7, e33479. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.E.; Walker, R.P.; Wratten, S.J.; Faulkner, D.J. A chemical defense mechanism for the nudibranch Cadlina luteomarginata. Tetrahedron 1982, 38, 1865–1873. [Google Scholar] [CrossRef]
- Faulkner, D.J.; Molinski, T.F.; Andersen, R.J.; Dumdei, E.J.; De Silva, E.D. Geographical variation in defensive chemicals from Pacific coast dorid nudibranchs and some related marine molluscs. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 1990, 97, 233–240. [Google Scholar] [CrossRef]
- Kubanek, J.; Graziani, E.I.; Andersen, R.J. Investigations of terpenoid biosynthesis by the dorid nudibranch Cadlina luteomarginata. J. Org. Chem. 1997, 62, 7239–7246. [Google Scholar] [CrossRef]
- Hellou, J.; Andersen, R.J.; Thompson, J.E. Terpenoids from the dorid nudibranch Cadlina luteomarginata. Tetrahedron 1982, 38, 1875–1879. [Google Scholar] [CrossRef]
- Dumdei, E.J.; Kubanek, J.; Coleman, J.E.; Pika, J.; Andersen, R.J.; Steiner, J.R.; Clardy, J. New terpenoid metabolites from the skin extracts, an egg mass, and dietary sponges of the Northeastern Pacific dorid nudibranch Cadlina luteomarginata. Can. J. Chem. 1997, 75, 773–789. [Google Scholar] [CrossRef] [Green Version]
- Carbone, M.; Gavagnin, M.; Haber, M.; Guo, Y.-W.; Fontana, A.; Manzo, E.; Genta-Jouve, G.; Tsoukatou, M.; Rudman, W.B.; Cimino, G.; et al. Packaging and delivery of chemical weapons: A defensive trojan horse stratagem in Chromodorid nudibranchs. PLoS ONE 2013, 8, e62075. [Google Scholar] [CrossRef] [Green Version]
- Hochlowski, J.E.; Faulkner, D.J. Chemical constituents of the nudibranch Chromodoris marislae. Tetrahedron Lett. 1981, 22, 271–274. [Google Scholar] [CrossRef]
- Schulte, G.R.; Scheuer, P.J. Defense allomones of some marine mollusks. Tetrahedron 1982, 38, 1857–1863. [Google Scholar] [CrossRef]
- Hochlowski, J.E.; Faulkner, D.J.; Matsumoto, G.K.; Clardy, J. Norrisolide, a novel diterpene from the dorid nudibranch Chromodoris norrisi. J. Org. Chem. 1983, 48, 1141–1142. [Google Scholar] [CrossRef]
- Bergquist, P.R.; Bowden, B.F.; Cambie, R.C.; Craw, P.A.; Karuso, P.; Poiner, A.; Taylor, W.C. The constituents of marine sponges. VI. Diterpenoid metabolites of the New Zealand sponge Chelonaplysilla violacea. Aust. J. Chem. 1993, 46, 623–632. [Google Scholar] [CrossRef]
- Okuda, R.K.; Scheuer, P.J. Latrunculin-A, ichthyotoxic constituent of the nudibranch Chromodoris elisabethina. Experientia 1985, 41, 1355–1356. [Google Scholar] [CrossRef]
- Carte, B.; Kernan, M.R.; Barrabee, E.B.; Faulkner, D.J.; Matsumoto, G.K.; Clardy, J. Metabolites of the nudibranch Chromodoris funerea and the singlet oxygen oxidation products of furodysin and furodysinin. J. Org. Chem. 1986, 51, 3528–3532. [Google Scholar] [CrossRef]
- Kimura, J.; Hyosu, M. Two new sesterterpenes from the marine sponge, Coscinoderma mathewsi. Chem. Lett. 1999, 28, 61–62. [Google Scholar] [CrossRef]
- Molinski, T.F.; Faulkner, D.J. Aromatic norditerpenes from the nudibranch Chromodoris macfarlandi. J. Org. Chem. 1986, 51, 2601–2603. [Google Scholar] [CrossRef]
- Molinski, T.F.; Faulkner, D.J.; He, C.H.; Van Duyne, G.D.; Clardy, J. Three new rearranged spongian diterpenes from Chromodoris macfarlandi: Reappraisal of the structures of dendrillolides A and B. J. Org. Chem. 1986, 51, 4564–4567. [Google Scholar] [CrossRef]
- Kakou, Y.; Crews, P.; Bakus, G.J. Dendrolasin and latrunculin A from the Fijian sponge Spongia mycofijiensis and an associated nudibranch Chromodoris lochi. J. Nat. Prod. 1987, 50, 482–484. [Google Scholar] [CrossRef]
- Corley, D.G.; Herb, R.; Moore, R.E.; Scheuer, P.J.; Paul, V.J. Laulimalides. New potent cytotoxic macrolides from a marine sponge and a nudibranch predator. J. Org. Chem. 1988, 53, 3644–3646. [Google Scholar] [CrossRef]
- Kernan, M.R.; Barrabee, E.B.; Faulkner, D.J. Variation of the metabolites of Chromodoris funerea: Comparison of specimens from a Palauan marine lake with those from adjacent waters. Comp. Biochem. Physiol. B Comp. Biochem. 1988, 89, 275–278. [Google Scholar] [CrossRef]
- Bobzin, S.C.; Faulkner, D.J. Diterpenes from the marine sponge Aplysilla polyrhaphis and the dorid nudibranch Chromodoris norrisi. J. Org. Chem. 1989, 54, 3902–3907. [Google Scholar] [CrossRef]
- Dumdei, E.J.; De Silva, E.D.; Andersen, R.J.; Choudhary, M.I.; Clardy, J. Chromodorolide A, a rearranged diterpene with a new carbon skeleton from the Indian ocean nudibranch Chromodoris cavae. J. Am. Chem. Soc. 1989, 111, 2712–2713. [Google Scholar] [CrossRef]
- Cimino, G.; Crispino, A.; Gavagnin, M.; Sodano, G. Diterpenes from the nudibranch Chromodoris luteorosea. J. Nat. Prod. 1990, 53, 102–106. [Google Scholar] [CrossRef]
- de Silva, E.D.; Morris, S.A.; Miao, S.; Dumdei, E.; Andersen, R.J. Terpenoid metabolites from skin extracts of four Sri Lankan Nudibranchs in the Genus Chromodoris. J. Nat. Prod. 1991, 54, 993–997. [Google Scholar] [CrossRef]
- Morris, S.A.; Silva, E.D.D.; Andersen, R.J. Chromodorane diterpenes from the tropical dorid nudibranch Chromodoris cavae. Can. J. Chem. 1991, 69, 768–771. [Google Scholar] [CrossRef]
- Gavagnin, M.; Vardaro, R.R.; Avila, C.; Cimino, G.; Ortea, J. Ichthyotoxic diterpenoids from the Cantabrian nudibranch Chromodoris luteorosea. J. Nat. Prod. 1992, 55, 368–371. [Google Scholar] [CrossRef]
- Chi, Y.; Hashimoto, F.; Nohara, T.; Nakamura, M.; Yoshizawa, T.; Yamashita, M.; Marubayashi, N. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu. Available online: https://www.scienceopen.com/document?vid=294f7cd1-f803-4b53-907a-bc3edf8ab46e (accessed on 11 November 2020).
- Miyamoto, T.; Sakamoto, K.; Amano, H.; Higuchi, R.; Komori, T.; Sasaki, T. Three new cytotoxic sesterterpenoids, inorolide A, B, and C from the nudibranch Chromodoris inornata. Tetrahedron Lett. 1992, 33, 5811–5814. [Google Scholar] [CrossRef]
- Puliti, R.A.; Gavagnin, M.A.; Cimino, G.U.; Mattia, C.A.; Mazzarella, L.E. Structure of chelonaplysin C: A spongian diterpenoid from nudibranch Chromodoris luteorosea. Acta Crystallogr. C 1992, 48, 2145–2147. [Google Scholar] [CrossRef]
- Pika, J.; Faulkner, D.J. Unusual chlorinated homo-diterpenes from the South African nudibranch Chromodoris hamiltoni. Tetrahedron 1995, 51, 8189–8198. [Google Scholar] [CrossRef]
- Miyamoto, T.; Sakamoto, K.; Arao, K.; Komori, T.; Higuchi, R.; Sasaki, T. Dorisenones, cytotoxic spongian diterpenoids, from the nudibranch Chromodoris obsoleta. Tetrahedron 1996, 52, 8187–8198. [Google Scholar] [CrossRef]
- McPhail, K.L.; Davies-Coleman, M.T. New spongiane diterpenes from the East African nudibranch Chromodoris hamiltoni. Tetrahedron 1997, 53, 4655–4660. [Google Scholar] [CrossRef]
- Miyamoto, T.; Sakamoto, K.; Amano, H.; Arakawa, Y.; Nagarekawa, Y.; Komori, T.; Higuchi, R.; Sasaki, T. New cytotoxic sesterterpenoids from the nudibranch Chromodoris inornata. Tetrahedron 1999, 55, 9133–9142. [Google Scholar] [CrossRef]
- Karuso, P.; Scheuer, P.J. Natural products from three nudibranchs: Nembrotha kubaryana, Hypselodoris infucata and Chromodoris petechialis. Molecules 2002, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Yong, K.W.; Salim, A.A.; Garson, M.J. New oxygenated diterpenes from an Australian nudibranch of the genus Chromodoris. Tetrahedron 2008, 64, 6733–6738. [Google Scholar] [CrossRef]
- Uddin, M.H.; Otsuka, M.; Muroi, T.; Ono, A.; Hanif, N.; Matsuda, S.; Higa, T.; Tanaka, J. Deoxymanoalides from the nudibranch Chromodoris willani. Chem. Pharm. Bull. 2009, 57, 885–887. [Google Scholar] [CrossRef] [Green Version]
- Agena, M.; Tanaka, C.; Hanif, N.; Yasumoto-Hirose, M.; Tanaka, J. New cytotoxic spongian diterpenes from the sponge Dysidea cf. arenaria. Tetrahedron 2009, 65, 1495–1499. [Google Scholar] [CrossRef]
- Suciati, S.; Lambert, L.K.; Garson, M.J. Structures and anatomical distribution of oxygenated diterpenes in the Australian nudibranch Chromodoris reticulata. Aust. J. Chem. 2011, 64, 757–765. [Google Scholar] [CrossRef]
- Katavic, P.L.; Jumaryatno, P.; Hooper, J.N.; Blanchfield, J.T.; Garson, M.J. Oxygenated terpenoids from the Australian sponges Coscinoderma matthewsi and Dysidea sp., and the nudibranch Chromodoris albopunctata. Aust. J. Chem. 2012, 65, 531–538. [Google Scholar] [CrossRef]
- Katavic, P.L.; Jumaryatno, P.; Hooper, J.N.; Blanchfield, J.T.; Garson, M.J. Note of clarification about: Oxygenated Terpenoids from the Australian Sponges Coscinoderma matthewsi and Dysidea sp., and the Nudibranch Chromodoris albopunctata. Aust. J. Chem. 2013, 66, 1461. [Google Scholar]
- Cheney, K.L.; White, A.; Mudianta, I.W.; Winters, A.E.; Quezada, M.; Capon, R.J.; Mollo, E.; Garson, M.J. Choose your weaponry: Selective storage of a single toxic compound, latrunculin A, by closely related nudibranch molluscs. PLoS ONE 2016, 11, e0145134. [Google Scholar] [CrossRef] [Green Version]
- Schulte, G.; Scheuer, P.J.; McConnell, O.J. Two furanosesquiterpene marine metabolites with antifeedant properties. Helv. Chim. Acta 1980, 63, 2159–2167. [Google Scholar] [CrossRef]
- Fontana, A.; Ciavatta, M.L.; D’Souza, L.; Mollo, E.; Naik, C.G.; Parameswaran, P.S.; Wahidulla, S.; Cimino, G. Selected chemo-ecological studies of marine opisthobranchs from Indian coasts. J. Indian Inst. Sci. 2001, 81, 403–415. [Google Scholar]
- Tanaka, J.; Higa, T. The absolute configuration of kurospongin a new furanoterpene from a marine sponge, Spongia sp. Tetrahedron 1988, 44, 2805–2810. [Google Scholar] [CrossRef]
- Kashman, Y.; Croweiss, A.; Shmueli, U. Latrunculin, a new 2-thiazolidinone macrolide from the marine sponge Latrunculia magnifica. Tetrahedron Lett. 1980, 21, 3629–3632. [Google Scholar] [CrossRef]
- Kashman, Y.; Croweiss, A.; Kidor, R.; Blasberger, D.; Carmelya, S. Latrunculins: NMR study, two new toxins and a synthetic approach. Tetrahedron 1985, 41, 1905–1914. [Google Scholar] [CrossRef]
- Guo, Y.W. Chemical Studies of the Novel Bioactive Secondary Metabolites from the Benthic Invertebrates: Isolation and Structure Characterization. Ph.D. Thesis, University of Naples, Naples, Italy, 1997. [Google Scholar]
- Mebs, D. Chemical defense of a dorid nudibranch, Glossodoris quadricolor, from the Red Sea. J. Chem. Ecol. 1985, 11, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Jefford, C.W.; Bernardinelli, G.; Tanaka, J.I.; Higa, T. Structures and absolute configurations of the marine toxins, latrunculin A and laulimalide. Tetrahedron Lett. 1996, 37, 159–162. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Wang, Y. Total synthesis of (−)-laulimalide. J. Am. Chem. Soc. 2000, 122, 11027–11028. [Google Scholar] [CrossRef]
- Gollner, A.; Mulzer, J. Total synthesis of neolaulimalide and isolaulimalide. Organic Lett. 2008, 10, 4701–4704. [Google Scholar] [CrossRef] [PubMed]
- Manzo, E.; Gavagnin, M.; Somerville, M.J.; Mao, S.-C.; Ciavatta, M.L.; Mollo, E.; Schupp, P.J.; Garson, M.J.; Guo, V.; Cimino, G. Chemistry of Glossodoris nudibranchs: Specific occurrence of 12-keto scalaranes. J. Chem. Ecol. 2007, 33, 2325–2336. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.D.; Paul, V.J. Chemical defenses of three Glossodoris nudibranchs and their dietary Hyrtios sponges. Mar. Ecol. Progr. Ser. 1991, 77, 221–232. [Google Scholar] [CrossRef]
- Avila, C.; Paul, V.J. Chemical ecology of the nudibranch Glossodoris pallida: Is the location of diet-derived metabolites important for defense? Mar. Ecol. Progr. Ser. 1997, 150, 171–180. [Google Scholar] [CrossRef]
- Winters, A.E.; White, A.M.; Dewi, A.S.; Mudianta, I.W.; Wilson, N.G.; Forster, L.C.; Garson, M.J.; Cheney, K.L. Distribution of defensive metabolites in nudibranch molluscs. J. Chem. Ecol. 2018, 44, 384–396. [Google Scholar] [CrossRef]
- Zhukova, N.V. Lipids and fatty acids of nudibranch molluscs: Potential sources of bioactive compounds. Mar. Drugs 2014, 12, 4578–4592. [Google Scholar] [CrossRef] [Green Version]
- Li, X.L.; Li, S.W.; Yao, L.G.; Mollo, E.; Gavagnin, M.; Guo, Y.W. The chemical and chemo-ecological studies on Weizhou nudibranch Glossodoris atromarginata. Magn Reson Chem. 2019, 1–7. [Google Scholar] [CrossRef]
- Somerville, M.J.; Mollo, E.; Cimino, G.; Rungprom, W.; Garson, M.J. Spongian diterpenes from Australian nudibranchs: An anatomically guided chemical study of Glossodoris atromarginata. J. Nat. Prod. 2007, 70, 1836. [Google Scholar] [CrossRef] [Green Version]
- Yong, K.W.; Mudianta, I.W.; Cheney, K.L.; Mollo, E. : Blanchfield, J.T.; Garson, M.J. Isolation of norsesterterpenes and spongian diterpenes from Dorisprismatica (=Glossodoris) atromarginata. J. Nat. Prod. 2015, 78, 421–430. [Google Scholar] [CrossRef]
- Fontana, A.; Mollo, E.; Ortea, J.; Gavagnin, M.; Cimino, G. Scalarane and homoscalarane compounds from the nudibranchs Glossodoris sedna and Glossodoris dalli: Chemical and biological properties. J. Nat. Prod. 2000, 63, 527–530. [Google Scholar] [CrossRef]
- Cimino, G.; De Rosa, S.; De Stefano, S.; Sodano, G. The chemical defense of four Mediterranean nudibranchs. Comp. Biochem. Physiol. B Comp. Biochem. 1982, 73, 471–474. [Google Scholar] [CrossRef]
- Forster, L.C.; Winters, A.E.; Cheney, K.L.; Dewapriya, P.; Capon, R.J.; Garson, M.J. Spongian-16-one diterpenes and their anatomical distribution in the Australian nudibranch Goniobranchus collingwoodi. J. Nat. Prod. 2017, 80, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Mudianta, W.; White, A.M.; Suciati, P.L.K.; Krishnaraj, R.R.; Winters, A.E.; Mollo, E.; Cheney, K.L.; Garson, M.J. Chemoecological studies on marine natural products: Terpene chemistry from marine mollusks. Pure Appl. Chem. 2014, 86, 995–1002. [Google Scholar] [CrossRef] [Green Version]
- Winters, A.E.; White, A.M.; Cheney, K.L.; Garson, M.J. Geographic variation in diterpene-based secondary metabolites and level of defence in an aposematic nudibranch, Goniobranchus splendidus. J. Moll. Stud. 2019, 85, 133–142. [Google Scholar] [CrossRef]
- Winters, A.E.; Green, N.F.; Wilson, N.G.; How, M.J.; Garson, M.J.; Marshall, N.J.; Cheney, K.L. Stabilizing selection on individual pattern elements of aposematic signals. Proc. R. Soc. B 2017, 284, 20170926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, A.M.; Dewi, A.S.; Cheney, K.L.; Winters, A.E.; Blanchfield, J.T.; Garson, M.J. Oxygenated diterpenes from the Indo-Pacific nudibranchs Goniobranchus splendidus and Ardeadoris egretta. Nat. Prod. Commun. 2016, 11, 921–924. [Google Scholar] [CrossRef] [Green Version]
- Hirayama, Y.; Katavic, P.L.; White, A.M.; Pierens, G.K.; Lambert, L.K.; Winters, A.E.; Kigoshi, H.; Kita, M.; Garson, M.J. New cytotoxic norditerpenes from the Australian nudibranchs Goniobranchus splendidus and Goniobranchus daphne. Aust. J. Chem. 2016, 69, 136–144. [Google Scholar] [CrossRef]
- Mudianta, I.W.; White, A.M.; Garson, M.J. Oxygenated Terpenes from Indo-Pacific nudibranchs: Scalarane sesterterpenes from Glossodoris hikuerensis and 12-Acetoxy dendrillolide A from Goniobranchus albonares. Nat. Prod. Commun. 2015, 10, 865–868. [Google Scholar] [CrossRef] [Green Version]
- White, A.M.; Pierens, G.K.; Forster, L.C.; Winters, A.E.; Cheney, K.L.; Garson, M.J. Rearranged diterpenes and norditerpenes from three Australian Goniobranchus mollusks. J. Nat. Prod. 2016, 79, 477–483. [Google Scholar] [CrossRef]
- Mollo, E.; Gavagnin, M.; Carbone, M.; Guo, Y.-W.; Cimino, G. Chemical studies on Indopacific Ceratosoma nudibranchs illuminate the protective role of their dorsal horn. Chemoecology 2005, 15, 31–36. [Google Scholar] [CrossRef]
- Cimino, G.; De Stefano, S.; Guerriero, A.; Minale, L. Furanosesquiterpenoids in sponges-III. Pallescensins AD from Disidea pallescens: New skeletal types. Tetrahedron Lett. 1975, 16, 1425–1428. [Google Scholar] [CrossRef]
- Kazlauskas, R.; Murphy, P.T.; Wells, R.J.; Daly, J.J.; Schönholzer, P. Two sesquiterpene furans with new carbocyclic ring systems and related thiol acetates from a species of the sponge genus Dysidea. Tetrahedron Lett. 1978, 19, 4951–4954. [Google Scholar] [CrossRef]
- Cameron, G.M.; Stapleton, B.L.; Simonsen, S.M.; Brecknell, D.J.; Garson, M.J. New sesquiterpene and brominated metabolites from the tropical marine sponge Dysidea sp. Tetrahedron 2000, 56, 5247–5252. [Google Scholar] [CrossRef]
- Charles, C.; Braekman, J.C.; Daloze, D.; Tursch, B.; Declercq, J.P.; Germain, G.; Van Meerssche, M. Chemical studies of marine invertebrates. XXXIV. Herbadysidolide and herbasolide, two unusual sesquiterpenoids from the sponge Dysidea herbacea. Bull. Soc. Chim. Belg. 1978, 87, 481–486. [Google Scholar] [CrossRef]
- Fontana, A.; Avila, C.; Martinez, E.; Ortea, J.; Trivellone, E.; Cimino, G. Defensive allomones in three species of Hypselodoris (gastropoda: Nudibranchia) from the Cantabrian sea. J. Chem. Ecol. 1993, 19, 339–356. [Google Scholar] [CrossRef]
- Hochlowski, J.E.; Walker, R.P.; Ireland, C.; Faulkner, D.J. Metabolites of four nudibranchs of the genus Hypselodoris. J. Org. Chem. 1982, 47, 88–91. [Google Scholar] [CrossRef]
- Grode, S.H.; Cardellina, J.H. Sesquiterpenes from the sponge Dysidea etheria and the nudibranch Hypselodoris zebra. J. Nat. Prod. 1984, 47, 76–83. [Google Scholar] [CrossRef]
- García-Gómez, J.C.; Cimino, G.; Medina, A. Studies on the defensive behaviour of Hypselodoris species (Gastropoda: Nudibranchia): Ultrastructure and chemical analysis of mantle dermal formations (MDFs). Mar. Biol. 1990, 106, 245–250. [Google Scholar] [CrossRef]
- Avila, C.; Cimino, G.; Fontana, A.; Gavagnin, M.; Ortea, J.; Trivellone, E. Defensive strategy of two Hypselodoris nudibranchs from Italian and Spanish coasts. J. Chem. Ecol. 1991, 17, 625–636. [Google Scholar] [CrossRef]
- Cimino, G.; Fontana, A.; Giménez, F.; Marin, A.; Mollo, E.; Trivellone, E.; Zubia, E. Biotransformation of a dietary sesterterpenoid in the Mediterranean nudibranch Hypselodoris orsini. Experientia 1993, 49, 582–586. [Google Scholar] [CrossRef]
- Fontana, A.; Trivellone, E.; Mollo, E.; Cimino, G.; Avila, C.; Martinez, E.; Ortea, J. Further chemical studies of Mediterranean and Atlantic Hypselodoris nudibranchs: A new furanosesquiterpenoid from Hypsdodoris webbi. J. Nat. Prod. 1994, 57, 510–513. [Google Scholar] [CrossRef]
- Haber, M.; Cerfeda, S.; Carbone, M.; Calado, G.; Gaspar, H.; Neves, R.; Maharajan, V.; Cimino, G.; Gavagnin, M.; Ghiselin, M.T.; et al. Coloration and defense in the nudibranch gastropod Hypselodoris fontandraui. Biol. Bull. 2010, 218, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Da Cruz, J.F.; Gaspar, H.; Calado, G. Turning the game around: Toxicity in a nudibranch-sponge predator-prey association. Chemoecology 2012, 22, 47–53. [Google Scholar] [CrossRef]
- Pereira, F.R.; Berlinck, R.G.S.; Rodrigues Filho, E.; Veloso, K.; Ferreira, A.G.; Padula, V. Metabólitos secundários dos nudibrânquios Tambja stegosauriformis, Hypselodoris lajensis e Okenia zoobotryon e dos briozoários Zoobotryon verticillatum e Bugula dentata da costa do Brasil. Quim. Nova 2012, 35, 2194–2201. [Google Scholar] [CrossRef] [Green Version]
- Cimino, G.; De Stefano, S.; Minale, L.; Trivellone, E. Furanosesquiterpenoids in sponges-V: Spiniferins from Pleraplysilla spinifera. Tetrahedron Lett. 1975, 16, 3727–3730. [Google Scholar] [CrossRef]
- Mudianta, I.W.; Challinor, V.L.; Winters, A.E.; Cheney, K.L.; De Voss, J.J.; Garson, M.J. Synthesis and determination of the absolute configuration of (−)-(5R, 6Z)-dendrolasin-5-acetate from the nudibranch Hypselodoris jacksoni. Beilstein J. Org. Chem. 2013, 9, 2925–2933. [Google Scholar] [CrossRef] [Green Version]
- Avila, C. Substancias Naturales de Moluscos Opistobranquios: Estudio de su Estructura, Origen y Función en Ecosistemas Bentónicos. Ph.D. Thesis, University of Barcelona, Barcelona, Catalonia, Spain, 1993. [Google Scholar]
- Avila, C.; Durfort, M. Histology of epithelia and mantle glands of selected species of doridacean mollusks with chemical defensive strategies. Veliger 1996, 39, 148–163. [Google Scholar]
- Gaspar, H.; Rodrigues, A.I.; Calado, G. Comparative study of chemical defences from two allopatric north Atlantic subspecies of Hypselodoris picta (Mollusca: Opisthobranchia). Açoreana 2009, 6, 137–143. [Google Scholar]
- McPhail, K.L.; Davies-Coleman, M.T.; Coetzee, P. A new furanosesterterpene from the South African nudibranch Hypselodoris capensis and a Dictyoceratida sponge. J. Nat. Prod. 1998, 61, 961–964. [Google Scholar] [CrossRef]
- Mudianta, W.I.; Martiningsih, N.W.; Dodik Prasetia, I.N.; Nursid, M. Bioactive terpenoid from the balinese nudibranch Hypselodoris infucata. Indones. J. Pharm. 2016, 27, 104–110. [Google Scholar] [CrossRef]
- Guella, G.; Mancini, I.; Guerriero, A.; Pietra, F. New furano-sesquiterpenoids from Mediterranean sponges. Helv. Chim. Acta 1985, 68, 1276–1282. [Google Scholar] [CrossRef]
- Fontana, A.; Muniaín, C.; Cimino, G. First chemical study of patagonian nudibranchs: A new seco-11, 12-spongiane, tyrinnal, from the defensive organs of Tyrinna nobilis. J. Nat. Prod. 1998, 61, 1027–1029. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, S.; Fusetani, N.; Hashimoto, K.; Koseki, K.; Noma, M. Bioactive marine metabolites. J. Ame. Chem. Soc. 1986, 13, 847–849. [Google Scholar] [CrossRef]
- Pawlik, J.R.; Kernan, M.R.; Molinski, T.F.; Harper, M.K.; Faulkner, D.J. Defensive chemicals of the Spanish dancer nudibranch Hexabranchus sanguineus and its egg ribbons: Macrolides derived from a sponge diet. J. Exp. Mar. Biol. Ecol. 1988, 119, 99–109. [Google Scholar] [CrossRef]
- Dalisay, D.S.; Rogers, E.W.; Edison, A.S.; Molinski, T.F. Trisoxazole macrolides and thiazole-containing cyclic peptides from the nudibranch Hexabranchus sanguineus. J. Nat. Prod. 2009, 72, 732–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsunaga, S.; Fusetani, N.; Hashimoto, K.; Koseki, K.; Noguchi, H.; Noma, M.; Sankawa, U. Bioactive marine metabolites, part 25. Further kabiramides and halichondramides cytotoxic peptides from Hexabranchus egg masses. J. Org. Chem. 1989, 54, 1360–1363. [Google Scholar] [CrossRef]
- Kernan, M.R.; Molinski, T.F.; Faulkner, D.J. Macrocyclic antifungal metabolites from the Spanish dancer nudibranch Hexabranchus sanguineus and sponges of the genus Halichondria. J. Org. Chem. 1988, 53, 5014–5020. [Google Scholar] [CrossRef]
- Roesener, J.A.; Scheuer, P.J. Ulapualide A and B, extraordinary antitumor macrolides from nudibranch eggmasses. J. Am. Chem. Soc. 1986, 108, 846–847. [Google Scholar] [CrossRef]
- Carté, B.; Faulkner, D.J. Defensive metabolites from three nembrothid nudibranchs. J. Org. Chem. 1983, 48, 2314–2318. [Google Scholar] [CrossRef]
- Granato, A.C.; de Oliveira, J.H.; Seleghim, M.H.; Berlinck, R.G.; Macedo, M.L.; Ferreira, A.G.; Rocha, R.M.D.; Hajdu, E.; Peixinho, S.; Pessoa, C.O.; et al. Produtos naturais da ascidia Botrylloides giganteum, das esponjas Verongula gigantea, Ircinia felix, Cliona delitrix e do nudibrânquio Tambja eliora, da costa do Brasil. Quim. Nova 2005, 28, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Blackman, A.J.; Li, C.P. New tambjamine alkaloids from the marine bryozoan Bugula dentata. Aust. J. Chem. 1994, 47, 1625–1629. [Google Scholar] [CrossRef]
- Paul, V.; Lindquist, N.; Fenical, W. Chemical defenses of the tropical ascidian Atapozoa sp. and its nudibranch predators Nembrotha spp. Mar. Ecol. Prog. Ser. 1990, 59, 109–111. [Google Scholar] [CrossRef]
- Lindquist, N.; Fenical, W. New tamjamine class alkaloids from the marine ascidian Atapozoa sp. and its nudibranch predators. Origin of the tambjamines in Atapozoa. Experientia 1991, 47, 504–506. [Google Scholar] [CrossRef]
- Carbone, M.; Irace, C.; Costagliola, F.; Castelluccio, F.; Villani, G.; Calado, G.; Padula, V.; Cimino, G.; Cervera, J.L.; Santamaria, R.; et al. A new cytotoxic tambjamine alkaloid from the Azorean nudibranch Tambja ceutae. Bioorg. Med. Chem. Lett. 2010, 20, 2668–2670. [Google Scholar] [CrossRef] [PubMed]
- Cronin, G.; Hay, M.; Fenical, W.; Lindquist, N. Distribution, density, and sequestration of host chemical defenses by the specialist nudibranch Tritonia hamnerorum found at high densities on the sea fan Gorgonia ventalina. Mar. Ecol. Prog. Ser. 1995, 119, 177–189. [Google Scholar] [CrossRef] [Green Version]
- McClintock, J.B.; Bryan, P.J.; Slattery, M.; Baker, B.J.; Yoshida, W.Y.; Hamann, M.; Heine, J.N. Chemical ecology of three Antarctic gastropods. Antarct. J. 1994, 29, 151–154. [Google Scholar]
- McClintock, J.B.; Baker, B.J.; Slattery, M.; Heine, J.N.; Bryan, P.J.; Yoshida, W.; Davies-Coleman, M.T.; Faulkner, D.J. Chemical defense of common Antarctic shallow-water nudibranch Tritoniella belli Eliot (Mollusca: Tritonidae) and its prey, Clavularia frankliniana Rouel (Cnidaria: Octocorallia). J. Chem. Ecol. 1994, 20, 3361–3372. [Google Scholar] [CrossRef]
- Bryan, P.J.; McClintock, J.B.; Baker, B.J. Population biology and antipredator defenses of the shallow-water Antarctic nudibranch Tritoniella belli. Mar. Biol. 1998, 132, 259–265. [Google Scholar] [CrossRef]
- McClintock, J.B.; Baker, B.J. Palatability and chemical defense in the eggs, embryos and larvae of shallow-water Antarctic marine invertebrates. Mar. Ecol. Progr. Ser. 1997, 154, 121–131. [Google Scholar] [CrossRef]
- Ciavatta, M.L.; Manzo, E.; Mollo, E.; Mattia, C.A.; Tedesco, C.; Irace, C.; Guo, Y.-W.; Li, X.-B.; Cimino, G.; Gavagnin, M. Tritoniopsins A–D, cladiellane-based diterpenes from the south china sea nudibranch Tritoniopsis elegans and its prey Cladiella krempfi. J. Nat. Prod. 2011, 74, 1902–1907. [Google Scholar] [CrossRef]
- Affeld, S.; Wägele, H.; Avila, C.; Kehraus, S.; König, G.M. Distribution of homarine in some Opisthobranchia (Gastropoda: Mollusca). Bonn. Zool. Beitr. 2007, 55, 181–190. [Google Scholar]
- McClintock, J.B.; Baker, B.J.; Hamann, M.T.; Yoshida, W.; Slattery, M.; Heine, J.N.; Bryan, P.J.; Jayatilake, G.S.; Moon, B.H. Homarine as a feeding deterrent in common shallow-water antarctic lamellarian gastropod Marseniopsis mollis: A rare example of chemical defense in a marine prosobranch. J. Chem. Ecol. 1994, 20, 2539–2549. [Google Scholar] [CrossRef] [PubMed]
- Cimino, G.; Crispino, A.; Di Marzo, V.; Sodano, G.; Spinella, A.; Villani, G. A marine mollusc provides the first example of in vivo storage of prostaglandins: Prostaglandin-1, 15-lactones. Experientia 1991, 47, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Cimino, G.; Spinella, A.; Sodano, G. Naturally occurring prostaglandin-1, 15-lactones. Tetrahedron Lett. 1989, 30, 3589–3592. [Google Scholar] [CrossRef]
- Cimino, G.; Crispino, A.; Di Marzo, V.; Spinella, A.; Sodano, G. Prostaglandin 1, 15-lactones of the F series from the nudibranch mollusk Tethys fimbria. J. Org. Chem. 1991, 56, 2907–2911. [Google Scholar] [CrossRef]
- Di Marzo, V.; Cimino, G.; Crispino, A.; Minardi, C.; Sodano, G.; Spinella, A. A novel multifunctional metabolic pathway in a marine mollusc leads to unprecedented prostaglandin derivatives (prostaglandin 1, 15-lactones). Biochem. J. 1991, 273, 593–600. [Google Scholar] [CrossRef] [Green Version]
- Cutignano, A.; Moles, J.; Avila, C.; Fontana, A. Granuloside, a unique linear homosesterterpene from the Antarctic nudibranch Charcotia granulosa. J. Nat. Prod. 2015, 78, 1761–1764. [Google Scholar] [CrossRef]
- Moles, J.; Wägele, H.; Cutignano, A.; Fontana, A.; Avila, C. Distribution of granuloside in the Antarctic nudibranch Charcotia granulosa (Gastropoda: Heterobranchia: Charcotiidae). Mar. Biol. 2016, 163, 54–65. [Google Scholar] [CrossRef]
- Putz, A.; König, G.M.; Wägele, H. Defensive strategies of Cladobranchia (Gastropoda, Opisthobranchia). Nat. Prod. Rep. 2010, 27, 1386–1402. [Google Scholar] [CrossRef]
- Affeld, S.; Kehraus, S.; Wägele, H.; König, G.M. Dietary derived sesquiterpenes from Phyllodesmium lizardensis. J. Nat. Prod. 2009, 72, 298–300. [Google Scholar] [CrossRef]
- Coll, J.; Bowden, B.; Tapiolas, D.; Willis, R.; Djura, P.; Streamer, M.; Trott, L. Studies of Australian soft corals XXXV: The terpenoid chemistry of soft corals and its implications. Tetrahedron 1985, 41, 1085–1092. [Google Scholar] [CrossRef]
- Slattery, M.; Avila, C.; Starmer, J.; Paul, V.J. A sequestered soft coral diterpene in the aeolid nudibranch Phyllodesmium guamensis. J. Exp. Mar. Biol. Ecol. 1998, 226, 33–49. [Google Scholar] [CrossRef]
- Edrada, R.A.; Wray, V.; Witte, L.; van Ofwegen, L.; Proksch, P. Bioactive terpenes from the soft coral Heteroxenia sp. from Mindoro, Philippines. Z. Naturforsch. 2000, 55, 82–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogdanov, A.; Kehraus, S.; Bleidissel, S.; Preisfeld, G.; Schillo, D.; Piel, J.; Brachmann, A.O.; Wägele, H.; König, G.M. Defense in the Aeolidoidean Genus Phyllodesmium (Gastropoda). J. Chem. Ecol. 2014, 40, 1013–1024. [Google Scholar] [CrossRef]
- Mao, S.C.; Gavagnin, M.; Mollo, E.; Guo, Y.-W. A new rare asteriscane sesquiterpene and other related derivatives from the Hainan aeolid nudibranch Phyllodesmium magnum. Biochem. System. Ecol. 2011, 39, 408–411. [Google Scholar] [CrossRef]
- Bogdanov, A.; Hertzer, C.; Kehraus, S.; Nietzer, S.; Rohde, S.; Schupp, P.J.; Wägele, H.; König, G.M. Defensive diterpene from the Aeolidoidean Phyllodesmium longicirrum. J. Nat. Prod. 2016, 79, 611–615. [Google Scholar] [CrossRef]
- Bogdanov, A.; Hertzer, C.; Kehraus, S.; Nietzer, S.; Rohde, S.; Schupp, P.J.; Wägele, H.; König, G.M. Secondary metabolome and its defensive role in the aeolidoidean Phyllodesmium longicirrum (Gastropoda, Heterobranchia, Nudibranchia). Beilstein J. Org. Chem. 2017, 13, 502–519. [Google Scholar] [CrossRef] [Green Version]
- Gillette, R.; Saeki, M.; Huang, R.C. Defensive mechanisms in notaspid snails: Acid humor and evasiveness. J. Exp. Biol. 1991, 156, 335–347. [Google Scholar]
- Willan, R.C. A review of the diets in the Notaspidea (Mollusca: Opisthobranchia). J. Malacol. Soc. Aust. 1984, 6, 125–142. [Google Scholar] [CrossRef]
- Taboada, S.; Núñez-Pons, L.; Avila, C. Feeding repellence of Antarctic and sub-Antarctic benthic invertebrates against the omnivorous sea star Odontaster validus Koehler, 1906. Pol. Biol. 2013, 36, 13–25. [Google Scholar] [CrossRef]
- Moles, J.; Núñez-Pons, L.; Taboada, S.; Figuerola, B.; Cristobo, J.; Avila, C. Anti-predatory chemical defences in Antarctic benthic fauna. Mar. Biol. 2015, 162, 1813–1821. [Google Scholar] [CrossRef]
- Andersen, R.J.; Faulkner, D.J. Antibiotics from marine organisms of the Gulf of California. In Proceedings of the Abstracts from 3rd Conference on Food and Drugs from the Sea, Kingston, RI, USA, 20–23 August 1972; pp. 111–115. [Google Scholar]
- Teeyapant, R.; Kreis, P.; Wray, V.; Witte, L.; Proksch, P. Brominated secondary compounds from the marine sponge Verongia aerophoba and the sponge feeding gastropod Tylodina perversa. Z. Naturforsch. 1993, 48, 630–644. [Google Scholar] [CrossRef]
- Gotsbacher, M.P.; Karuso, P. New antimicrobial bromotyrosine analogues from the sponge Pseudoceratina purpurea and its predator Tylodina corticalis. Mar. Drugs 2015, 13, 1389–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebel, R.; Marin, A.; Proksch, P. Organ-specific distribution of dietary alkaloids in the marine opisthobranch Tylodina perversa. Biochem. System. Ecol. 1999, 27, 769–777. [Google Scholar] [CrossRef]
- Thoms, C.; Wolff, M.; Padmakumar, K.; Ebel, R.; Proksch, P. Chemical defense of Mediterranean sponges Aplysina cavernicola and Aplysina aerophoba. Z. Naturforsch. 2004, 59, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Becerro, M.A.; Turon, X.; Uriz, M.J.; Templado, J. Can a sponge feeder be an herbivore? Tylodina perversa (Gastropoda) feeding on Aplysina aerophoba. Biol. J. Linn. Soc. 2003, 78, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Cimino G, De Rosa S, De Stefano S, Spinella A, Sodano G The zoochrome of the sponge Verongia aerophoba (“Uranidine”). Tetrahedron Lett. 1984, 25, 2925–2928. [CrossRef]
- Cimino, G.; Sodano, G. Transfer of sponge secondary metabolites to predators. In Sponges in Time and Space: Biology, Chemistry, Paleontology; van Soest, R.W.M., van Kempen, T.M.G., Braekman, J.-C., Eds.; AA: Balkema, Rotterdam, 1994; pp. 459–472. [Google Scholar]
- Thompson, T.E. Defensive acid-secretion in marine gastropods. J. Mar. Biolog. Assoc. 1960, 39, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Thompson, T.E. Investigation of the acidic allomone of the gastropod mollusc Philine aperta by means of ion chromatography and histochemical localisation of sulphate and chloride ions. J. Mollus. Stud. 1986, 52, 38–44. [Google Scholar] [CrossRef]
- Moles, J.; Avila, C.; Malaquias, M.A.E. Unmasking Antarctic mollusc lineages: Novel evidence from philinoid snails (Gastropoda: Cephalaspidea). Cladistics 2019, 35, 487–513. [Google Scholar] [CrossRef]
- Neves, R.; Gaspar, H.; Calado, G. Does a shell matter for defence? Chemical deterrence in two cephalaspidean gastropods with calcified shells. J. Mollus. Stud. 2009, 75, 127–131. [Google Scholar] [CrossRef]
- Fontana, A.; Cutignano, A.; Giordano, A.; Coll, A.D.; Cimino, G. Biosynthesis of aglajnes, polypropionate allomones of the opisthobranch mollusc Bulla striata. Tetrahedron Lett. 2004, 45, 6847–6850. [Google Scholar] [CrossRef]
- Cimino, G.; Sodano, G.; Spinella, A.; Trivellone, E. Aglajne-1, a polypropionate metabolite from the opisthobranch mollusk Aglaja depicta. Tetrahedron Lett. 1985, 26, 3389–3392. [Google Scholar] [CrossRef]
- Cimino, G.; Sodano, G.; Spinella, A. New propionate-derived metabolites from Aglaja depicta and from its prey Bulla striata (opisthobranch mollusks). J. Org. Chem. 1987, 52, 5326–5331. [Google Scholar] [CrossRef]
- Marín, A.; Álvarez, L.A.; Cimino, G.; Spinella, A. Chemical defence in cephalaspidean gastropods: Origin, anatomical location and ecological roles. J. Mollus. Stud. 1999, 65, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Coval, S.J.; Scheuer, P.J. An intriguing C16-alkadienone-substituted 2-pyridine from a marine mollusk. J. Org. Chem. 1985, 50, 3024–3025. [Google Scholar] [CrossRef]
- Coval, S.J.; Schulte, G.R.; Matsumoto, G.K.; Roll, D.M.; Scheuer, P.J. Two polypropionate metabolites from the cephalaspidean mollusk Philinopsis speciosa. Tetrahedron Lett. 1985, 26, 5359–5362. [Google Scholar] [CrossRef]
- Cutignano, A.; Calado, G.; Gaspar, H.; Cimino, G.; Fontana, A. Polypropionates from Bulla occidentalis: Chemical markers and trophic relationships in cephalaspidean molluscs. Tetrahedron Lett. 2011, 52, 4595–4597. [Google Scholar] [CrossRef]
- Nakao, Y.; Yoshida, W.Y.; Scheuer, P.J. Pupukeamide, a linear tetrapeptide from a cephalaspidean mollusk Philinopsis speciosa. Tetrahedron Lett. 1996, 37, 8993–8996. [Google Scholar] [CrossRef]
- Nakao, Y.; Yoshida, W.Y.; Szabo, C.M.; Baker, B.J.; Scheuer, P.J. More peptides and other diverse constituents of the marine mollusk Philinopsis speciosa. J. Org. Chem. 1998, 63, 3272–3280. [Google Scholar] [CrossRef]
- Reese, M.T.; Gulavita, N.K.; Nakao, Y.; Hamann, M.T.; Yoshida, W.Y.; Coval, S.J.; Scheuer, P.J. Kulolide: A cytotoxic depsipeptide from a cephalaspidean mollusk, Philinopsis speciosa. J. Am. Chem. Soc. 1996, 118, 11081–11084. [Google Scholar] [CrossRef]
- Spinella, A.; Álvarez, L.A.; Cimino, G. Predator-prey relationship between Navanax inermis and Bulla gouldiana: A chemical approach. Tetrahedron 1993, 49, 3203–3210. [Google Scholar] [CrossRef]
- Cruz-Rivera, E. Evidence for chemical defence in the Cephalaspidean Nakamigawaia spiralis Kuroda and Habe, 1961. J. Mollus. Stud. 2011, 77, 95–97. [Google Scholar] [CrossRef]
- Poiner, A.; Paul, V.J.; Scheuer, P.J. Kumepaloxane, a rearranged trisnor sesquiterpene from the bubble shell Haminoea cymbalum. Tetrahedron 1989, 45, 617–622. [Google Scholar]
- Chang, E.S. Possible Anti-Predation Properties of the Egg Masses of the Marine Gastropods Dialula sandiegensis, Doris montereyensis and Haminoea virescens (Mollusca, Gastropoda); Friday Harbor Laboratories Student Research Papers; Friday Harbor Laboratories: Washington, DC, USA, 2014; p. 528. [Google Scholar]
- Becerro, M.A.; Starmer, J.A.; Paul, V.J. Chemical defenses of cryptic and aposematic gastropterid molluscs feeding on their host sponge Dysidea granulosa. J. Chem. Ecol. 2006, 32, 1491–1500. [Google Scholar] [CrossRef]
- Pereira, R.B.; Andrade, P.B.; Valentão, P. Chemical diversity and biological properties of secondary metabolites from sea hares of Aplysia genus. Mar. Drugs 2016, 14, 39. [Google Scholar] [CrossRef] [Green Version]
- Ellingson, R.A.; Krug, P.J. Evolution of poecilogony from planktotrophy: Cryptic speciation, phylogeography, and larval development in the gastropod genus Alderia. Evolution 2006, 60, 2293–2310. [Google Scholar] [CrossRef]
- Hunt, B.P.V.; Pakhomov, E.A.; Hosie, G.W.; Siegel, V.; Ward, P.; Bernard, K. Pteropods in Southern Ocean ecosystems. Prog. Oceanogr. 2008, 78, 193–221. [Google Scholar] [CrossRef]
- Jörger, K.M.; Norenburg, J.L.; Wilson, N.G.; Schrödl, M. Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs. BMC Evol. Biol. 2012, 12, 245. [Google Scholar] [CrossRef] [Green Version]
- Kinnel, R.B.; Dieter, R.K.; Meinwald, J.; Van Engen, D.; Clardy, J.; Eisner, T.; Stallard, M.O.; Fenical, W. Brasilenyne and cis-dihydrorhodophytin: Antifeedant medium-ring haloethers from a sea hare (Aplysia brasiliana). PNAS 1979, 76, 3576–3579. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, H.; Muramoto, K.; Goto, R.; Sakai, M.; Endo, Y.; Yamazaki, M. Purification and characterization of an antibacterial and antineoplastic protein secretion of a sea hare, Aplysia juliana. Toxicon 1989, 27, 1269–1277. [Google Scholar] [CrossRef]
- Kamio, M.; Grimes, T.V.; Hutchins, M.H.; van Dam, R.; Derby, C.D. The purple pigment aplysioviolin in sea hare ink deters predatory blue crabs through their chemical senses. Anim. Behav. 2010, 80, 89–100. [Google Scholar] [CrossRef]
- Kamio, M.; Nguyen, L.; Yaldiz, S.; Derby, C.D. How to produce a chemical defense: Structural elucidation and anatomical distribution of aplysioviolin and phycoerythrobilin in the sea hare Aplysia californica. Chem. Biodivers. 2010, 7, 1183–1197. [Google Scholar] [CrossRef] [PubMed]
- Derby, C.D. Escape by inking and secreting: Marine molluscs avoid predators through a rich array of chemicals and mechanisms. Biol. Bull. 2007, 213, 274–289. [Google Scholar] [CrossRef] [Green Version]
- Kicklighter, C.E.; Shabani, S.; Johnson, P.M.; Derby, C.D. Sea hares use novel antipredatory chemical defenses. Curr. Biol. 2005, 15, 549–554. [Google Scholar] [CrossRef] [Green Version]
- Sheybani, A.; Nusnbaum, M.; Caprio, J.; Derby, C.D. Responses of the sea catfish Ariopsis felis to chemical defenses from the sea hare Aplysia californica. J. Exp. Mar. Biol. Ecol. 2009, 368, 153–160. [Google Scholar] [CrossRef]
- Johnson, P.M.; Kicklighter, C.E.; Schmidt, M.; Kamio, M.; Yang, H.; Elkin, D.; Michel, W.C.; Tai, P.C.; Derby, C.D. Packaging of chemicals in the defensive secretory glands of the sea hare Aplysia californica. J. Exp. Biol. 2006, 209, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Nusnbaum, M.; Derby, C.D. Effects of sea hare ink secretion and its escapin-generated components on a variety of predatory fishes. Biol. Bull. 2010, 218, 282–292. [Google Scholar] [CrossRef]
- Kicklighter, C.E.; Derby, C.D. Multiple components in ink of the sea hare Aplysia californica are aversive to the sea anemone Anthopleura sola. J. Exp. Mar. Biol. Ecol. 2006, 334, 256–268. [Google Scholar] [CrossRef]
- Kamio, M.; Ko, K.C.; Zheng, S.; Wang, B.; Collins, S.L.; Gadda, G.; Tai, P.C.; Derby, C.D. The chemistry of escapin: Identification and quantification of the components in the complex mixture generated by an L-amino acid oxidase in the defensive secretion of the sea snail Aplysia californica. Chem. Eur. J. 2009, 15, 1597–1603. [Google Scholar] [CrossRef]
- Pennings, S.C. Multiple factors promoting narrow host range in the sea hare, Aplysia californica. Oecologia 1990, 82, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Ginsburg, D.W.; Paul, V.J. Chemical defenses in the sea hare Aplysia parvula: Importance of diet and sequestration of algal secondary metabolites. Mar. Ecol. Progr. Ser. 2001, 215, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Stierle, D.B.; Wing, R.M.; Sims, J.J. Marine natural products, XI Costatone and costatolide, new halogenated monoterpenes from the red seaweed, Plocamium costatum. Tetrahedron Lett. 1976, 49, 4455–4458. [Google Scholar] [CrossRef]
- Paul, V.J.; Arthur, K.E.; Ritson-Williams, R.; Ross, C.; Sharp, K. Chemical defenses: From compounds to communities. Biol. Bull. 2007, 213, 226–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, Y.; Scheuer, P.J. Aplysiatoxin and debromoaplysiatoxin, constituents of the marine mollusk Stylocheilus longicauda (Quoy and Gaimard, 1824). J. Am. Chem. Soc. 1974, 96, 2245–2246. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Scheuer, P.J. The aplysiatoxins. Pure Appl. Chem. 1975, 41, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Rose, A.F.; Scheuer, P.J.; Springer, J.P.; Clardy, J. Stylocheilamide, an unusual constituent of the sea hare Stylocheilus longicauda. J. Am. Chem. Soc. 1978, 100, 7665–7670. [Google Scholar] [CrossRef]
- Gallimore, W.A.; Galario, D.L.; Lacy, C.; Zhu, Y.; Scheuer, P.J. Two complex proline esters from the sea hare Stylocheilus longicauda. J. Nat. Prod. 2000, 63, 1022–1026. [Google Scholar] [CrossRef]
- Todd, J.S.; Gerwick, W.H. Malyngamide I from the tropical marine cyanobacterium Lyngbya majuscula and the probable structure revision of stylocheilamide. Tetrahedron Lett. 1995, 36, 7837–7840. [Google Scholar] [CrossRef]
- Gallimore, W.A.; Scheuer, P.J. Malyngamides O and P from the sea hare Stylocheilus longicauda. J. Nat. Prod. 2000, 63, 1422–1424. [Google Scholar] [CrossRef]
- Pennings, S.C.; Paul, V.J. Sequestration of dietary secondary metabolites by three species of sea hares: Location, specificity and dynamics. Mar. Biol. 1993, 117, 535–546. [Google Scholar] [CrossRef]
- Paul, V.J.; Pennings, S.C. Diet-derived chemical defenses in the sea hare Stylocheilus longicauda (Quoy et Gaimard 1824). J. Exp. Mar. Biol. Ecol. 1991, 151, 227–243. [Google Scholar] [CrossRef]
- Capper, A.; Cruz-Rivera, E.; Paul, V.J.; Tibbetts, I.R. Chemical deterrence of a marine cyanobacterium against sympatric and non-sympatric consumers. Hydrobiologia 2006, 553, 319–326. [Google Scholar] [CrossRef]
- Gopichand, Y.; Schmitz, F.J. Bursatellin: A new diol dinitrile from the sea hare Bursatella leachii pleii. J. Org. Chem. 1980, 45, 5383–5385. [Google Scholar] [CrossRef]
- Cimino, G.; Gavagnin, M.; Sodano, G.; Spinella, A.; Strazzullo, G. Revised structure of Bursatellin. J. Org. Chem. 1987, 52, 2303–2306. [Google Scholar] [CrossRef]
- Yoshida, W.Y.; Bryan, P.J.; Baker, B.J.; Mcclintock, J.B. Pteroenone: A defensive metabolite of the abducted Antarctic pteropod Clione antarctica. J. Org. Chem. 1995, 60, 780–782. [Google Scholar] [CrossRef]
- Bryan, P.J.; Yoshida, W.Y.; McClintock, J.B.; Baker, B.J. Ecological role for pteroenone, a novel antifeedant from the conspicuous Antarctic pteropod Clione antarctica (Gymnosomata: Gastropoda). Mar. Biol. 1995, 122, 271–277. [Google Scholar]
- McClintock, J.B.; Janssen, J. Pteropod abduction as a chemical defence in a pelagic Antarctic amphipod. Nature 1990, 346, 462–464. [Google Scholar] [CrossRef]
- Gavagnin, M.; Mollo, E.; Montanaro, D.; Ortea, J.; Cimino, G. Chemical studies of Caribbean sacoglossans: Dietary relationships with green algae and ecological implications. J. Chem. Ecol. 2000, 26, 1563–1578. [Google Scholar] [CrossRef]
- Gavagnin, M.; Mollo, E.; Cimino, G.; Ortea, J. A new γ-dihydropyrone-propionate from the Caribbean sascoglossan Tridachia crispata. Tetrahedron Lett. 1996, 37, 4259–4262. [Google Scholar] [CrossRef]
- Gavagnin, M.; Mollo, E.; Castelluccio, F.; Montanaro, D.; Ortea, J.; Cimino, G. A novel dietary sesquiterpene from the marine sacoglossan Tridachia crispata. Nat. Prod. Lett. 1997, 10, 151–156. [Google Scholar] [CrossRef]
- Ireland, C.; Faulkner, D.J. The defensive secretion of the opisthobranch mollusc Onchidella binneyi. Bioorg. Chem. 1978, 7, 125–131. [Google Scholar] [CrossRef]
- Paul, V.J.; Sun, H.H.; Fenical, W. Udoteal, a linear diterpenoid feeding deterrent from the tropical green alga Udotea flabellum. Phytochemistry 1982, 21, 468–469. [Google Scholar] [CrossRef]
- Gavagnin, M.; Spinella, A.; Crispino, A.; Epifanio, R.D.A.; Marn, A.; Cimino, G. Chemical-components of the Mediterranean ascoglossan Thuridilla hopei. Gazz. Chim. Ital. 1993, 123, 205–208. [Google Scholar]
- Carbone, M.; Ciavatta, M.L.; De Rinaldis, G.; Castelluccio, F.; Mollo, E.; Gavagnin, M. Identification of thuridillin-related aldehydes from Mediterranean ascoglossan mollusk Thuridilla hopei. Tetrahedron 2014, 70, 3770–3773. [Google Scholar] [CrossRef]
- Paul, V.; Ciminiello, P.; Fenical, W. Diterpenoid feeding deterrents from the Pacific green-alga Pseudochlorodesmis furcellata. Phytochemistry 1988, 27, 1011–1014. [Google Scholar] [CrossRef]
- Somerville, M.J.; Katavic, P.L.; Lambert, L.K.; Pierens, G.K.; Blanchfield, J.T.; Cimino, G.; Mollo, E.; Gavagnin, M.; Banwell, M.G.; Garson, M.J. Isolation of thuridillins D-F, diterpene metabolites from the Australian sacoglossan mollusk Thuridilla splendens; relative configuration of the epoxylactone ring. J. Nat. Prod. 2012, 75, 1618–1624. [Google Scholar] [CrossRef]
- Hay, M.E.; Duffy, J.E.; Paul, V.J.; Renaud, P.E.; Fenical, W. Specialist herbivores reduce their susceptibility to predation by feeding on the chemically defended seaweed Avrainvillea longicaulis. Limnol. Oceanogr. 1990, 35, 1734–1747. [Google Scholar] [CrossRef] [Green Version]
- Vardaro, R.R.; Di Marzo, V.; Crispino, A.; Cimino, G. Cyercenes, novel polypropionate pyrones from the autotomizing Mediterranean mollusc Cyerce cristallina. Tetrahedron 1991, 47, 5569–5576. [Google Scholar] [CrossRef]
- Di Marzo, V.; Vardaro, R.R.; De Petrocellis, L.; Villani, G.; Minei, R.; Cimino, G. Cyercenes, novel pyrones from the ascoglossan mollusc Cyerce cristallina. Tissue distribution, biosynthesis and possible involvement in defense and regenerative processes. Experientia 1991, 47, 1221–1227. [Google Scholar] [CrossRef]
- Roussis, V.; Pawlik, J.R.; Hay, M.E.; Fenical, W. Secondary metabolites of the chemically rich ascoglossan Cyerce nigricans. Experientia 1990, 49, 327–329. [Google Scholar] [CrossRef]
- Jensen, K.R. Defensive behavior and toxicity of the ascoglossan opisthobranch Mourgona germaineae Marcus. J. Chem. Ecol. 1984, 10, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Högberg, H.E.; Thompson, R.H.; King, T.J. The cymopols, a group of prenylated bromohydroquinones from the green calcareous alga Cymopolia barbata. J. Chem. Soc. Perkin Trans. I 1976, 1, 1696–1701. [Google Scholar] [CrossRef]
- Hamann, M.T.; Otto, C.S.; Scheuer, P.J.; Dunbar, D.C. Kahalalides: Bioactive peptides from a marine mollusk Elysia rufescens and its algal diet Bryopsis sp. J. Org. Chem. 1996, 61, 6594–6600. [Google Scholar] [CrossRef] [PubMed]
- Vardaro, R.R.; Di Marzo, V.; Cimino, G. Placidenes: Cyercene-like polypropionate γ-pyrones from the Mediterranean ascoglossan mollusc Placida dendritica. Tetrahedron Lett. 1992, 33, 2875–2878. [Google Scholar] [CrossRef]
- Gray, C.A.; Davies-Coleman, M.T.; McQuaid, C. Labdane diterpenes from the South African marine pulmonate Trimusculus costatus. Nat. Prod. Lett. 1998, 12, 47–53. [Google Scholar] [CrossRef]
- Manker, D.C.; Faulkner, D.J. Investigation of the role of diterpenes produced by marine pulmonates Trimusculus reticulatus and T. conica. J. Chem. Ecol. 1996, 22, 23–35. [Google Scholar] [CrossRef]
- Díaz-Marrero, A.R.; Dorta, E.; Cueto, M.; Rovirosa, J.; San-Martín, A.; Loyola, A.; Darias, J. Labdane diterpenes with a new oxidation pattern from the marine pulmonate Trimusculus peruvianus. Tetrahedron 2003, 59, 4805–4809. [Google Scholar] [CrossRef]
- Rovirosa, J.; Quezada, E.; San-Martin, A. New diterpene from the mollusc Trimusculus peruvianus. Bol. Soc. Chil. Quim. 1992, 37, 143–145. [Google Scholar]
- Van Wyk, A.W.W.; Gray, C.A.; Whibley, C.E.; Osoniyi, O.; Hendricks, D.T.; Caira-Mino, R.; Davies-Coleman, M.T. Bioactive metabolites from the South African marine mollusk Trimusculus costatus. J. Nat. Prod. 2008, 71, 420–425. [Google Scholar] [CrossRef]
- Wiggering, B.; Neiber, M.T.; Gebauer, K.; Glaubrecht, M. One species, two developmental modes: a case of geographic poecilogony in marine gastropods. BMC Evol. Biol. 2020, 20, 76. [Google Scholar] [CrossRef] [PubMed]
- Manker, D.C.; Garson, M.J.; Faulkner, D.J. De novo biosynthesis of polypropionate metabolites in the marine pulmonate Siphonaria denticulata. J. Chem. Soc. Chem. Commun. 1988, 16, 1061–1062. [Google Scholar] [CrossRef]
- Paul, M.C.; Zubía, E.; Ortega, M.J.; Salvá, J. New polypropionates from Siphonaria pectinata. Tetrahedron 1997, 53, 2303–2308. [Google Scholar] [CrossRef]
- Hochlowski, J.E.; Faulkner, D.J. Antibiotics from the marine pulmonate Siphonaria diemenensis. Tetrahedron Lett. 1983, 24, 1917–1920. [Google Scholar] [CrossRef]
- Hochlowski, J.E.; Faulkner, D.J. Metabolites of the marine pulmonate Siphonaria australis. J. Org. Chem. 1984, 49, 3838–3840. [Google Scholar] [CrossRef]
- Biskupiak, J.E.; Ireland, C.M. Pectinatone, a new antibiotic from the mollusc Siphonaria pectinata. Tetrahedron Lett. 1983, 24, 3055–3058. [Google Scholar] [CrossRef]
- Norte, M.; Cataldo, F.; González, A.G.; Rodríguez, M.L.; Ruiz-Pérez, C. New metabolites from the marine mollusc Siphonaria grisea. Tetrahedron 1990, 46, 1669–1678. [Google Scholar] [CrossRef]
- Norte, M.; Fernández, J.J.; Padilla, A. Isolation and synthesis of siphonarienal a new polypropionate from Siphonaria grisea. Tetrahedron Lett. 1994, 35, 3413–3416. [Google Scholar] [CrossRef]
- Beukes, D.R.; Davies-Coleman, M.T. Novel polypropionates from the South African marine mollusc Siphonaria capensis. Tetrahedron 1999, 55, 4051–4056. [Google Scholar] [CrossRef]
- Hochlowski, J.E.; Faulkner, D.J.; Matsumoto, G.K.; Clardy, J. The denticulatins, two propionate metabolites from the pulmonate Siphonaria denticulata. J. Am. Chem. Soc. 1983, 105, 7413–7415. [Google Scholar] [CrossRef]
- Hochlowski, J.; Coll, J.; Faulkner, D.J.; Clardy, J. Novel metabolites of four Siphonaria species. J. Am. Chem. Soc. 1984, 106, 6748–6750. [Google Scholar] [CrossRef]
- Roll, D.M.; Biskupiak, J.E.; Mayne, C.L.; Ireland, C.M. Muamvatin, a novel tricyclic spiro ketal from the Fijian mollusk Siphonaria normalis. J. Am. Chem. Soc. 1986, 108, 6680–6682. [Google Scholar] [CrossRef]
- Manker, D.C.; Faulkner, D.J. Vallartanones A and B, polypropionate metabolites of Siphonaria maura from Mexico. J. Org. Chem. 1989, 54, 5374–5377. [Google Scholar] [CrossRef]
- Manker, D.C.; Faulkner, D.J.; Stout, T.J.; Clardy, J. The baconipyrones. Novel polypropionates from the pulmonate Siphonaria baconi. J. Org. Chem. 1989, 54, 5371–5374. [Google Scholar] [CrossRef]
- Brecknell, D.J.; Collett, L.A.; Davies-Coleman, M.T.; Garson, M.J.; Jones, D.D. New non-contiguous polypropionates from marine molluscs: A comment on their natural product status. Tetrahedron 2000, 56, 2497–2502. [Google Scholar] [CrossRef]
- Mary J., G. The biosynthesis of marine natural products. Chem. Rev. 1993, 93, 1699–1733. [Google Scholar]
- Abramson, S.N.; Radic, Z.; Manker, D.; Faulkner, D.J.; Taylor, P. Onchidal: A naturally occurring irreversible inhibitor of acetylcholinesterase with a novel mechanism of action. Mol. Pharm. 1989, 36, 349–354. [Google Scholar]
- Young, C.M.; Greenwood, P.G.; Powell, C.J. The ecological role of defensive secretions in the intertidal pulmonate Onchidella borealis. Biol. Bull. 1986, 171, 391–404. [Google Scholar] [CrossRef]
- Biskupiak, J.E.; Ireland, C.M. Cytotoxic metabolites from the mollusc Peronia peronii. Tetrahedron Lett. 1985, 26, 4307–4310. [Google Scholar] [CrossRef]
- Carbone, M.; Ciavatta, M.L.; Wang, J.R.; Cirillo, I.; Mathieu, V.; Kiss, R.; Mollo, E.; Guo, Y.W.; Gavagnin, M. Extending the record of bis-γ-pyrone polypropionates from marine pulmonate mollusks. J. Nat. Prod. 2013, 76, 2065–2073. [Google Scholar] [CrossRef]
- Rodríguez, J.; Fernández, R.; Quiñoá, E.; Riguera, R.; Debitus, C.; Bouchet, P. Onchidin: A cytotoxic depsipeptide with C 2 symmetry from a marine mollusc. Tetrahedron Lett. 1994, 35, 9239–9242. [Google Scholar] [CrossRef]
- Fernández, R.; Rodríguez, J.; Quiñoá, E.; Riguera, R.; Muñoz, L.; Fernández-Suárez, M.; Debitus, C. Onchidin B: A new cyclodepsipeptide from the mollusc Onchidium sp. J. Am. Chem. Soc. 1996, 118, 11635–11643. [Google Scholar] [CrossRef]
- Carbone, M.; Gavagnin, M.; Mattia, C.A.; Lotti, C.; Castelluccio, F.; Pagano, B.; Mollo, E.; Guo, Y.W.; Cimino, G. Structure of onchidione, a bis-γ-pyrone polypropionate from a marine pulmonate mollusk. Tetrahedron 2009, 65, 4404–4409. [Google Scholar] [CrossRef]
- Guo, Y.W.; Gavagnin, M.; Carbone, M.; Mollo, E.; Cimino, G. Recent Sino-Italian collaborative studies on marine organisms from the South China Sea. Pure Appl. Chem. 2012, 84, 1391–1405. [Google Scholar] [CrossRef]
- Wang, J.R.; Carbone, M.; Gavagnin, M.; Mándi, A.; Antus, S.; Yao, L.G.; Cimino, G.; Kurtán, T.; Guo, Y.W. Assignment of absolute configuration of bis-γ-pyrone polypropionates from marine pulmonate molluscs. Eur. J. Org. Chem. 2012, 6, 1107–1111. [Google Scholar] [CrossRef] [Green Version]
- Young, R.M.; Baker, B.J. Defensive chemistry of the Irish nudibranch Archidoris psuedoargus (Gastropoda opisthobranchia). Planta Med. 2016, 82, 597. [Google Scholar] [CrossRef]
- Zubia, E.; Gavagnin, M.; Crispino, A.; Martinez, E.; Ortea, J.; Cimino, G. Diasteroisomeric ichthyotoxic acylglycerols from the dorsum of two geographically distinct populations of Archidoris nudibranchs. Experientia 1993, 49, 268–271. [Google Scholar] [CrossRef]
- Gustafson, K.; Andersen, R.J. Chemical studies of British Columbia nudibranchs. Tetrahedron 1985, 41, 1101–1108. [Google Scholar] [CrossRef]
- Soriente, A.; Sodano, G.; Reed, K.C.; Todd, C. A new ichthyotoxic diacylglycerol from the nudibranch Archidoris pseudoargus. Nat. Prod. Lett. 1993, 3, 31–35. [Google Scholar] [CrossRef]
- Cimino, G.; Crispino, A.; Gavagnin, M.; Trivellone, E.; Zubía, E.; Martínez, E.; Ortea, J. Archidorin: A new ichthyotoxic diacylglycerol from the Atlantic dorid nudibranch Archidoris tuberculata. J. Nat. Prod. 1993, 56, 1642–1646. [Google Scholar] [CrossRef]
- Andersen, R.J.; Sum, F.W. Farnesic acid glycerides from the nudibranch Archidoris odhneri. Tetrahedron Lett. 1980, 21, 797–800. [Google Scholar] [CrossRef]
- Gustafson, K.; Andersen, R.J.; Chen, M.H.; Clardy, J.; Hochlowski, J.E. Terpenoic acid glycerides from the dorid nudibranch Archidoris montereyensis. Tetrahedron Lett. 1984, 25, 11–14. [Google Scholar] [CrossRef]
- Gavagnin, M.; Ungur, N.; Castelluccio, F.; Cimino, G. Novel verrucosins from the skin of the Mediterranean nudibranch Doris verrucosa. Tetrahedron 1997, 53, 1491–1504. [Google Scholar] [CrossRef]
- Cimino, G.; Gavagnin, M.; Sodano, G.; Puliti, R.; Mattia, C.A.; Mazzarella, L. Verrucosin-A and-B, ichthyotoxic diterpenoic acid glycerides with a new carbon skeleton from the dorid nudibranch Doris verrucosa. Tetrahedron 1988, 44, 2301–2310. [Google Scholar] [CrossRef]
- Avila, C.; Ballesteros, M.; Cimino, G.; Crispino, A.; Gavagnin, M.; Sodano, G. Biosynthetic origin and anatomical distribution of the main secondary metabolites in the nudibranch mollusc Doris verrucosa. Comp. Biochem. Physiol. B Comp. Biochem. 1990, 97, 363–368. [Google Scholar] [CrossRef]
- Fusetani, N.; Wolstenholme, H.J.; Matsunaga, S. Co-occurrence of 9-isocyanopupukeanane and its C-9 epimer in the nudibranch Phyllidia bourguini. Tetrahedron Lett. 1990, 31, 5623–5624. [Google Scholar] [CrossRef]
- Kassuhlke, K.E.; Potts, B.C.; Faulkner, D.J. New nitrogenous sesquiterpenes from two Philippine nudibranchs, Phyllidia pustulosa and P. varicosa, and from a Palauan sponge, Halichondria cf. lendenfeldi. J. Org. Chem. 1991, 56, 3747–3750. [Google Scholar] [CrossRef]
- Fusetani, N.; Wolstenholme, H.J.; Shinoda, K.; Asai, N.; Matsunaga, S.; Onuki, H.; Hirota, H. Two sesquiterpene isocyanides and a sesquiterpene thiocyanate from the marine sponge Acanthella cf. cavernosa and the nudibranch Phyllidia ocellata. Tetrahedron Lett. 1992, 33, 6823–6826. [Google Scholar] [CrossRef]
- White, A.M.; Pierens, G.K.; Skinner-Adams, T.; Andrews, K.T.; Bernhardt, P.V.; Krenske, E.H.; Mollo, E.; Garson, M.J. Antimalarial isocyano and isothiocyanato sesquiterpenes with tri-and bicyclic skeletons from the nudibranch Phyllidia ocellata. J. Nat. Prod. 2015, 78, 1422–1427. [Google Scholar] [CrossRef]
- Jomori, T.; Shibutani, T.; Ahmadi, P.; Suzuka, T.; Tanaka, J. A New Isocyanosesquiterpene from the nudibranch Phyllidiella pustulosa. Nat. Prod. Commun. 2015, 10, 1913–1914. [Google Scholar] [CrossRef] [Green Version]
- Crews, P.; Kakou, Y.; Quinoa, E. Mycothiazole, a polyketide heterocycle from a marine sponge. J. Am. Chem. Soc. 1988, 110, 4365–4368. [Google Scholar] [CrossRef]
- Sonnenschein, R.N.; Johnson, T.A.; Tenney, K.; Valeriote, F.A.; Crews, P. A reassignment of (−)-mycothiazole and the isolation of a related diol. J. Nat. Prod. 2006, 69, 145–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Silva, E.D.; Scheuer, P.J. Furanoditerpenoids from the dorid nudibranch Casella atromarginata. Heterocycles 1982, 17, 167–170. [Google Scholar]
- Fontana, A.; Cavaliere, P.; Ungur, N.; D'Souza, L.; Parameswaram, P.S.; Cimino, G. New scalaranes from the nudibranch Glossodoris atromarginata and its sponge prey. J. Nat. Prod. 1999, 62, 1367–1370. [Google Scholar] [CrossRef] [PubMed]
- Gross, H.; Wright, A.D.; Reinscheid, U.; König, G.M. Three new spongian diterpenes from the Fijian marine sponge Spongia sp. Nat. Prod. Commun. 2009, 4, 315–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavagnin, M.; Mollo, E.; Docimo, T.; Guo, Y.W.; Cimino, G. Scalarane metabolites of the nudibranch Glossodoris rufomarginata and its dietary sponge from the South China Sea. J. Nat. Prod. 2004, 67, 2104–2107. [Google Scholar] [CrossRef]
- Betancur-Galvis, L.; Zuluaga, C.; Arnó, M.; González, M.A.; Zaragozá, R.J. Cytotoxic effect (on tumor cells) and in vitro antiviral activity against herpes simplex virus of synthetic spongiane diterpenes. J. Nat. Prod. 2002, 65, 189–192. [Google Scholar] [CrossRef] [Green Version]
- Kamel, H.N.; Kim, Y.B.; Rimoldi, J.M.; Fronczek, F.R.; Ferreira, D.; Slattery, M. Scalarane sesterterpenoids: Semisynthesis and biological activity. J. Nat. Prod. 2009, 72, 1492–1496. [Google Scholar] [CrossRef]
- Wu, S.Y.; Sung, P.J.; Chang, Y.L.; Pan, S.L.; Teng, C.M. Heteronemin, a spongean sesterterpene, induces cell apoptosis and autophagy in human renal carcinoma cells. Biomed Res. Int. 2015, 2015, 1–13. [Google Scholar] [CrossRef]
- Hochlowski, J.E.; Faulkner, D.J. A diterpene related to cladiellin from a Pacific soft coral. Tetrahedron Lett. 1980, 21, 4055–4056. [Google Scholar] [CrossRef]
- Sodano, S.; Spinella, A. Janolusimide, a lipophilic tripeptide toxin from the nudibranch mollusc Janolus cristatus. Tetrahedron Lett. 1986, 27, 2505–2508. [Google Scholar] [CrossRef]
- Cimino, G.; De Rosa, S.; De Stefano, S.; Sodano, G. Marine natural products: New results from Mediterranean invertebrates. Pure Appl. Chem. 1986, 58, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Prinsep, M.R.; Gordon, D.P.; Page, M.J.; Copp, B.R. Isolation and stereospecific synthesis of janolusimide B from a New Zealand collection of the bryozoan Bugula flabellata. J. Nat. Prod. 2015, 78, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Gavagnin, M.; Spinella, A.; Cimino, G.; Sodano, G. Stereochemistry of ichthyotoxic diacylglycerols from opisthobranch molluscs. Tetrahedron Lett. 1990, 31, 6093–6094. [Google Scholar] [CrossRef]
- Cimino, G.; Crispino, A.; Spinella, A.; Sodano, G. Two ichthyotoxic diacylglycerols from the opisthobranch mollusc Umbraculum mediterraneum. Tetrahedron Lett. 1988, 29, 3613–3616. [Google Scholar] [CrossRef]
- Cimino, G.; Spinella, A.; Scopa, A.; Sodano, G. Umbraculumin-B, an unusual 3- hydroxybutyric acid ester from the opisthobranch mollusc Umbraculum mediterraneum. Tetrahedron Lett. 1989, 30, 1147–1148. [Google Scholar] [CrossRef]
- Sleeper, H.L.; Fenical, W. Navenones A–C: Trail-breaking alarm pheromones from the marine opisthobranch Navanax inermis. J. Am. Chem. Soc. 1977, 99, 2367–2368. [Google Scholar] [CrossRef]
- Imperato, F.; Minale, L.; Riccio, R. Constituents of the digestive gland of molluscs of the genus Aplysia. II. Halogenated monoterpenes from Aplysia limacina. Experientia 1977, 33, 1273–1274. [Google Scholar] [CrossRef]
- Spinella, A.; Gavagnin, M.; Crispino, A.; Cimino, G. 4-acetylaplykurodin B and aplykurodinone B, two ichthyotoxic degraded sterols from the Mediterranean mollusk Aplysia fasciata. J. Nat. Prod. 1992, 5, 989–993. [Google Scholar] [CrossRef]
- Ortega, M.J.; Zubía, E.; Salvá, J. 3-epi-aplykurodinone B, a new degraded sterol from Aplysia fasciata. J. Nat. Prod. 1997, 60, 488–489. [Google Scholar] [CrossRef]
- Miyamoto, T.; Higuchi, R.; Komori, T. Isolation and structures of aplykurodins A and B, two new isoprenoids from the marine mollusk Aplysia kurodai. Tetrahedron Lett. 1986, 27, 1153–1156. [Google Scholar] [CrossRef]
- Miyamoto, T.; Ebisawa, Y.; Higuchi, R. Aplyparvunin, a bioactive acetogenin from the sea hare Aplysia parvula. Tetrahedron Lett. 1995, 36, 6073–6074. [Google Scholar] [CrossRef]
- McPhail, K.L.; Davies-Coleman, M.T. (3Z)-Bromofucin from a South African sea hare. Nat. Prod. Res. 2005, 19, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Midland, S.L.; Wing, R.M.; Sims, J.J. New crenulides from the sea hare Aplysia vaccaria. J. Org. Chem. 1983, 48, 1906–1909. [Google Scholar] [CrossRef]
- Sun, H.H.; McEnroe, F.J.; Fenical, W. Acetoxycrenulide, a new bicyclic cyclopropane-containing diterpenoid from the brown seaweed Dictyota crenulata. J. Org. Chem. 1983, 48, 1903–1906. [Google Scholar] [CrossRef]
- Spinella, A.; Zubía, E.; Martînez, E.; Ortea, J.; Cimino, G. Structure and stereochemistry of aplyolides A− E, lactonized dihydroxy fatty acids from the skin of the marine mollusk Aplysia depilans. J. Org. Chem. 1997, 62, 5471–5475. [Google Scholar] [CrossRef]
- Gerwick, W.H.; Fenical, W.; Fritsch, N.; Clardy, J. Stypotriol and stypoldione; ichthyotoxins of mixed biogenesis from the marine alga Stypopodium zonale. Tetrahedron Lett. 1979, 2, 145–148. [Google Scholar] [CrossRef]
- Kuniyoshi, M.; Yamada, K.; Higa, T. A biologically active diphenyl ether from the green alga Cladophora fascicularis. Experientia 1985, 41, 523–524. [Google Scholar] [CrossRef]
- Doty, M.S.; Aguilar-Santos, G. Transfer of toxic algal substances in marine food chains. Pac. Sci. 1970, 24, 351–355. [Google Scholar]
- Gavagnin, M.; Marín, A.; Castelluccio, F.; Villani, G.; Cimino, G. Defensive relationships between Caulerpa prolifera and its shelled sacoglossan predators. J. Exp. Mar. Biol. Ecol. 1994, 175, 197–210. [Google Scholar] [CrossRef]
- Cimino, G.; Crispino, A.; Di Marzo, V.; Gavagnin, M.; Ros, J.D. Oxytoxins, bioactive molecules produced by the marine opisthobranch mollusc Oxynoe olivacea from a diet-derived precursor. Experientia 1990, 46, 767–770. [Google Scholar] [CrossRef]
- Fontana, A.; Ciavatta, M.L.; Mollo, E.; Naik, C.D.; Wahidulla, S.; D’Sousa, L.; Cimino, G. Volvatellin, cauerpenyne-related product from the sacoglossan Volvatella sp. J. Nat. Prod. 1999, 62, 931–933. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.R. Evolution of the sacoglossa (Mollusca, Opisthobranchia) and the ecological associations with their food plants. Evol. Ecol. 1997, 11, 301–335. [Google Scholar] [CrossRef]
- Ciavatta, M.L.; López Gresa, M.P.; Gavagnin, M.; Manzo, E.; Mollo, E.; D’Souza, L.; Cimino, G. New caulerpenyne-derived metabolites of an Elysia sacoglossan from the south Indian coast. Molecules 2006, 11, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Carbone, M.; Muniain, C.; Castelluccio, F.; Iannicelli, O.; Gavagnin, M. First chemical study of the sacoglossan Elysia patagonica: Isolation of a γ-pyrone propionate hydroperoxide. Biochem. System. Ecol. 2013, 49, 172–175. [Google Scholar] [CrossRef]
- Gosliner, T.M. The genus Thuridilla (Opisthobranchia: Elysiidae) from thetropical indo-pacific, with a revision of the phylogeny of the elysiidae. Calif. Acad. Sci. 1995, 59, 1–54. [Google Scholar]
- Dawe, R.D.; Wright, J.L.C. The major polypropionate metabolites from the sacoglossan mollusc Elysia chlorotica. Tetrahedron Lett. 1986, 27, 2559–2562. [Google Scholar] [CrossRef]
- Ireland, C.D.; Faulkner, J.; Solheim, B.A.; Clardy, J. Tridachione, a propionate-derived metabolite of the opisthobranch mollusc Tridachiella diomedea. J. Am. Chem. Soc. 1978, 100, 1002–1003. [Google Scholar] [CrossRef]
- Ireland, C.; Faulkner, J. The metabolites of the marine molluscs Tridachiella diomedea and Tridachia crispata. Tetrahedron 1981, 37, 233–240. [Google Scholar] [CrossRef]
- Ksebati, M.B.; Schmitz, F.J. Tridachiapyrones: Propionate-derived metabolites from the sacoglossan mollusc Tridachia crispata. J. Org. Chem. 1985, 50, 5637–5642. [Google Scholar] [CrossRef]
- Cueto, M.; D’Croz, L.; Maté, J.L.; San-Martín, A.; Darias, J. Elysiapyrones from Elysia diomedea. Do such metabolites evidence an enzymatically assisted electrocyclization cascade for the biosynthesis of their bicyclo[4.2.0]octane core? Org. Lett. 2005, 7, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Marrero, A.R.; Cueto, M.; D’Croz, L.; Darias, J. Validating and endoperoxide as a key intermediate in the biosynthesis of elysiapyrones. Org. Lett. 2008, 10, 3057–3060. [Google Scholar] [CrossRef] [PubMed]
- De Petrocellis, L.; Orlando, P.; Gavagnin, M.; Ventriglia, M.; Cimino, G.; Di Marzo, V. Novel diterpenoid diacylglycerols from marine molluscs: Potent morphogens and protein kinase C activators. Experientia 1996, 52, 874–877. [Google Scholar] [CrossRef] [PubMed]
- Hochlowski, J.E.; Faulkner, D.J.; Bass, L.S.; Clardy, J. Metabolites of the dorid nudibranch Chromodoris sedna. J. Org. Chem. 1983, 48, 1738–1740. [Google Scholar] [CrossRef]
- Fusetani, N.; Nagata, H.; Hirota, H.; Tsuyuki, T. Astrogorgiadiol and astrogorgin, inhibitors of cell division in fertilized starfish eggs, from a gorgonian Astrogorgia sp. Tetrahedron Lett. 1989, 30, 7079–7082. [Google Scholar] [CrossRef]
- Ochi, M.; Yamada, K.; Shirase, K.; Kotsuki, H. Calicophirins A and B, two new insect growth inhibitory diterpenoids from a gorgonian coral Calicogorgia sp. Heterocycles (Sendai) 1991, 32, 19–21. [Google Scholar] [CrossRef]
- Carmely, S.; Ilan, M.; Kashman, Y. 2-Amino Imidazole Alkaloids from the Marine Sponge Leucetta chagosensis. Tetrahedron 1989, 45, 2193–2200. [Google Scholar] [CrossRef]
- Mai, T.; Tintillier, F.; Lucasson, A.; Moriou, C.; Bonno, E.; Petek, S.; Magré, K.; Al Mourabit, A.; Saulnier, D.; Debitus, C. Quorum sensing inhibitors from Leucetta chagosensis Dendy, 1863. Lett. Appl. Microbiol. 2015, 61, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Alvi, K.A.; Crews, P.; Loughhead, D.G. Structures and total synthesis of 2-aminoimidazoles from a Notodoris nudibranch. J. Nat. Prod. 1991, 54, 1509–1515. [Google Scholar] [CrossRef]
- König, G.M.; Wright, A.D.; Franzblau, S.G. Assessment of antimycobacterial activity of a series of mainly marine derived natural products. Planta Med. 2000, 66, 337–342. [Google Scholar] [CrossRef]
- Slattery, M.; Hamann, M.T.; McClintock, J.B.; Perry, T.L.; Puglisi, M.P.; Yoshida, W.Y. Ecological roles for water-borne metabolites from Antarctic soft corals. Mar. Ecol. Progr. Ser. 1997, 161, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Kladi, M.; Ntountaniotis, D.; Zervou, M.; Vagias, C.; Ioannou, E.; Roussis, V. Glandulaurencianols A–C, brominated diterpenes from the red alga, Laurencia glandulifera and the sea hare, Aplysia punctata. Tetrahedron Lett. 2014, 55, 2835–2837. [Google Scholar] [CrossRef]
- Findlay, J.A.; Li, G. Novel terpenoids from the sea hare Aplysia punctata. Can. J. Chem. 2002, 80, 1697–1707. [Google Scholar] [CrossRef]
- Caccamese, S.; Toscano, R.M.; Cerrini, S.; Gavuzzo, E. Laurencianol, a new halogenated diterpenoid from the marine alga Laurencia obtusa. Tetrahedron Lett. 1982, 23, 114–116. [Google Scholar] [CrossRef]
- Kobayashi, M.; Kanda, F.; Kamiya, H. Occurrence of pyropheophorbides a and b in the viscera of the sea hare Aplysia juliana. Nippon Suisan Gakk. 1991, 57, 1983. [Google Scholar] [CrossRef] [Green Version]
- Atta-ur-Rahman, K.A.; Abbas, S.A.; Sultana, T.; Shameel, M. A diterpenoid lactone from Aplysia juliana. J. Nat. Prod. 1991, 54, 886–888. [Google Scholar] [CrossRef]
- Benkendorff, K.; Davis, A.R.; Rogers, C.N.; Bremner, J.B. Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties. J. Exp. Mar. Biol. Ecol. 2005, 316, 29–44. [Google Scholar] [CrossRef]
- Kisugi, J.; Ohye, H.; Kamiya, H.; Yamazaki, M. Biopolymers from marine invertebrates. XIII. Characterization of an antibacterial protein, dolabellanin A, from the albumen gland of the sea hare, Dolabella auricularia. Chem. Pharm. Bull. 1992, 40, 1537–1539. [Google Scholar] [CrossRef] [Green Version]
- Fusetani, N. Biofouling and antifouling. Nat. Prod. Rep. 2004, 21, 94–104. [Google Scholar] [CrossRef]
- Nishikawa, K.; Nakahara, H.; Shirokura, Y.; Nogata, Y.; Yoshimura, E.; Umezawa, T.; Okino, T.; Matsuda, F. Total synthesis of 10-isocyano-4-cadinene and its stereoisomers and evaluations of antifouling activities. J. Org. Chem. 2011, 76, 6558–6573. [Google Scholar] [CrossRef]
- Tanaka, J.; Higa, T. Two new cytotoxic carbonimidic dichlorides from the nudibranch Reticulidia fungia. J. Nat. Prod. 1999, 62, 1339–1340. [Google Scholar] [CrossRef] [PubMed]
- Targett, N.M.; Bishop, S.S.; McConnell, O.J.; Yoder, J.A. Antifouling agents against the benthic marine diatom, Navicula salinicola Homarine from the gorgonians Leptogorgia virgulata and L. setacea and analogs. J. Chem. Ecol. 1983, 9, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Klein, D. A Proposed Definition of Mental Illness. Critical Issues in Psychiatric Diagnosis. Ph.D. Thesis, New York University, New York, NY, USA, 1978. [Google Scholar]
- Berking, S. Is homarine a morphogen in the marine hydroid Hydractinia? Roux’s Arch. Dev. Biol. 1986, 195, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Berking, S. Homarine (N-methylpicolinic acid) and trigonelline (N-methylnicotinic acid) appear to be involved in pattern control in a marine hydroid. Development 1987, 99, 211–220. [Google Scholar]
- Ortlepp, S.; Pedpradap, S.; Dobretsov, S.; Proksch, P. Antifouling activity of sponge-derived polybrominated diphenyl ethers and synthetic analogues. Biofouling 2008, 24, 201–208. [Google Scholar] [CrossRef]
- Spinella, A.; Alvarez, L.; Passeggio, A.; Cimino, G. New3-alkylpyridines from 3 Mediterranean cephalaspidean mollusks; structure, ecological role and taxonomic relevance. Tetrahedron 1993, 49, 1307–1314. [Google Scholar] [CrossRef]
- Blihoghe, D.; Manzo, E.; Villela, A.; Cutignano, A.; Picariello, G.; Faimali, M.; Fontana, A. Evaluation of the antifouling properties of 3-alyklpyridine compounds. Biofouling 2011, 27, 99–109. [Google Scholar] [CrossRef]
- Cutignano, A.; Tramice, A.; De Caro, S.; Villani, G.; Cimino, G.; Fontana, A. Biogenesis of 3-alkylpyridine alkaloids in the marine mollusc Haminoea orbignyana. Angew. Chem. Int. Ed. 2003, 42, 2633–2636. [Google Scholar] [CrossRef]
- Koehler, E. ‘Trailing’ Behaviour in Risbecia tryoni. Sea Slug Forum; Australian Museum: Sydney, Australia, 1999; Available online: http://www.seaslugforum.net/find/760 (accessed on 20 November 2020).
- Fenical, W.; Sleeper, H.L.; Paul, V.J.; Stallard, M.O.; Sun, H.H. Defensive chemistry of Navanax and related opisthobranch molluscs. Pure Appl. Chem. 1979, 51, 1865–1874. [Google Scholar] [CrossRef]
- Cimino, G.; Passeggio, A.; Sodano, G.; Spinella, A.; Villani, G. Alarm pheromones from the Mediterranean opisthobranch Haminoea navicula. Experientia 1991, 47, 61–63. [Google Scholar] [CrossRef]
- Cutignano, A.; Cimino, G.; Giordano, A.; d’Ippolito, G.; Fontana, A. Polyketide origin of 3-alkylpyridines in the marine mollusc Haminoea orbignyana. Tetrahedron Lett. 2004, 45, 2627–2629. [Google Scholar] [CrossRef]
- Spinella, A.; Álvarez, L.A.; Cimino, G. Alkylphenols from the cephalaspidean mollusc Haminoea callidegenita. Tetrahedron Lett. 1998, 39, 2005–2008. [Google Scholar] [CrossRef]
- Domènech, A.; Avila, C.; Ballesteros, M. Opisthobranch molluscs from the subtidal trawling grounds off Blanes (Girona, northeast Spain). J. Mar. Biolog. Assoc. 2006, 86, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Eilertsen, M.H.; Malaquias, M.A.E. Speciation in the dark: Diversification and biogeography of the deep-sea gastropod genus Scaphander in the Atlantic Ocean. J. Biogeogr. 2015, 42, 843–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutignano, A.; Avila, C.; Rosica, A.; Romano, G.; Laratta, B.; Domenech-Coll, A.; Cimino, G.; Mollo, E.; Fontana, A. Biosynthesis and cellular localization of functional polyketides in the gastropod mollusc Scaphander lignarius. Chembiochem. 2012, 13, 1759–1766. [Google Scholar] [CrossRef] [PubMed]
- Cutignano, A.; Avila, C.; Domenech-Coll, A.; d’Ippolito, G.; Cimino, G.; Fontana, A. First biosynthetic evidence on the phenyl-containing polyketides of the marine mollusc Scaphander lignarius. Organic Lett. 2008, 10, 2963–2966. [Google Scholar] [CrossRef]
- Della Sala, G.; Cutignano, A.; Fontana, A.; Spinella, A.; Calabrese, G.; Domènech, A.; D’Ippolito, G.; Monica, C.D.; Cimino, G. Towards the biosynthesis of the aromatic products of the Mediterranean mollusc Scaphander lignarius: Isolation and synthesis of analogues of lignarenones. Tetrahedron 2007, 63, 7256–7263. [Google Scholar] [CrossRef]
- Kamio, M.; Kicklighter, C.E.; Nguyen, L.; Germann, M.W.; Derby, C.D. Isolation and structural elucidation of novel mycosporine-like amino acids as alarm cues in the defensive ink secretion of the sea hare Aplysia californica. Helv. Chim. Acta 2011, 94, 1012–1018. [Google Scholar] [CrossRef]
- Kicklighter, C.E.; Kamio, M.; Nguyen, L.; Germann, M.W.; Derby, C.D. Mycosporine-like amino acids are multifunctional molecules in sea hares and their marine community. Proc. Nat. Acad. Sci. USA 2011, 108, 11494–11499. [Google Scholar] [CrossRef] [Green Version]
- Núñez-Pons, L.; Avila, C.; Romano, G.; Verde, C.; Giordano, D. UV-protective compounds in marine organisms from the Southern Ocean. Mar. Drugs 2018, 16, 336. [Google Scholar] [CrossRef] [Green Version]
- Czeczuga, B. Investigations of carotenoids in some animals of the Adriatic Sea—VI Representatives of sponges, annelids, molluscs and echinodermates. Comp. Biochem. Physiol. B Comp. Biochem. 1984, 78, 259–264. [Google Scholar] [CrossRef]
- Whitehead, K.; Karentz, D.; Hedges, J. Mycosporine-like amino acids (MAAs) in phytoplankton, a herbivorous pteropod (Limacina helicina), and its pteropod predator (Clione antarctica) in McMurdo Bay, Antarctica. Mar. Biol. 2001, 139, 1013–1019. [Google Scholar]
- Gavagnin, M.; Carbone, M.; Ciavatta, M.L.; Mollo, E. Natural products from marine Heterobranchs: An overview of recent results. Chem. J. Mold. 2019, 14, 9–31. [Google Scholar] [CrossRef]
- Cutignano, A.; Cimino, G.; Villani, G.; Fontana, A. Shaping the polypropionate biosynthesis in the solar-powered mollusc Elysia viridis. ChemBioChem. 2009, 10, 315–322. [Google Scholar] [CrossRef]
- Gavagnin, M.; Mollo, E.; Cimino, G. Is phototridachiahydropyrone a true natural product? Rev. Bras. Pharmacogn. 2015, 25, 588–591. [Google Scholar] [CrossRef] [Green Version]
- Gavagnin, M.; Marín, A.; Mollo, E.; Crispino, A.; Villani, G.; Cimino, G. Secondary metabolites from Mediterranean Elysioidea: Origin and biological role. Comp. Biochem. Physiol. B Comp. Biochem. 1994, 108, 107–115. [Google Scholar] [CrossRef]
- Ireland, C.; Scheuer, P.J. Photosynthetic marine molluscs: In vivo 14C incorporation into metabolites of the sacoglossan Placobranchus ocellatus. Science 1979, 205, 922–923. [Google Scholar] [CrossRef]
- Powell, K.J.; Richens, J.L.; Bramble, J.P.; Han, L.C.; Sharma, P.; O’Shea, P.; Moses, J.E. Photochemical activity of membrane-localised polyketide derived marine natural products. Tetrahedron 2017, 74, 1191–1198. [Google Scholar] [CrossRef]
- Manzo, E.; Ciavatta, M.L.; Gavagnin, M.; Mollo, E.; Wahidulla, S.; Cimino, G. New γ-pyrone propionates from the Indian Ocean sacoglossan Placobranchus ocellatus. Tetrahedron Lett. 2005, 46, 465–468. [Google Scholar] [CrossRef]
- Fu, X.; Hong, E.P.; Schmitz, F.J. New polypropionate pyrones from the Philippine sacoglossan mollusc Placobranchus ocellatus. Tetrahedron 2000, 56, 8989–8993. [Google Scholar] [CrossRef]
- Avila, C. The growth of Peltodoris atromaculata Bergh, 1880 (Gastropoda: Nudibranchia) in the laboratory. J. Molluscan Stud. 1996, 62, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Di Marzo, V.; Minardi, C.; Vardaro, R.R.; Mollo, E.; Cimino, G. Prostaglandin F-1, 15-lactone fatty acyl esters: A prostaglandin lactone pathway branch developed during the reproduction and early larval stages of a marine mollusc. Comp. Biochem. Physiol. B Biochem. 1992, 101, 99–104. [Google Scholar] [CrossRef]
- Marin, A.; Di Marzo, V.; Cimino, G. A histological and chemical study of the cerata of the opisthobranch mollusc Tethys fimbria. Mar. Biol. 1991, 111, 353–358. [Google Scholar] [CrossRef]
- Vardaro, R.R.; Di Marzo, V.; Marín, A.; Cimino, G. A- and g-Pyrone-polypropionates from the Mediterranean ascoglossan mollusc Ercolania funerea. Tetrahedron 1992, 48, 9561–9566. [Google Scholar] [CrossRef]
- Di Marzo, V.; Marín, A.; Vardaro, R.R.; De Petrocellis, L.; Villani, G.; Cimino, G. Histological and biochemical bases of defense mechanisms in four species of Polybranchoidea ascoglossan molluscs. Mar. Biol. 1993, 117, 367–380. [Google Scholar] [CrossRef]
- Ciavatta, M.L.; Manzo, E.; Nuzzo, G.; Villani, G.; Cimino, G.; Cervera, J.L.; Malaquias, M.A.E.; Gavagnin, M. Aplysiopsenes: An additional example of marine polyketides with a mixed acetate/propionate pathway. Tetrahedron Lett. 2009, 50, 527–529. [Google Scholar] [CrossRef]
- Ungur, N.; Gavagnin, M.; Fontana, A.; Cimino, G. Synthetic studies on natural diterpenoid glyceryl esters. Tetrahedron 2000, 14, 2503–2512. [Google Scholar] [CrossRef]
- Zhang, W.; Gavagnin, M.; Guo, Y.-W.; Mollo, E.; Cimino, G. Chemical studies on the South China Sea nudibranch Dermatobranchus ornatus and its suggested prey gorgonian Muricella sp. Chin. J. Org. Chem. 2006, 26, 1667–1672. [Google Scholar]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Ciavatta, M.L.; Lefranc, F.; Carbone, M.; Mollo, E.; Gavagnin, M.; Betancourt, T.; Dasari, R.; Kornienko, A.; Kiss, R. Marine mollusk-derived agents with antiproliferative activity as promising anticancer agents to overcome chemotherapy resistance. Med. Res. Rev. 2017, 37, 702–801. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 2007, 70, 461–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinothkumar, S.; Parameswaran, P.S. Recent advances in marine drug research. Biotechnol. Adv. 2013, 31, 1826–1845. [Google Scholar] [CrossRef] [PubMed]
- Nobili, S.; Lippi, D.; Witort, E.; Donnini, M.; Bausi, L.; Mini, E.; Capaccioli, S. Natural compounds for cancer treatment and prevention. Pharmacol. Res. 2009, 59, 365–378. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howitz, K.T.; Sinclair, D.A. Xenohormesis: Sensing the chemical cues of other species. Cell 2008, 133, 387–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ang, K.K.H.; Holmes, M.J.; Higa, T.; Hamann, M.T.; Kara, U.A.K. In vivo antimalarial activity of the beta-carboline alkaloid manzamine A. Antimicrob. Agents Chemother. 2000, 44, 1645–1649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Petrocellis, L.; Di Marzo, V.; Arca, B.; Gavagnin, M.; Minei, R.; Cimino, G. The effect of diterpenoidic diacylglycerols on tentacle regeneration in Hydra vulgaris. Comp. Biochem. Physiol. C Comp. Pharmacol. 1991, 100C, 603–607. [Google Scholar] [CrossRef]
- Alvi, K.A.; Peters, B.M.; Lisa, H.M.; Phillip, C. 2-Aminoimidazoles and their zinc complexes from Indo-Pacific Leucetta sponges and Notodoris nudibranchs. Tetrahedron 1993, 49, 329–336. [Google Scholar] [CrossRef]
- Carroll, A.R.; Bowden, B.F.; Coll, J.C. New imidazole alkaloids from the sponge Leucetta sp. and the associated predatory nudibranch Notodoris gardineri. Aust. J. Chem. 1993, 46, 1229–1234. [Google Scholar] [CrossRef]
- Copp, B.R.; Fairchild, C.R.; Cornell, L.; Casazza, A.M.; Robinson, S.; Ireland, C.M. Naamidine A is an antagonist of the epidermal growth factor receptor and an in vivo active antitumor agent. J. Med. Chem. 1998, 41, 3909–3911. [Google Scholar] [CrossRef]
- LaBarbera, D.V.; Modzelewska, K.; Glazar, A.I.; Gray, P.D.; Kaur, M.; Liu, T.; Grossman, D.; Harper, M.K.; Kuwada, S.K.; Moghal, N.; et al. The marine alkaloid Naamidine A promotes caspase-dependent apoptosis in tumor cells. Anticancer Drugs 2009, 20, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Graziani, E.I.; Allen, T.M.; Andersen, R.J. Lovenone, a cytotoxic degraded triterpenoid isolated from skin extracts of the North Sea dorid nudibranch Adalaria loveni. Tetrahedron Lett. 1995, 36, 1763–1766. [Google Scholar] [CrossRef]
- Trindade-Silva, A.E.; Lim-Fong, G.E.; Sharp, K.H.; Haygood, M.G. Bryostatins: Biological context and biotechnological prospects. Curr. Opin. Biotechnol. 2010, 21, 834–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, S.K. The Biology of the Bryostatins in the Marine Bryozoan Bugula neritina. Ph.D. Thesis, University of California, San Diego, CA, USA, 1999. [Google Scholar]
- Lim, G.E. Bugula (Bryozoa) and Their Bacterial Symbionts: A Study in Symbiosis, Molecular Phylogenetics and Secondary Metabolism. Ph.D. Thesis, University of California, San Diego, CA, USA, 2004. [Google Scholar]
- Sudek, S.; Lopanik, N.B.; Waggoner, L.E.; Hildebrand, M.; Anderson, C.; Liu, H.; Patel, A.; Sherman, D.H.; Haygood, M.G. Identification of the putative bryostatin polyketide synthase gene cluster from Candidatus Endobugula sertula, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. J. Nat. Prod. 2007, 70, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Zonder, J.A.; Shields, A.F.; Zalupski, M.; Chaplen, R.; Heilbrun, L.K.; Arlauskas, P.; Philip, P.A. A phase II trial of bryostatin 1 in the treatment of metastatic colorectal cancer. Clin. Cancer Res. 2001, 7, 38–42. [Google Scholar] [PubMed]
- Mayer, A.M.S.; Glaser, K.B.; Cuevas, C.; Jacobs, R.S.; Kem, W.; Little, R.D.; McIntosh, J.M.; Newman, D.J.; Potts, B.C.; Shuster, D.E. The odyssey of marine pharmaceuticals: A current pipeline perspective. Trends Pharmacol. Sci. 2010, 31, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Maki, A.; Diwakaran, H.; Redman, B.; Al-Asfar, S.; Pettit, G.R.; Mohammad, R.M.; Al-Katib, A. The bcl-2 and p53 oncoproteins can be modulated by bryostatin 1 and dolastatins in human diffuse large cell lymphoma. Anticancer Drugs 1995, 6, 392–397. [Google Scholar] [CrossRef]
- Skropeta, D.; Pastro, N.; Zivanovic, A. Kinase inhibitors from marine sponges. Mar. Drugs 2011, 9, 2131–2154. [Google Scholar] [CrossRef] [Green Version]
- Kortmansky, J.; Schwartz, G.K. Bryostatin-1: A novel PKC inhibitor in clinical development. Cancer Investig. 2003, 21, 924–936. [Google Scholar] [CrossRef]
- Kinnel, R.B.; Scheuer, P.J. 11-hydroxystaurosporine: A highly cytotoxic, powerful protein kinase C inhibitor from a tunicate. J. Org. Chem. 1992, 57, 6327–6329. [Google Scholar] [CrossRef]
- Sekar, M.; Poomalai, S.; Gunasekaran, M.; Mani, P.; Krishnamurthy, A. Bioactive compounds from marine yeast inhibits lung cancer. J. Appl. Pharm. Sci. 2015, 5, 7–15. [Google Scholar]
- Wall, N.R.; Mohammad, R.M.; Reddy, K.B.; Al-Katib, A.M. Bryostatin 1 induces ubiquitination and proteasome degradation of Bcl-2 in the human acute lymphoblastic leukemia cell line, Reh. Int. J. Mol. Med. 2000, 5, 165–236. [Google Scholar] [CrossRef] [PubMed]
- Manzo, E.; Carbone, M.; Mollo, E.; Irace, C.; Di Pascale, A.; Li, Y.; Ciavatta, M.L.; Cimino, G.; Guo, Y.-W.; Gavagnin, M. Structure and synthesis of a unique isonitrile lipid isolated from the marine mollusk Actinocyclus papillatus. Org. Lett. 2011, 13, 1897–1899. [Google Scholar] [CrossRef] [PubMed]
- Carbone, M.; Ciavatta, M.L.; Mathieu, V.; Ingels, A.; Kiss, R.; Pascale, P.; Mollo, E.; Ungur, N.; Guo, Y.-W.; Gavagnin, M. Marine terpenoid diacylguanidines: Structure, synthesis, and biological evaluation of naturally occurring actinofide and synthetic analogues. J. Nat. Prod. 2017, 80, 1339–1346. [Google Scholar] [CrossRef]
- Parikh, M.; Riess, J.; Lara, P.N., Jr. New and emerging developments in extensive-stage small cell lung cancer therapeutics. Curr. Opin. Oncol. 2016, 28, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; Van Den Bent, M.J.; Taphoorn, M.J.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef]
- Perret, G.Y.; Uzzan, B. An anticancer strategic dilemma: To kill or to contain. The choice of the pharmaceutical industry in 2009. Fund. Clin. Pharmaccol. 2011, 25, 283–295. [Google Scholar] [CrossRef]
- Montagnac, A.; Martin, M.T.; Debitus, C.; Pais, M. Drimane sesquiterpenes from the sponge Dysidea fusca. J. Nat. Prod. 1996, 59, 866–868. [Google Scholar] [CrossRef]
- Jaisamut, S. Terpenoids from the Nudibranch Phyllidia coelestis Bergh. Ph.D. Thesis, Prince of Songkla University, Hat Yai, Thailand, 2014. [Google Scholar]
- Wratten, S.J.; Faulkner, D.J. Minor carbonimidic dichlorides from the marine sponge Pseudaxinyssa pitys. Tetrahedron Lett. 1978, 19, 1395–1398. [Google Scholar] [CrossRef]
- Wratten, S.J.; John, D.; Van Engen, D.; Clardy, J. A vinyl carbonimidic dichloride from the marine sponge Pseudaxinyssa pitys. Tetrahedron Lett. 1978, 19, 1391–1394. [Google Scholar] [CrossRef]
- Daoust, J.; Fontana, A.; Merchant, C.E.; De Voogd, N.J.; Patrick, B.O.; Kieffer, T.J.; Andersen, R.J. Ansellone A, a sesterterpenoid isolated from the nudibranch Cadlina luteromarginata and the sponge Phorbas sp., activates the cAMP signaling pathway. Org. Lett. 2010, 12, 3208–3211. [Google Scholar] [CrossRef] [PubMed]
- Shirley, H.J.; Jamieson, M.L.; Brimble, M.A.; Bray, C.D. A new family of sesterterpenoids isolated around the Pacific Rim. Nat. Prod. Rep. 2018, 35, 210–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Sayed, K.A.; Youssef, D.T.A.; Marchetti, D. Bioactive natural and semisynthetic latrunculins. J. Nat. Prod. 2006, 69, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Spector, I.; Shochet, N.R.; Blasberger, D.; Kashman, Y. Latrunculins; novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D. Cell Motil. Cytoskelet. 1989, 13, 127–144. [Google Scholar] [CrossRef] [PubMed]
- Spector, I.; Shochet, N.R.; Kashman, Y.; Groweiss, A. Latrunculins: Novel marine toxins that disrupt microfilament organization in cultured cells. Science 1983, 219, 493–495. [Google Scholar] [CrossRef] [PubMed]
- Sayed, K.A.; Khanfar, M.A.; Shallal, H.M.; Muralidharan, A.; Awate, B.; Youssef, D.T.; Liu, Y.; Zhou, Y.D.; Nagle, D.G.; Shah, G. Latrunculin A and its C-17-O-carbamates inhibit prostate tumor cell invasion and HIF-1 activation in breast tumor cells. J. Nat. Prod. 2008, 71, 396–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longley, R.E.; McConnell, O.J.; Essich, E.; Harmody, D. Evaluation of marine sponge metabolites for cytotoxicity and signal transduction activity. J. Nat. Prod. 1993, 56, 915–920. [Google Scholar] [CrossRef]
- Konishi, H.; Kikuchi, S.; Ochiai, T.; Ikoma, H.; Kubota, T.; Ichikawa, D.; Fujiwara, H.; Okamoto, K.; Sakakura, C.; Sonoyama, T.; et al. Latrunculin a has a strong anticancer effect in a peritoneal dissemination model of human gastric cancer in mice. Anticancer Res. 2009, 29, 2091–2097. [Google Scholar]
- Prota, A.E.; Bargsten, K.; Northcote, P.T.; Marsh, M.; Altmann, K.H.; Miller, J.H.; Dıaz, J.F.; Steinmetz, M.O. Structural basis of microtubule stabilization by laulimalide and peloruside A. Angew. Chem. Int. Ed. 2014, 5, 1621–1625. [Google Scholar] [CrossRef]
- Churchill, C.D.; Klobukowski, M.; Tuszynski, J.A. The unique binding mode of laulimalide to two tubulin protofilaments. Chem. Biol. Drug Des. 2015, 86, 190–199. [Google Scholar] [CrossRef]
- Mooberry, S.L.; Randall-Hlubek, D.A.; Leal, R.M.; Hegde, S.G.; Hubbard, R.D.; Zhang, L.; Wender, P.A. Microtubule-stabilizing agents based on designed laulimalide analogues. Proc. Natl. Acad. Sci. USA 2004, 101, 8803–8808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Churchill, C.D.M.; Klobukowski, M.; Tuszynski, J.A. Analysis of the binding mode of laulimalide to microtubules: Establishing a laulimalide-tubulin pharmacophore. J. Biomol. Struct. Dyn. 2016, 34, 1455–1469. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Towle, M.J.; Cheng, H.; Saxton, P.; Reardon, C.; Wu, J.; Murphy, E.A.; Kuznetsov, G.; Johannes, C.W.; Tremblay, M.R.; et al. In vitro and in vivo anticancer activities of synthetic (-)-laulimalide, a marine natural product microtubule stabilizing agent. Anticancer Res. 2007, 27, 1509–1518. [Google Scholar] [PubMed]
- Mooberry, S.L.; Tien, G.; Hernandez, A.H.; Plubrukarn, A.; Davidson, B.S. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res. 1999, 59, 653–660. [Google Scholar] [PubMed]
- Rohena, C.C.; Peng, J.; Johnson, T.A.; Crews, P.; Mooberry, S.L. Chemically diverse microtubule stabilizing agents initiate distinct mitotic defects and dysregulated expression of key mitotic kinases. Biochem. Pharmacol. 2013, 85, 1104–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pryor, D.E.; O’Brate, A.; Bilcer, G.; Díaz, J.F.; Wang, Y.; Wang, Y.; Kabaki, M.; Jung, M.K.; Andreu, J.M.; Ghosh, A.K.; et al. The microtubule stabilizing agent laulimalide does not bind in the taxoid site, kills cells resistant to paclitaxel and epothilones, and may not require its epoxide moiety for activity. Biochemistry 2002, 41, 9109–9115. [Google Scholar] [CrossRef]
- Kanakkanthara, A.; Northcote, P.T.; Miller, J.H. βII-tubulin and βIII-tubulin mediate sensitivity to peloruside A and laulimalide, but not paclitaxel or vinblastine, in human ovarian carcinoma cells. Mol. Cancer Ther. 2012, 11, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Kanakkanthara, A.; Rawson, P.; Northcote, P.T.; Miller, J.H. Acquired resistance to peloruside A and laulimalide is associated with downregulation of vimentin in human ovarian carcinoma cells. Pharm. Res. 2012, 29, 3022–3032. [Google Scholar] [CrossRef]
- Evidente, A.; Kornienko, A.; Lefranc, F.; Cimmino, A.; Dasari, R.; Evidente, M.; Mathieu, V.; Kiss, R. Sesterterpenoids with anticancer activity. Curr. Med. Chem. 2015, 22, 3502–3522. [Google Scholar] [CrossRef] [Green Version]
- Forster, L.C.; Pierens, G.K.; White, A.M.; Cheney, K.L.; Dewapriya, P.; Capon, R.J.; Garson, M.J. Cytotoxic spiroepoxide lactone and its putative biosynthetic precursor from Goniobranchus splendidus. ACS Omega 2017, 2, 2672–2677. [Google Scholar] [CrossRef] [Green Version]
- Rueda, A.; Losada, A.; Fernandez, R.; Cabanas, C.; Garcia-Fernandez, L.F.; Reyes, F.; Cuevas, C. Gracilins G-I, cytotoxic bisnorditerpenes from Spongionella pulchella, and the anti-adhesive properties of gracilin B. Lett. Drug. Des. Discov. 2006, 3, 753–760. [Google Scholar] [CrossRef]
- Sanchez, J.A.; Alfonso, A.; Leiros, M.; Alonso, E.; Rateb, M.E.; Jaspars, M.; Houssen, W.E.; Ebel, R.; Tabudravu, J.; Botana, L.M. Identification of Spongionella compounds as cyclosporine A mimics. Pharmacol. Res. 2016, 107, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Kohmoto, S.; McConnell, O.J.; Wrigth, A.; Cross, S. Isospongiadiol, a cytotoxic and antiviral diterpene from a Caribbean deep water marine sponge, Spongia sp. Chem. Lett. 1987, 16, 1687–1690. [Google Scholar] [CrossRef]
- Fontana, A.; Mollo, E.; Ricciardi, D.; Fakhr, I.; Cimino, G. Chemical studies of Egyptian opisthobranchs: Spongian diterpenoids from Glossodoris atromarginata. J. Nat. Prod. 1997, 60, 444–448. [Google Scholar] [CrossRef]
- Cambie, R.C.; Craw, P.A.; Stone, M.J.; Bergquist, P.R. Chemistry of sponges, IV. Spongian diterpenes from Hyatella intestinalis. J. Nat. Prod. 1988, 51, 293–297. [Google Scholar] [CrossRef]
- Agrawal, M. Isolation and Structural Elucidation of Cytotoxic Agents from Marine Invertebrates and Plants Sourced from the Great Barrier Reef, Australia. Ph.D. Thesis, James Cook University, Townsville, Australia, 2007. [Google Scholar]
- Yong, K.W.; Garson, M.J.; Bernhardt, P.V. Absolute structures and conformations of the spongian diterpenes spongia-13(16), 14-dien-3-one, epispongiadiol and spongiadiol. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2009, 65, 167–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wonganuchitmeta, S.; Yuenyongsawad, S.; Keawpradub, N.; Plubrukarn, A. Antitubercular sesterterpenes from the Thai sponge Brachiaster sp. J. Nat. Prod. 2004, 67, 1767–1770. [Google Scholar] [CrossRef]
- Kazlauskas, R.; Murphy, P.T.; Quinn, R.J.; Wells, R.J. Heteronemin, a new scalarin type sesterterpene from the sponge Heteronema erecta. Tetrahedron Lett. 1976, 17, 2631–2634. [Google Scholar] [CrossRef]
- Kopf, S.; Viola, K.; Atanasov, A.G.; Jarukamjorn, K.; Rarova, L.; Kretschy, N.; Teichmann, M.; Vonach, C.; Saiko, P.; Giessrigl, B.; et al. In vitro characterisation of the anti-intravasative properties of the marine product heteronemin. Arch. Toxicol. 2013, 87, 1851–1861. [Google Scholar] [CrossRef] [Green Version]
- Schnermann, M.J.; Beaudry, C.M.; Egorova, A.V.; Polishchuk, R.S.; Suetterlin, C.; Overman, L.E. Golgi-modifying properties of macfarlandin E and the synthesis and evaluation of its 2,7-dioxabicyclo[3.2.1]octan-3-one core. Proc. Natl. Acad. Sci. USA 2010, 107, 6158–6163. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, S.K.; Pattenden, G. Total synthesis of ulapualide A, a novel tris-oxazole containing macrolide from the marine nudibranch Hexabranchus sanguineus. Tetrahedron Lett. 1998, 39, 6095–6098. [Google Scholar] [CrossRef]
- Vincent, E.; Saxton, J.; Baker-Glenn, C.; Moal, I.; Hirst, J.D.; Pattenden, G.; Shaw, P.E. Effects of ulapualide A and synthetic macrolide analogues on actin dynamics and gene regulation. Cell Mol. Life Sci. 2007, 64, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Parrish, S.M.; Yoshida, W.; Yang, B.; Williams, P.G. Ulapualides C-E Isolated from a Hawaiian Hexabranchus sanguineus Egg Mass. J. Nat. Prod. 2017, 80, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, S.; Fusetani, N.; Hashimoto, K. Kabiramide C, a novel antifungal macrolide from nudibranch eggmasses. J. Am. Chem. Soc. 1986, 108, 847–849. [Google Scholar] [CrossRef]
- Sirirak, T.; Kittiwisut, S.; Janma, C.; Yuenyongsawad, S.; Suwanborirux, K.; Plubrukarn, A. Kabiramides J and K, trisoxazole macrolides from the sponge Pachastrissa nux. J. Nat. Prod. 2011, 74, 1288–1292. [Google Scholar] [CrossRef]
- Tanaka, J.; Yan, Y.; Choi, J.; Bai, J.; Klenchin, V.A.; Rayment, I.; Marriott, G. Biomolecular mimicry in the actin cytoskeleton: Mechanisms underlying the cytotoxicity of kabiramide C and related macrolides. Proc. Natl. Acad. Sci. USA 2003, 100, 13851–13856. [Google Scholar] [CrossRef] [Green Version]
- Braet, F.; Spector, I.; Shochet, N.; Crews, P.; Higa, T.; Menu, E.; De Zanger, R.; Wisse, E. The new anti-actin agent dihydrohalichondramide reveals fenestrae-forming centers in hepatic endothelial cells. BMC Cell Biol. 2002, 3, 1–14. [Google Scholar] [CrossRef]
- Shin, Y.; Kim, G.D.; Jeon, J.E.; Shin, J.; Lee, S.K. Antimetastatic effect of halichondramide, a trisoxazole macrolide from the marine sponge Chondrosia corticata, on human prostate cancer cells via modulation of epithelial-to-mesenchymal transition. Mar. Drugs 2013, 11, 2472–2485. [Google Scholar] [CrossRef]
- Bae, S.Y.; Kim, G.D.; Jeon, J.E.; Shin, J.; Lee, S.K. Anti-proliferative effect of (19Z)-halichondramide, a novel marine macrolide isolated from the sponge Chondrosia corticata, is associated with G2/M cell cycle arrest and suppression of mTOR signaling in human lung cancer cells. Toxicol. In Vitro 2013, 27, 694–699. [Google Scholar] [CrossRef]
- Fontana, A.; Cavaliere, P.; Wahidulla, S.; Naik, C.G.; Cimino, G. A new antitumor isoquinoline alkaloid from the marine nudibranch Jorunna funebris. Tetrahedron 2000, 56, 7305–7308. [Google Scholar] [CrossRef]
- Oku, N.; Matsunaga, S.; van Soest, R.W.; Fusetani, N. Renieramycin J, a highly cytotoxic tetrahydroisoquinoline alkaloid, from a marine sponge Neopetrosia sp. J. Nat. Prod. 2003, 66, 1136–1139. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Drugs and drug candidates from marine sources: An assessment of the current “State of Play”. Planta Med. 2016, 82, 775–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petek, B.J.; Jones, R.L. PM00104 (Zalypsis®): A marine derived alkylating agent. Molecules 2014, 19, 12328–12335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimino, G.; Ciavatta, M.L.; Fontana, A.; Gavagnin, M. Metabolites of marine opisthobranchs: Chemistry and biological activity. In Bioactive Compounds from Natural Sources; Isolation, Characterization and Biological Properties; Tringali, C., Ed.; Taylor and Francis: London, UK, 2001; pp. 579–637. [Google Scholar]
- Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci. 2016, 8, 83–91. [Google Scholar] [CrossRef]
- Cuevas, C.; Perez, M.; Francesch, A.; Fernandez, C.; Chicharro, J.L.; Gallego, P.; Zarzuelo, M.; de la Calle, F.; Manzanares, I. Hemisynthetic method and intermediates thereof. PCT Application WO 2000069862 A2, 23 November 2000. [Google Scholar]
- Charupant, K.; Suwanborirux, K.; Amnuoypol, S.; Saito, E.; Kubo, A.; Saito, N. Jorunnamycins A–C, new stabilized renieramycin-type bistetrahydroisoquinolines isolated from the Thai nudibranch Jorunna funebris. Chem. Pharm. Bull. 2007, 55, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Charupant, K.; Daikuhara, N.; Saito, E.; Amnuoypol, S.; Suwanborirux, K.; Owa, T.; Saito, N. Chemistry of renieramycins. Part 8: Synthesis and cytotoxicity evaluation of renieramycin M-jorunnamycin a analogues. Bioorg. Med. Chem. 2009, 17, 4548–4558. [Google Scholar] [CrossRef]
- McPherson, J.R.; Ong, C.K.; Ng, C.C.Y.; Rajasegaran, V.; Heng, H.L.; Yu, W.S.S.; Tan, B.K.T.; Madhukumar, P.; Teo, M.C.C.; Ngeow, J.; et al. Whole-exome sequencing of breast cancer, malignant peripheral nerve sheath tumor and neurofibroma from a patient with neurofibromatosis type 1. Cancer Med. 2015, 4, 1871–1878. [Google Scholar] [CrossRef]
- Storm, E.E.; Durinck, S.; e Melo, F.D.S.; Tremayne, J.; Kljavin, N.; Tan, C.; Ye, X.; Chiu, C.; Pham, T.; Hongo, J.A.; et al. Targeting PTPRK-RSPO3 colon tumours promotes differentiation and loss of stem-cell function. Nature 2016, 529, 97–100. [Google Scholar] [CrossRef]
- He, W.F.; Li, Y.; Feng, M.T.; Gavagnin, M.; Mollo, E.; Mao, S.C.; Guo, Y.W. New isoquinolinequinone alkaloids from the South China Sea nudibranch Jorunna funebris and its possible sponge-prey Xestospongia sp. Fitoterapia 2014, 96, 109–114. [Google Scholar] [CrossRef]
- Huang, R.Y.; Chen, W.T.; Kurtán, T.; Mándi, A.; Ding, J.; Li, J.; Guo, Y.W. Bioactive isoquinolinequinone alkaloids from the South China Sea nudibranch Jorunna funebris and its sponge-prey Xestospongia sp. Fut. Med. Chem. 2016, 8, 17–27. [Google Scholar] [CrossRef]
- Castiello, D.; Cimino, G.; De Rosa, S.; De Stefano, S.; Sodano, G. High molecular weight polyacetylenes from the nudibranch Peltodoris atromaculata and the sponge Petrosia ficiformis. Tetrahedron Lett. 1980, 21, 5047–5050. [Google Scholar] [CrossRef]
- Gemballa, S.; Schermutzki, F. Cytotoxic haplosclerid sponges preferred: A field study on the diet of the dotted sea slug Peltodoris atromaculata (Doridoidea: Nudibranchia). Mar. Biol. 2004, 144, 1213–1222. [Google Scholar] [CrossRef]
- Ciavatta, M.L.; Nuzzo, G.; Takada, K.; Mathieu, V.; Kiss, R.; Villani, G.; Gavagnin, M. Sequestered fulvinol-related polyacetylenes in Peltodoris atromaculata. J. Nat. Prod. 2014, 77, 1678–1684. [Google Scholar] [CrossRef] [PubMed]
- Castiello, D.; Cimino, G. de Rosa, S.; de Stefano, S.; Izzo, G.; Sodano, G. In Colloq. Int. CNRS 1979, 291, 413. [Google Scholar]
- Ueoka, R.; Ise, Y.; Matsunaga, S. Cytotoxic polyacetylenes related to petroformyne-1 from the marine sponge Petrosia sp. Tetrahedron 2009, 65, 5204–5208. [Google Scholar] [CrossRef]
- Ortega, M.G.; Zubia, E.; Carballo, J.L.; Salvá, J. Fulvinol, a new long-chain diacetylenic metabolite from the sponge Reniera fulva. J. Nat. Prod. 1996, 59, 1069–1071. [Google Scholar] [CrossRef]
- Rapson, T.D. Bioactive 4-Methoxypyrrolic Natural Products from Two South African Marine Invertebrates. Master’s Sc. Thesis, Rhodes University, Rhodes, South Africa, 2004. [Google Scholar]
- Berlinck, R.G.; Hajdu, E.; da Rocha, R.M.; de Oliveira, J.H.; Hernández, I.L.; Seleghim, M.H.; Granato, A.C.; de Almeida, E.V.; Nuñez, C.V.; Muricy, G.; et al. Challenges and rewards of research in marine natural products chemistry in Brazil. J. Nat. Prod. 2004, 67, 510–522. [Google Scholar] [CrossRef]
- Cavalcanti, B.C.; Júnior, H.V.; Seleghim, M.H.; Berlinck, R.G.; Cunha, G.M.; Moraes, M.O.; Pessoa, C. Cytotoxic and genotoxic effects of tambjamine D, an alkaloid isolated from the nudibranch Tambja eliora, on Chinese hamster lung fibroblasts. Chem. Biol. Interact. 2008, 174, 155–162. [Google Scholar] [CrossRef]
- Pinkerton, D.M.; Banwell, M.G.; Garson, M.J.; Kumar, N.; de Moraes, M.O.; Cavalcanti, B.C.; Barros, F.W.A.; Pessoa, C. Antimicrobial and cytotoxic activities of synthetically derived tambjamines C and E-J, BE-18591, and a related alkaloid from the marine bacterium Pseudoalteromonas tunicata. Chem. Biodivers. 2010, 7, 1311–1324. [Google Scholar] [CrossRef]
- Melvin, M.S.; Ferguson, D.C.; Lindquist, N.; Manderville, R.A. DNA binding by 4-methoxypyrrolic natural products. Preference for intercalation at AT sites by tambjamine E and prodigiosin. J. Org. Chem. 1999, 64, 6861–6869. [Google Scholar] [CrossRef]
- Aldrich, L.N.; Stoops, S.L.; Crews, B.C.; Marnett, L.J.; Lindsley, C.W. Total synthesis and biological evaluation of tambjamine K and a library of unnatural analogs. Bioorg. Med. Chem. Lett. 2010, 20, 5207–5211. [Google Scholar] [CrossRef] [PubMed]
- Kazlauskas, R.; Marwood, J.F.; Murphy, P.T.; Wells, R.J. A blue pigment from a compound ascidian. Aust. J. Chem. 1982, 35, 215–217. [Google Scholar] [CrossRef] [Green Version]
- Melvin, M.S.; Wooton, K.E.; Rich, C.C.; Saluta, G.R.; Kucera, G.L.; Lindquist, N.; Manderville, R.A. Copper-nuclease efficiency correlates with cytotoxicity for the 4-methoxypyrrolic natural products. J. Inorg. Biochem. 2001, 87, 129–135. [Google Scholar] [CrossRef]
- Matsunaga, S.; Fusetani, N.; Hashimoto, K. Bioactive marine metabolites. VIII. Isolation of an antimicrobial blue pigment from the bryozoan Bugula dentata. Experientia 1986, 42, 84. [Google Scholar] [CrossRef]
- Hernández, P.I.; Moreno, D.; Javier, A.A.; Torroba, T.; Pérez-Tomás, R.; Quesada, R. Tambjamine alkaloids and related synthetic analogs: Efficient transmembrane anion transporters. ChemComm. 2012, 48, 1556–1558. [Google Scholar] [CrossRef]
- Xu, W.Q.; Song, L.J.; Liu, Q.; Zhao, L.; Zheng, L.; Yan, Z.W.; Fu, G.H. Expression of anion exchanger 1 is associated with tumor progress in human gastric cancer. J. Cancer Res. Clinical Oncol. 2009, 135, 1323–1330. [Google Scholar] [CrossRef]
- Liedauer, R.; Svoboda, M.; Wlcek, K.; Arrich, F.; Jäger, W.; Toma, C.; Thalhammer, T. Different expression patterns of organic anion transporting polypeptides in osteosarcomas, bone metastases and aneurysmal bone cysts. Oncol. Rep. 2009, 22, 1485–1492. [Google Scholar]
- Buxhofer-Ausch, V.; Secky, L.; Wlcek, K.; Svoboda, M.; Kounnis, V.; Briasoulis, E.; Tzakos, A.G.; Jaeger, W.; Thalhammer, T. Tumor-specific expression of organic anion-transporting polypeptides: Transporters as novel targets for cancer therapy. J. Drug Deliv. 2013, 2013, 1–12. [Google Scholar] [CrossRef]
- AbuAli, G.; Grimm, S. Isolation and characterization of the anticancer gene organic cation transporter like-3 (ORCTL3). In Anticancer Genes; Springer: London, UK, 2014; pp. 213–227. [Google Scholar]
- Liu, T.; Li, Q. Organic anion-transporting polypeptides: A novel approach for cancer therapy. J. Drug. Target. 2014, 22, 14–22. [Google Scholar] [CrossRef]
- Baker, B.; Scheuer, P. The punaglandins: 10-chloroprostanoids from the octocoral Telesto riisei. J. Nat. Prod. 1994, 57, 1346–1353. [Google Scholar] [CrossRef]
- Pika, J.; Faulkner, D.J. Four sesquiterpenes from the South African nudibranch Leminda millecra. Tetrahedron 1994, 50, 3065–3070. [Google Scholar] [CrossRef]
- McPhail, K.L.; Davies-Coleman, M.T.; Starmer, J. Sequestered chemistry of the arminacean nudibranch Leminda millecra in Algoa Bay, South Africa. J. Nat. Prod. 2001, 64, 1183–1190. [Google Scholar] [CrossRef] [PubMed]
- Whibley, C.E.; McPhail, K.L.; Keyzers, R.A.; Maritz, M.F.; Leaner, V.D. : Birrer, M.J.; Davies-Coleman, M.T.; Hendricks, D.T. Reactive oxygen species mediated apoptosis of esophageal cancer cells induced by marine triprenyl toluquinones and toluhydroquinones. Mol. Cancer Ther. 2007, 6, 2535–2543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasheverov, I.E.; Shelukhina, I.V.; Kudryavtsev, D.S.; Makarieva, T.N.; Spirova, E.N.; Guzii, A.G.; Stonik, V.A.; Tsetlin, V.I. 6-Bromohypaphorine from marine nudibranch mollusk Hermissenda crassicornis is an agonist of human α7 nicotinic acetylcholine receptor. Mar. Drugs 2015, 13, 1255–1266. [Google Scholar] [CrossRef] [Green Version]
- Carbone, M.; Li, Y.; Irace, C.; Mollo, E.; Castelluccio, F.; Di Pascale, A.; Cimino, G.; Santamaria, R.; Guo, Y.W.; Gavagnin, M. Structure and cytotoxicity of phidianidines A and B: First finding of 1, 2, 4-oxadiazole system in a marine natural product. Organic Lett. 2011, 13, 2516–2519. [Google Scholar] [CrossRef]
- Brogan, J.T.; Stoops, S.L.; Lindsley, C.W. Total synthesis and biological evaluation of phidianidines A and B uncovers unique pharmacological profiles at CNS targets. ACS Chem. Neurosci. 2012, 3, 658–664. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.Y.; Snider, B.B. Synthesis of phidianidines A and B. J. Org. Chem. 2012, 77, 4832–4836. [Google Scholar] [CrossRef] [Green Version]
- Manzo, E.; Pagano, D.; Carbone, M.; Ciavatta, M.L.; Gavagnin, M. Synthesis of phidianidine B, a highly cytotoxic 1, 2, 4-oxadiazole marine metabolite. Arkivoc 2012, 9, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, J.C.; Petersen, B.P.; Chamberland, S. Concise total synthesis of phidianidine A and B. Tetrahedron Lett. 2013, 54, 6002–6004. [Google Scholar] [CrossRef]
- Maftei, C.V.; Fodor, E.; Jones, P.G.; Franz, M.H.; Kelter, G.; Fiebig, H.; Neda, I. Synthesis and characterization of novel bioactive 1, 2, 4-oxadiazole natural product analogs bearing the N-phenylmaleimide and N-phenylsuccinimide moieties. Beilstein J. Org. Chem. 2013, 9, 2202–2215. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.S.; Fu, Y.; Zhang, L.; Gong, J.X.; Wang, Z.Z.; Xiao, W.; Zhang, H.Y.; Guo, Y.W. Synthesis and biological evaluation of novel marine-derived indole-based 1, 2, 4-oxadiazoles derivatives as multifunctional neuroprotective agents. Bioorg. Med. Chem. Lett. 2015, 25, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jiang, C.S.; Gao, L.X.; Gong, J.X.; Wang, Z.H.; Li, J.Y.; Li, J.; Li, X.W.; Guo, Y.W. Design, synthesis and in vitro activity of phidianidine B derivatives as novel PTP1B inhibitors with specific selectivity. Bioorg. Med. Chem. Lett. 2016, 26, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Ibrar, A.; Abbas, N. Oxadiazoles as privileged motifs for promising anticancer leads: Recent advances and future prospects. Archiv. Pharm. Chem. Life Sci. 2014, 347, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Boudreau, M.A.; Leemans, E.; Spink, E.; Yamaguchi, T.; Testero, S.A.; O’Daniel, P.I.; Lastochkin, E.; Chang, M.; Mobashery, S. Exploration of the structure-activity relationship of 1,2,4-oxadiazole antibiotics. Bioorg. Med. Chem. Lett. 2015, 25, 4854–4857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukin, A.; Karapetian, R.; Ivanenkov, Y.; Krasavin, M. Privileged 1,2,4-oxadiazoles in anticancer drug design: Novel 5-aryloxymethyl-1,2,4-oxadiazole leads for prostate cancer therapy. Lett. Drug Des. Discov. 2016, 13, 198–204. [Google Scholar] [CrossRef]
- Pitasse-Santos, P.; Sueth-Santiago, V.; Lima, M.E.F. 1,2,4- and 1,3,4-oxadiazoles as scaffolds in the development of antiparasitic agents. J. Brazil Chem. Soc. 2018, 29, 435–456. [Google Scholar] [CrossRef]
- Chawla, G. 1,2,4-Oxadiazole as a privileged scaffold for anti-inflammatory and analgesic activities: A review. Mini-Rev. Med. Chem. 2018, 18, 1536–1547. [Google Scholar] [CrossRef]
- Manzo, E.; Pagano, D.; Ciavatta, M.L.; Carbone, M.; Gavagnin, M. 1, 2, 4-Oxadiazol Derivatives, Process for Their Preparation and Use Thereof as Intermediates in the Preparation of Indolic Alkaloids. U.S. Patent 20150051405A1, 19 February 2015. [Google Scholar]
- Carroll, A.R.; Scheuer, P.J. Kuanoniamines A, B, C, and D: Pentacyclic alkaloids from a tunicate and its prosobranch mollusk predator Chelynotus semperi. J. Org. Chem. 1990, 55, 4426–4431. [Google Scholar] [CrossRef]
- Singleton, P.A.; Moss, J.; Karp, D.D.; Atkins, J.T.; Janku, F. The mu opioid receptor: A new target for cancer therapy? Cancer 2015, 121, 2681–2688. [Google Scholar] [CrossRef]
- Vitale, R.M.; Gatti, M.; Carbone, M.; Barbieri, F.; Felicità, V.; Gavagnin, M.; Florio, T.; Amodeo, P. Minimalist hybrid ligand/receptor-based pharmacophore model for CXCR4 applied to a small-library of marine natural products led to the identification of phidianidine A as a new CXCR4 ligand exhibiting antagonist activity. ACS Chem. Biol. 2013, 8, 2762–2770. [Google Scholar] [CrossRef]
- Barbieri, F.; Thellung, S.; Wurth, R.; Gatto, F.; Corsaro, A.; Villa, V.; Nizzari, M.; Albertelli, M.; Ferone, D.; Florio, T. Emerging targets in pituitary adenomas: Role of the CXCL12/CXCR4-R7 system. Int. J. Endocrinol. 2014, 2014, 753524. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Palomar, A.J.; Hong, E.P.; Schmitz, F.J.; Valeriote, F.A. Cytotoxic lissoclimide-type diterpenes from the molluscs Pleurobranchus albiguttatus and Pleurobranchus forskalii. J. Nat. Prod. 2004, 67, 1415–1418. [Google Scholar] [CrossRef] [PubMed]
- Wesson, K.J.; Hamann, M.T. Keenamide A, a bioactive cyclic peptide from the marine mollusk Pleurobranchus forskalii. J. Nat. Prod. 1996, 59, 629–631. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.C.; Wakimoto, T.; Takada, K.; Ohtsuki, T.; Uchiyama, N.; Goda, Y.; Abe, I. Cycloforskamide, a cytotoxic macrocyclic peptide from the sea slug Pleurobranchus forskalii. J. Nat. Prod. 2013, 76, 1388–1391. [Google Scholar] [CrossRef]
- Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 2006, 6, 813–823. [Google Scholar] [CrossRef]
- Darro, F.; Decaestecker, C.; Gaussin, J.F.; Mortier, S.; Van Ginckel, R.; Kiss, R. Are syngeneic mouse tumor models still valuable experimental models in the field of anti-cancer drug discovery? Int. J. Oncol. 2005, 27, 607–616. [Google Scholar]
- Wakimoto, T.; Tan, K.C.; Abe, I. Ergot Alkaloid from the Sea Slug Pleurobranchus forskalii. Toxicon 2013, 72, 1–4. [Google Scholar] [CrossRef]
- Mulac, D.; Humpf, H.-U. Cytotoxicity and accumulation of ergot alkaloids in human primary cells. Toxicology 2011, 282, 112–121. [Google Scholar] [CrossRef]
- Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug. Dev. Res. 1995, 34, 91–109. [Google Scholar] [CrossRef]
- Robert, F.; Gao, H.Q.; Donia, M.; Merrick, W.C.; Hamann, M.T.; Pelletier, J. Chlorolissoclimides: New inhibitors of eukaryotic protein synthesis. RNA 2006, 12, 717–725. [Google Scholar] [CrossRef] [Green Version]
- Malochet-Grivois, C.; Roussakis, C.; Robillard, N.; Biard, J.F.; Riou, D.; Debitus, C.; Verbist, J.F. Effects in vitro of two marine substances, chlorolissoclimide and dichlorolissoclimide, on a non-small-cell bronchopulmonary carcinoma line (NSCLC-N6). Anticancer Drug Des. 1992, 7, 493–505. [Google Scholar] [PubMed]
- Uddin, M.J.; Kokubo, S.; Suenaga, K.; Ueda, K.; Uemura, D. Haterumaimides AE, five new dichlorolissoclimide-type diterpenoids from an ascidian, Lissoclinum sp. Heterocycles 2001, 54, 1039–1047. [Google Scholar]
- Uddin, M.J.; Kokubo, S.; Ueda, K.; Suenaga, K.; Uemura, D. Haterumaimides F− I, four new cytotoxic diterpene alkaloids from an ascidian Lissoclinum species. J. Nat. Prod. 2001, 64, 1169–1173. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.J.; Kokubo, S.; Ueda, K.; Suenaga, K.; Uemura, D. Haterumaimides J and K, potent cytotoxic diterpene alkaloids from the ascidian Lissoclinum species. Chem. Lett. 2002, 31, 1028–1029. [Google Scholar] [CrossRef]
- Uddin, J.; Ueda, K.; Siwu, E.R.; Kita, M.; Uemura, D. Cytotoxic labdane alkaloids from an ascidian Lissoclinum sp.: Isolation, structure elucidation, and structure-activity relationship. Bioorg. Med. Chem. 2006, 14, 6954–6961. [Google Scholar] [CrossRef] [PubMed]
- González, M.A.; Romero, D.; Zapata, B.; Betancur-Galvis, L. First synthesis of lissoclimide-type alkaloids. Lett. Org. Chem. 2009, 6, 289–292. [Google Scholar] [CrossRef] [Green Version]
- Thoms, C.; Ebel, R.; Proksch, P. Sequestration and possible role of dietary alkaloids in the sponge-feeding mollusk Tylodina perversa. In Molluscs; Springer: Berlin/Heidelberg, Germany, 2006; pp. 261–275. [Google Scholar]
- Kimura, J.; Takada, Y.; Inayoshi, T.; Nakao, Y.; Goetz, G.; Yoshida, W.Y.; Scheuer, P.J. Kulokekahilide-1, a cytotoxic depsipeptide from the cephalaspidean mollusk Philinopsis speciosa. J. Org. Chem. 2002, 67, 1760–1767. [Google Scholar] [CrossRef]
- Nakao, Y.; Yoshida, W.Y.; Takada, Y.; Kimura, J.; Yang, L.; Mooberry, S.L.; Scheuer, P.J. Kulokekahilide-2, a cytotoxic depsipeptide from a cephalaspidean mollusk Philinopsis speciosa. J. Nat. Prod. 2004, 67, 1332–1340. [Google Scholar] [CrossRef]
- Umehara, M.; Negishi, T.; Tashiro, T.; Nakao, Y.; Kimura, J. Structure-related cytotoxic activity from kulokekahilide-2, a cyclodepsipeptide of Hawaiian marine mollusk. Bioorg. Med. Chem. Lett. 2012, 22, 7422–7425. [Google Scholar] [CrossRef]
- Takada, Y.; Umehara, M.; Katsumata, R.; Nakao, Y.; Kimura, J. The total synthesis and structure-activity relationships of a highly cytotoxic depsipeptide kulokekahilide-2 and its analogs. Tetrahedron 2012, 68, 659–669. [Google Scholar] [CrossRef]
- Vasskog, T.; Andersen, J.H.; Hansen, E.; Svenson, J. Characterization and cytotoxicity studies of the rare 21: 4 n-7 acid and other polyunsaturated fatty acids from the marine opisthobranch Scaphander lignarius, isolated using bioassay guided fractionation. Mar. Drugs 2012, 10, 2676–2690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessels, M.; König, G.M.; Wright, A.D. New Natural Product Isolation and Comparison of the Secondary Metabolite Content of Three Distinct Samples of the Sea Hare Aplysia dactylomela from Tenerife. J. Nat. Prod. 2000, 63, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Sims, J.J.; Lin, G.H.; Wing, R.M. Marine natural products X elatol, a halogenated sesquiterpene alcohol from the red alga Laurencia elata. Tetrahedron Lett. 1974, 15, 3487–3490. [Google Scholar] [CrossRef]
- Lang, K.L.; Silva, I.T.; Zimmermann, L.A.; Lhullier, C.; Mañalich Arana, M.V.; Palermo, J.A.; Falkenberg, M.; Simões, C.M.; Schenkel, E.P.; Durán, F.J. Cytotoxic activity of semi-synthetic derivatives of elatol and isoobtusol. Mar. Drugs 2012, 10, 2254–2264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, A.G.; Darias, J.; Diaz, A.; Fourneron, J.D.; Martin, J.D.; Perez, C. Evidence for the biogenesis of halogenated chamigrenes from the red alga Laurencia obtusa. Tetrahedron Lett 1976, 17, 3051–3054. [Google Scholar] [CrossRef]
- Dias, T.; Brito, I.; Moujir, L.; Paiz, N.; Darias, J.; Cueto, M. Cytotoxic Sesquiterpenes from Aplysia dactylomela. J. Nat. Prod. 2005, 68, 1677–1679. [Google Scholar] [CrossRef]
- Campos, A.; Souza, C.B.; Lhullier, C.; Falkenberg, M.; Schenkel, E.P.; Ribeiro-do-Valle, R.M.; Siqueira, J.M. Anti-tumour effects of elatol, a marine derivative compound obtained from red algae Laurencia microcladia. J. Pharm. Pharmacol. 2012, 64, 1146–1154. [Google Scholar] [CrossRef]
- Van Goietsenoven, G.; Hutton, J.; Becker, J.P.; Lallemand, B.; Robert, F.; Lefranc, F.; Pirker, C.; Vandenbussche, G.; Van Antwerpen, P.; Evidente, A.; et al. Targeting of eEF1A with Amaryllidaceae isocarbostyrils as a strategy to combat melanomas. FASEB J. 2010, 24, 4575–4584. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, V.; Le Mercier, M.; De Neve, N.; Sauvage, S.; Gras, T.; Roland, I.; Lefranc, F.; Kiss, R. Galectin-1 knockdown increases sensitivity to temozolomide in a B16F10 mouse metastatic melanoma model. J. Invest. Dermatol. 2007, 127, 2399–2410. [Google Scholar] [CrossRef]
- Schmitz, F.J.; Michaud, D.P.; Schmidt, P.G. Marine natural products: Parguerol, deoxyparguerol, and isoparguerol. New brominated diterpenes with modified pimarane skeletons from the sea hare Aplysia dactylomela. J. Am. Chem. Soc. 1982, 104, 6415–6423. [Google Scholar] [CrossRef]
- Awad, N.E. Bioactive brominated diterpenes from the marine red alga Jania rubens (L.) Lamx. Phytother. Res. 2004, 18, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Vera, B.; Rodríguez, A.D.; Avilés, E.; Ishikawa, Y. Aplysqualenols A and B: Squalene-derived polyethers with antitumoral and antiviral activity from the caribbean sea slug Aplysia dactylomela. Eur. J. Org. Chem. 2009, 31, 5327–5336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vera, B.; Rodríguez, A.D.; La Clair, J.J. Aplysqualenol A binds to the light chain of dynein type 1 (DYNLL1). Angew. Chem. 2011, 123, 8284–8288. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.; Yang, F.; Balachandran, R.; Höök, P.; Vallee, R.B.; Curran, D.P.; Day, B.W. Synthesis and biological evaluation of purealin and analogues as cytoplasmic dynein heavy chain inhibitors. J. Med. Chem. 2006, 49, 2063–2076. [Google Scholar] [CrossRef]
- Alberti, C. Cytoskeleton structure and dynamic behaviour: Quick excursus from basic molecular mechanisms to some implications in cancer chemotherapy. Eur. Rev. Med. Pharmacol. Sci. 2009, 13, 13–21. [Google Scholar]
- Wong, D.M.; Li, L.; Jurado, S.; King, A.; Bamford, R.; Wall, M.; Walia, M.K.; Kelly, G.L.; Walkley, C.R.; Tarlinton, D.M.; et al. The transcription factor ASCIZ and its target DYNLL1 are essential for the development and expansion of MYC-driven B cell lymphoma. Cell Rep. 2016, 14, 1488–1499. [Google Scholar] [CrossRef] [Green Version]
- Manzo, E.; Gavagnin, M.; Bifulco, G.; Cimino, P.; Di Micco, S.; Ciavatta, M.L.; Guo, Y.-W.; Cimino, G. Aplysiols A and B, squalene-derived polyethers from the mantle of the sea hare Aplysia dactylomela. Tetrahedron 2007, 63, 9970–9978. [Google Scholar] [CrossRef]
- Blunt, J.W.; Hartshorn, M.P.; McLennan, T.J.; Munro, M.H.G.; Robinson, W.T.; Yorke, S.C. Thyrsiferol: A squalene-derived metabolite of Laurencia thyrsifera. Tetrahedron Lett. 1978, 19, 69–72. [Google Scholar] [CrossRef]
- Mahdi, F.; Falkenberg, M.; Ioannou, E.; Roussis, V.; Zhou, Y.D.; Nagle, D.G. Thyrsiferol inhibits mitochondrial respiration and HIF-1 activation. Phytochem. Lett. 2011, 4, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.; Souto, M.L.; Norte, M. Evaluation of the cytotoxic activity of polyethers isolated from Laurencia. Bioorg. Med. Chem. 1998, 6, 2237–2243. [Google Scholar] [CrossRef]
- Jiménez, C.; Quiñoá, E.; Castedo, L.; Riguera, R. Epidioxy sterols from the tunicates Dendrodoa grossularia and Ascidiella aspersa and the gastropoda Aplysia depilans and Aplysia punctata. J. Nat. Prod. 1986, 49, 905–909. [Google Scholar] [CrossRef]
- Mun, B.; Wang, W.; Kim, H.; Hahn, D.; Yang, I.; Won, D.H.; Kim, E.H.; Lee, J.; Han, C.; Kim, H.; et al. Cytotoxic 5α, 8α-epidioxy sterols from the marine sponge Monanchora sp. Arch. Pharm. Res. 2015, 38, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Ojika, M.; Ishigaki, T.; Yoshida, Y.; Ekimoto, H.; Arakawa, M. Aplyronine A, a potent antitumor substance, and the congeners aplyronines B and C isolated from the sea hare Aplysia kurodai. J. Am. Chem. Soc. 1993, 115, 11020–11021. [Google Scholar] [CrossRef]
- Ojika, M.; Kigoshi, H.; Suenaga, K.; Imamura, Y.; Yoshikawa, K.; Ishigaki, T.; Sakakura, A.; Mutou, T.; Yamada, K. Aplyronines D-H from the sea hare Aplysia kurodai: Isolation, structures, and cytotoxicity. Tetrahedron 2012, 68, 982–987. [Google Scholar] [CrossRef]
- Kuroda, T.; Kigoshi, H. Aplaminal: A novel cytotoxic aminal isolated from the sea hare Aplysia kurodai. Organic Lett. 2008, 10, 489–491. [Google Scholar] [CrossRef]
- Kigoshi, H.; Suenaga, K.; Takagi, M.; Akao, A.; Kanematsu, K.; Kamei, N.; Okugawa, Y.; Yamada, K. Cytotoxicity and actin-depolymerizing activity of aplyronine A, a potent antitumor macrolide of marine origin, and its analogs. Tetrahedron 2002, 58, 1075–1102. [Google Scholar] [CrossRef]
- Ojika, M.; Kigoshi, H.; Yoshida, Y.; Ishigaki, T.; Nisiwaki, M.; Tsukada, I.; Arakawa, M.; Ekimoto, H.; Yamada, K. Aplyronine A, a potent antitumor macrolide of marine origin, and the congeners aplyronines B and C: Isolation, structures, and bioactivities. Tetrahedron 2007, 63, 3138–3167. [Google Scholar] [CrossRef]
- Yamada, K.; Ojika, M.; Kigoshi, H.; Suenaga, K. Aplyronine A, a potent antitumour macrolide of marine origin, and the congeners aplyronines B-H: Chemistry and biology. Nat. Prod. Rep. 2009, 26, 27–43. [Google Scholar] [CrossRef]
- Kita, M.; Kigoshi, H. Marine natural products that interfere with multiple cytoskeletal protein interactions. Nat. Prod. Rep. 2015, 32, 534–542. [Google Scholar] [CrossRef]
- Ohno, O.; Morita, M.; Kitamura, K.; Teruya, T.; Yoneda, K.; Kita, M.; Kigoshi, H.; Suenaga, K. Apoptosis-inducing activity of the actin-depolymerizing agent aplyronine A and its side-chain derivatives. Bioorg. Med. Chem. Lett. 2013, 23, 1467–1471. [Google Scholar] [CrossRef]
- Hirata, K.; Muraoka, S.; Suenaga, K.; Kuroda, T.; Kato, K.; Tanaka, H.; Yamamoto, M.; Takata, M.; Yamada, K.; Kigoshi, H. Structure basis for antitumor effect of aplyronine A. J. Mol. Biol. 2006, 356, 945–954. [Google Scholar] [CrossRef] [PubMed]
- Kita, M.; Hirayama, Y.; Sugiyama, M.; Kigoshi, H. Development of highly cytotoxic and actin-depolymerizing biotin derivatives of aplyronine A. Angew. Chem. Int. Ed. 2011, 50, 9871–9874. [Google Scholar] [CrossRef] [PubMed]
- Kita, M.; Hirayama, Y.; Yoneda, K.; Yamagishi, K.; Chinen, T.; Usui, T.; Sumiya, E.; Uesugi, M.; Kigoshi, H. Inhibition of microtubule assembly by a complex of actin and antitumor macrolide aplyronine A. J. Am. Chem. Soc. 2013, 135, 18089–18095. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.P.; Noshi, M.N.; El-Awa, A.; Fuchs, P.L. Synthesis of the C1-C20 and C15-C27 segments of aplyronine A. Org. Lett. 2011, 13, 6342–6345. [Google Scholar] [CrossRef] [PubMed]
- Paterson, I.; Fink, S.J.; Lee, L.Y.; Atkinson, S.J.; Blakey, S.B. Total synthesis of aplyronine C. Org. Lett. 2013, 15, 3118–3121. [Google Scholar] [CrossRef]
- Anžiček, N.; Williams, S.; Housden, M.P.; Paterson, I. Toward aplyronine payloads for antibody-drug conjugates: Total synthesis of aplyronines A and D. Org. Biomol. Chem. 2018, 16, 1343–1350. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Current status of marine-derived compounds as warheads in anti-tumor drug candidates. Mar. Drugs 2017, 15, 99. [Google Scholar] [CrossRef] [Green Version]
- Kigoshi, H.; Imamura, Y.; Yoshikawa, K.; Yamada, K. Three new cytotoxic alkaloids, aplaminone, neoaplaminone and neoaplaminone sulfate from the marine mollusc Aplysia kurodai. Tetrahedron Lett. 1990, 31, 4911–4914. [Google Scholar] [CrossRef]
- Kusumi, T.; Uchida, H.; Inouye, Y.; Ishitsuka, M.; Yamamoto, H.; Kakisawa, H. Novel cytotoxic monoterpenes having a halogenated tetrahydropyran from Aplysia kurodai. J. Org. Chem. 1987, 52, 4597–4600. [Google Scholar] [CrossRef]
- Miyamoto, T.; Higuchi, R.; Marubayashi, N.; Komori, T. Two new polyhalogenated monoterpenes from the sea hare Aplysia kurodai. Liebigs Ann. Chem. 1988, 12, 1191–1193. [Google Scholar] [CrossRef]
- Katayama, A.; Ina, K.; Nozaki, H.; Nakayama, M. Structural elucidation of kurodainol, a novel halogenated monoterpene from sea hare (Aplysia kurodai). Agr. Biol. Chem. 1982, 46, 859–860. [Google Scholar] [CrossRef]
- Yamamura, S.; Hirata, Y. A naturally-occurring bromo-compound, aplysin-20 from Aplysia kurodai. Bull. Chem. Soc. Jpn. 1971, 44, 2560–2562. [Google Scholar] [CrossRef] [Green Version]
- Yamamura, S.; Terada, Y. Isoaplysin-20, a natural bromine-containing diterpene, from Aplysia kurodai. Tetrahedron Lett. 1977, 25, 2171–2172. [Google Scholar] [CrossRef]
- Ojika, M.; Yoshida, Y.; Okumura, M.; Ieda, S.; Yamada, K. Aplysiadiol, a new brominated diterpene from the marine mollusc Aplysia kurodai. J. Nat. Prod. 1990, 53, 1619–1622. [Google Scholar] [CrossRef]
- Ojika, M.; Kigoshi, H.; Yoshikawa, K.; Nakayama, Y.; Yamada, K. A new bromo diterpene, epi-aplysin-20, and ent-isoconcinndiol from the marine mollusc Aplysia kurodai. Bull. Chem. Soc. Jpn. 1992, 65, 2300–2302. [Google Scholar] [CrossRef]
- Ojika, M.; Yoshida, Y.; Nakayama, Y.; Yamada, K. Aplydilactone, a novel fatty acid metabolite from the marine mollusc Aplysia kurodai. Tetrahedron Lett. 1990, 31, 4907–4910. [Google Scholar] [CrossRef]
- Ojika, M.; Yoshida, T.; Yamada, K. Aplysepine, a novel 1,4-benzodiazepine alkaloid from the sea hare Aplysia kurodai. Tetrahedron Lett. 1993, 34, 5307–5308. [Google Scholar] [CrossRef]
- Iijima, R.; Kisugi, J.; Yamazaki, M. Antifungal activity of aplysianin E, a cytotoxic protein of sea hare (Aplysia kurodai) eggs. Dev. Comp. Immunol. 1995, 19, 13–19. [Google Scholar]
- Iijima, R.; Kisugi, J.; Yamazaki, M. A novel antimicrobial peptide from the sea hare Dolabella auricularia. Dev. Comp. Immunol. 2003, 27, 305–311. [Google Scholar] [CrossRef]
- Kaviarasan, T.; Siva, S.R.; Yogamoorthi, A. Antimicrobial secondary metabolites from marine gastropod egg capsules and egg masses. Asian Pac. J. Trop Biomed. 2012, 2, 916–922. [Google Scholar] [CrossRef] [Green Version]
- Yamamura, S.; Hirata, Y. Structures of aplysin and aplysinol, naturally occurring bromo-compounds. Tetrahedron 1963, 19, 1485–1496. [Google Scholar] [CrossRef]
- Ryu, G.S.; Park, S.H.; Choi, B.W.; Lee, N.H.; Hwang, H.J.; Ryu, S.Y.; Lee, B.H. Cytotoxic activities of brominated sesquiterpenes from the red alga Laurencia okamurae. Nat. Prod. Sci. 2002, 8, 103–107. [Google Scholar]
- Liu, J.; Ma, L.; Wu, N.; Liu, G.; Zheng, L.; Lin, X. Aplysin sensitizes cancer cells to TRAIL by suppressing P38 MAPK/survivin pathway. Mar. Drugs 2014, 12, 5072–5088. [Google Scholar] [CrossRef] [PubMed]
- Gong, A.J.; Gong, L.L.; Yao, W.C.; Ge, N.; Lu, L.X.; Liang, H. Aplysin induces apoptosis in glioma cells through HSP90/AKT pathway. Exp. Biol. Med. 2015, 240, 639–644. [Google Scholar] [CrossRef] [Green Version]
- Hegazy, M.E.F.; Moustfa, A.Y.; Mohamed, A.E.H.H.; Alhammady, M.A.; Elbehairi, S.E.I.; Ohta, S.; Paré, P.W. New cytotoxic halogenated sesquiterpenes from the Egyptian sea hare, Aplysia oculifera. Tetrahedron Lett. 2014, 55, 1711–1714. [Google Scholar] [CrossRef]
- Ortega, M.J.; Zubía, E.; Salvá, J. New polyhalogenated monoterpenes from the sea hare Aplysia punctata. J. Nat. Prod. 1997, 60, 482–484. [Google Scholar] [CrossRef]
- Pennings, S.C.; Paul, V.J.; Dunbar, D.C.; Hamann, M.T.; Lumbang, W.; Novack, B.; Jacobs, R.S. Unpalatable compounds in the marine gastropod Dolabella auricularia: Distribution and effect of diet. J. Chem. Ecol. 1999, 25, 735–755. [Google Scholar] [CrossRef]
- Suenaga, K.; Shibata, T.; Takada, N.; Kigoshi, H.; Yamada, K. Aurilol, a cytotoxic bromotriterpene isolated from the sea hare Dolabella auricularia. J. Nat. Prod. 1998, 61, 515–518. [Google Scholar] [CrossRef]
- Sone, H.; Kigoshi, H.; Yamada, K. Aurisides A and B, cytotoxic macrolide glycosides from the Japanese sea hare Dolabella auricularia. J. Org. Chem. 1996, 61, 8956–8960. [Google Scholar] [CrossRef]
- Paterson, I.; Florence, G.J.; Heimann, A.C.; Mackay, A.C. Stereocontrolled total synthesis of (−)-aurisides A and B. Angew. Chem. Int. Ed. 2005, 44, 1130–1133. [Google Scholar] [CrossRef]
- Tello-Aburto, R.; Olivo, H.F. A formal synthesis of the auriside aglycon. Organic Lett. 2008, 10, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Ojika, M.; Nemoto, T.; Yamada, K. Doliculols A and B, the non-halogenated C15 acetogenins with cyclic ether from the sea hare Dolabella auricularia. Tetrahedron Lett 1993, 34, 3461–3462. [Google Scholar] [CrossRef]
- Ojika, M.; Nagoya, T.; Yamada, K. Dolabelides A and B, cytotoxic 22-membered macrolides isolated from the sea hare Dolabella auricularia. Tetrahedron Lett. 1995, 36, 7491–7494. [Google Scholar] [CrossRef]
- Suenaga, K.; Nagoya, T.; Shibata, T.; Kigoshi, H.; Yamada, K. Dolabelides C and D, cytotoxic macrolides isolated from the sea hare Dolabella auricularia. J. Nat. Prod. 1997, 60, 155–157. [Google Scholar] [CrossRef]
- Yamada, K.; Ojika, M.; Kigoshi, H.; Suenaga, K. Cytotoxic substances from two species of Japanese sea hares: Chemistry and bioactivity. Proc. Japan Acad. Ser. B Phys. Biol. Sci. 2010, 86, 176–189. [Google Scholar] [CrossRef] [Green Version]
- Sone, H.; Kondo, T.; Kiryu, M.; Ishiwata, H.; Ojika, M.; Yamada, K. Dolabellin, a cytotoxic bisthiazole metabolite from the sea hare Dolabella auricularia: Structural determination and synthesis. J. Org. Chem. 1995, 60, 4774–4781. [Google Scholar] [CrossRef]
- Suenaga, K.; Kigoshi, H.; Yamada, K. Auripyrones A and B, cytotoxic polypropionates from the sea hare Dolabella auricularia: Isolation and structures. Tetrahedron Lett. 1996, 37, 5151–5154. [Google Scholar] [CrossRef]
- Lister, T.; Perkins, M.V. Total synthesis of auripyrone A. Angew. Chem. Int. Ed. 2006, 45, 2560–2564. [Google Scholar] [CrossRef]
- Jung, M.E.; Chaumontet, M.; Salehi-Rad, R. Total synthesis of auripyrone B using a non-aldol aldolcuprate opening process. Org. Lett. 2010, 12, 2872–2875. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.E.; Salehi-Rad, R. Total synthesis of auripyrone A using a tandem non-aldol aldol/Paterson aldol process as a key step. Angew. Chem. Int. Ed. 2009, 48, 8766–8769. [Google Scholar] [CrossRef]
- Hayakawa, I.; Takemura, T.; Fukasawa, E.; Ebihara, Y.; Sato, N.; Nakamura, T.; Suenaga, K.; Kigoshi, H. Total synthesis of auripyrones A and B and determination of the absolute configuration of auripyrone B. Angew. Chem. Int. Ed. 2010, 49, 2401–2405. [Google Scholar] [CrossRef] [PubMed]
- Park, P.K.; O’Malley, S.J.; Schmidt, D.R.; Leighton, J.L. Total synthesis of dolabelide D. J. Am. Chem. Soc. 2006, 128, 2796–2797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, P.R.; Chegondi, R.; Nguyen, J.; Thomas, C.D.; Waetzig, J.D.; Whitehead, A. Total synthesis of dolabelide C: A phosphate-mediated approach. J. Org. Chem. 2011, 76, 4358–4370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suenaga, K.; Mutou, T.; Shibata, T.; Itoh, T.; Kigoshi, H.; Yamada, K. Isolation and stereostructure of aurilide, a novel cyclodepsipeptide from the Japanese sea hare Dolabella auricularia. Tetrahedron Lett. 1996, 37, 6771–6774. [Google Scholar] [CrossRef]
- Han, B.; Gross, H.; Goeger, D.E.; Mooberry, S.L.; Gerwick, W.H. Aurilides B and C, cancer cell toxins from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 2006, 69, 572–575. [Google Scholar] [CrossRef]
- Suenaga, K.; Mutou, T.; Shibata, T.; Itoh, T.; Fujita, T.; Takada, N.; Hayamizu, K.; Takagi, M.; Irifune, T.; Kigoshi, H.; et al. Aurilide, a cytotoxic depsipeptide from the sea hare Dolabella auricularia: Isolation, structure determination, synthesis, and biological activity. Tetrahedron 2004, 60, 8509–8527. [Google Scholar] [CrossRef]
- Hollingshead, M.G.; Alley, M.C.; Camalier, R.F.; Abbott, B.J.; Mayo, J.G.; Malspeis, L.; Grever, M.R. In vivo cultivation of tumor cells in hollow fibers. Life Sci. 1995, 57, 131–141. [Google Scholar] [CrossRef]
- Sato, S.I.; Murata, A.; Orihara, T.; Shirakawa, T.; Suenaga, K.; Kigoshi, H.; Uesugi, M. Marine natural product aurilide activates the OPA1-mediated apoptosis by binding to prohibitin. Chem. Biol. 2011, 18, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Ishiwata, H.; Nemoto, T.; Ojika, M.; Yamada, K. Isolation and stereostructure of doliculide, a cytotoxic cyclodepsipeptide from the Japanese sea hare Dolabella auricularia. J. Org. Chem. 1994, 59, 4710–4711. [Google Scholar] [CrossRef]
- Bai, R.; Covell, D.G.; Liu, C.; Ghosh, A.K.; Hamel, E. (−)-Doliculide, a new macrocyclic depsipeptide enhancer of actin assembly. J. Biol. Chem. 2002, 277, 32165–32171. [Google Scholar] [CrossRef] [Green Version]
- Ishiwata, H.; Sone, H.; Kigoshi, H.; Yamada, K. Enantioselective total synthesis of doliculide, a potent cytotoxic cyclodepsipeptide of marine origin and structure-cytotoxicity relationships of synthetic doliculide congeners. Tetrahedron 1994, 50, 12853–12882. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Liu, C. Total synthesis of antitumor depsipeptide (-)-doliculide. Org. Lett. 2001, 3, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Matcha, K.; Madduri, A.V.; Roy, S.; Ziegler, S.; Waldmann, H.; Hirsch, A.K.; Minnaard, A.J. Total synthesis of (−)-Doliculide, structure-activity relationship studies and its binding to F-actin. Chem. Bio. Chem. 2012, 13, 2537–2548. [Google Scholar] [CrossRef] [PubMed]
- Foerster, F.; Braig, S.; Chen, T.; Altmann, K.H.; Vollmar, A.M. Pharmacological characterization of actin-binding (−)-Doliculide. Bioorg. Med. Chem. 2014, 22, 5117–5122. [Google Scholar] [CrossRef] [PubMed]
- Harrigan, G.G.; Luesch, H.; Yoshida, W.Y.; Moore, R.E.; Nagle, D.G.; Paul, V.J.; Mooberry, S.L.; Corbett, T.H.; Valeriote, F.A. Symplostatin 1: A Dolastatin 10 analogue from the marine cyanobacterium Symploca hydnoides. J. Nat. Prod. 1998, 61, 1075–1077. [Google Scholar] [CrossRef]
- Luesch, H.; Harrigan, G.G.; Goetz, G.; Horgen, F.D. The cyanobacterial origin of potent anticancer agents originally isolated from sea hares. Curr. Med. Chem. 2002, 9, 1791–1806. [Google Scholar] [CrossRef]
- Engene, N.; Tronholm, A.; Salvador-Reyes, L.A.; Luesch, H.; Paul, V.J. Caldora penicillata gen. nov., comb. nov. (Cyanobacteria), a pantropical marine species with biomedical relevance. J. Phycol. 2015, 51, 670–681. [Google Scholar] [CrossRef] [Green Version]
- Maderna, A.; Leverett, C.A. Recent advances in the development of new auristatins: Structural modifications and application in antibody drug conjugates. Mol. Pharm. 2015, 12, 1798–1812. [Google Scholar] [CrossRef]
- Pettit, G.R.; Kamano, Y.; Brown, P.; Gust, D.; Inoue, M.; Herald, C.L. Structure of the cyclic peptide dolastatin 3 from Dolabella auricularia. J. Am. Chem. Soc. 1982, 104, 905–907. [Google Scholar] [CrossRef]
- Pettit, G.R.; Kamano, Y.; Herald, C.L.; Fujii, Y.; Kizu, H.; Boyd, M.R.; Boettner, F.E.; Doubek, D.L.; Schmidt, J.M.; Chapuis, J.-C.; et al. Isolation of dolastatins 10-15 from the marine mollusc Dolabella auricularia. Tetrahedron 1993, 49, 9151–9170. [Google Scholar] [CrossRef]
- Yamada, K.; Kigoshi, H. Bioactive compounds from the sea hares of two genera: Aplysia and Dolabella. Bull. Chem. Soc. Jpn. 1997, 70, 1479–1489. [Google Scholar] [CrossRef]
- Sone, H.; Nemoto, T.; Ishiwata, H.; Ojika, M.; Yamada, K. Isolation, structure, and synthesis of dolastatin D, a cytotoxic cyclic depsipeptide from the sea hare Dolabella auricularia. Tetrahedron Lett. 1993, 34, 8449–8452. [Google Scholar] [CrossRef]
- Sone, H.; Nemoto, T.; Ojika, M.; Yamada, K. Isolation, structure, and synthesis of dolastatin C, a cytotoxic cyclic depsipeptide from the sea hare Dolabella auricularia. Tetrahedron Lett. 1993, 34, 8445–8448. [Google Scholar] [CrossRef]
- Sone, H.; Shibata, T.; Fujita, T.; Ojika, M.; Yamada, K. Dolastatin H and isodolastatin H, potent cytotoxic peptides from the sea hare Dolabella auricularia: Isolation, stereostructures, and synthesis. J. Am. Chem. Soc. 1996, 118, 1874–1880. [Google Scholar] [CrossRef]
- Mutou, T.; Kondo, T.; Ojika, M.; Yamada, K. Isolation and stereostructures of dolastatin G and nordolastatin G, cytotoxic 35-membered cyclodepsipeptides from the Japanese sea hare Dolabella auricularia. J. Org. Chem. 1996, 61, 6340–6345. [Google Scholar] [CrossRef]
- Luesch, H.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J. Lyngbyastatin 2 and norlyngbyastatin 2, analogues of dolastatin G and nordolastatin G from the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 1999, 62, 1702–1706. [Google Scholar] [CrossRef]
- Newman, D.J. The “utility” of highly toxic marine-sourced compounds. Mar. Drugs 2019, 17, 324. [Google Scholar] [CrossRef] [Green Version]
- Pettit, G.R.; Kamano, Y.; Holzapfel, C.W.; Van Zyl, W.J.; Tuinman, A.A.; Herald, C.L.; Baczynskyj, L.; Schmidt, J.M. Antineoplastic agents. 150. The structure and synthesis of dolastatin 3. J. Am. Chem. Soc. 1987, 109, 7581–7582. [Google Scholar] [CrossRef]
- Mitchell, S.S.; Faulkner, D.J.; Rubins, K.; Bushman, F.D. Dolastatin 3 and two novel cyclic peptides from a Palauan collection of Lyngbya majuscula. J. Nat. Prod. 2000, 63, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Pettit, G.R.; Kamano, Y.; Herald, C.L.; Tuinman, A.A.; Boettner, F.E.; Kizu, H.; Schmidt, J.M.; Baczynskyj, L.; Tomer, K.B.; Bontems, R.J. The isolation and structure of a remarkable marine animal antineoplastic constituent: Dolastatin 10. J. Am. Chem. Soc. 1987, 109, 6883–6885. [Google Scholar] [CrossRef]
- Pettit, G.R.; Singh, S.B.; Hogan, F.; Lloyd-Williams, P.; Herald, D.L.; Burkett, D.D.; Clewlow, P.J. The absolute configuration and synthesis of natural (-)-dolastatin 10. J. Am. Chem. Soc. 1989, 111, 5463–5466. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, M.; Joshi, P.; Rawat, D.S. Clinical status of anti-cancer agents derived from marine sources. Anticancer Agents Med. Chem. 2008, 8, 603–617. [Google Scholar] [CrossRef] [PubMed]
- Poncet, J. The dolastatins, a family of promising antineoplastic agents. Cur. Pharm. Des. 1999, 5, 139–162. [Google Scholar]
- Bai, R.; Pettit, G.R.; Hamel, E. Dolastatin 10, a powerful cytostatic peptide derived from a marine animal. Inhibition of tubulin polymerization mediated through the vinca alkaloid binding domain. Biochem. Pharmacol. 1990, 39, 1941–1949. [Google Scholar] [CrossRef]
- Pathak, S.; Multani, A.S.; Ozen, M.; Richardson, M.A.; Newman, R.A. Dolastatin-10 induces polyploidy, telomeric associations and apoptosis in a murine melanoma cell line. Oncol. Rep. 1998, 5, 373–379. [Google Scholar] [CrossRef]
- Mooberry, S.L.; Leal, R.M.; Tinley, T.L.; Luesch, H.; Moore, R.E.; Corbett, T.H. The molecular pharmacology of symplostatin 1: A new antimitotic dolastatin 10 analog. Int. J. Cancer 2003, 104, 512–521. [Google Scholar] [CrossRef]
- Kalemkerian, G.P.; Ou, X.; Adil, M.R.; Rosati, R.; Khoulani, M.M.; Madan, S.K.; Pettit, G.R. Activity of dolastatin 10 against small-cell lung cancer in vitro and in vivo: Induction of apoptosis and bcl-2 modification. Cancer Chemother. Pharmacol. 1999, 43, 507–515. [Google Scholar] [CrossRef]
- Mohammad, R.M.; Pettit, G.R.; Almatchy, V.P.; Wall, N.; Varterasian, M.; Al-Katib, A. Synergistic interaction of selected marine animal anticancer drugs against human diffuse large cell lymphoma. Anticancer Drugs 1998, 9, 149–156. [Google Scholar] [CrossRef]
- Aherne, G.W.; Hardcastle, A.; Valenti, M.; Bryant, A.; Rogers, P.; Pettit, G.R.; Srirangam, J.K.; Kelland, L.R. Antitumour evaluation of dolastatins 10 and 15 and their measurement in plasma by radioimmunoassay. Cancer Chemother. Pharmacol. 1996, 38, 225–232. [Google Scholar] [CrossRef]
- Watanabe, J.; Natsume, T.; Fujio, N.; Miyasaka, K.; Kobayashi, M. Induction of apoptosis in human cancer cells by TZT-1027, an antimicrotubule agent. Apoptosis 2000, 5, 345–353. [Google Scholar] [CrossRef]
- Verdier-Pinard, P.; Kepler, J.A.; Pettit, G.R.; Hamel, E. Sustained intracellular retention of dolastatin 10 causes its potent antimitotic activity. Mol. Pharmacol. 2000, 57, 180–187. [Google Scholar] [PubMed]
- Doronina, S.O.; Toki, B.E.; Torgov, M.Y.; Mendelsohn, B.A.; Cerveny, C.G.; Chace, D.F.; DeBlanc, R.L.; Gearing, R.P.; Bovee, T.D.; Siegall, C.B.; et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nature Biotech. 2003, 21, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, M.O.; Prota, A.E. Microtubule-targeting agents: Strategies to hijack the cytoskeleton. Trends Cell Biol. 2018, 28, 776–792. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.P.; Maaheimo, H.; Ekholm, F.S. New insight on the structural features of the cytotoxic auristatins MMAE and MMAF revealed by combined NMR spectroscopy and quantum chemical modelling. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flahive, E.; Srirangam, J. The Dolastatins. In Anticancer Agents from Natural Products, 2nd ed.; Cragg, G.M., Kingston, D.G.I., Newman, D.J., Eds.; Taylor and Francis: Boca Raton, FL, USA, 2011; pp. 263–290. [Google Scholar]
- Salvador-Reyes, L.A.; Luesch, H. Biological targets and mechanisms of action of natural products from marine cyanobacteria. Nat. Prod. Rep. 2015, 32, 478–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettit, G.R.; Barkoczy, J.; Kantoci, D. Human Cancer Inhibitory Pentapeptide Amides. US Patent 5410024, 25 April 1995. [Google Scholar]
- Watanabe, J.; Minami, M.; Kobayashi, M. Antitumor activity of TZT-1027 (Soblidotin). Anticancer Res. 2006, 26, 1973–1981. [Google Scholar]
- Natsume, T.; Watanabe, J.; Ogawa, K.; Yasumura, K.; Kobayashi, M. Tumor-specific antivascular effect of TZT-1027 (Soblidotin) elucidated by magnetic resonance imaging and confocal laser scanning microscopy. Cancer Sci. 2007, 98, 598–604. [Google Scholar] [CrossRef]
- Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Mar. Drugs 2014, 12, 1066–1101. [Google Scholar] [CrossRef] [Green Version]
- Pettit, G.R.; Kamano, Y.; Kizu, H.; Dufresne, C.; Herald, C.L.; Bontems, R.J.; Schmidt, J.M.; Boettner, F.E.; Nieman, R.A. Isolation and structure of the cell growth inhibitory depsipeptides dolastatins 11 and 12. Heterocycles 1989, 28, 553–558. [Google Scholar] [CrossRef]
- Pettit, G.R.; Kamano, Y.; Herald, C.L.; Dufresne, C.; Cerny, R.L.; Herald, D.L.; Schmidt, J.M.; Kizu, H. Isolation and structure of the cytostatic depsipeptide dolastatin 13 from the sea hare Dolabella auricularia. J. Am. Chem. Soc. 1989, 111, 5015–5017. [Google Scholar] [CrossRef]
- Pettit, G.R.; Kamano, Y.; Herald, C.L.; Dufresne, C.; Bates, R.B.; Schmidt, J.M.; Cerny, R.L.; Kizu, H. Antineoplastic agents. 190. Isolation and structure of the cyclodepsipeptide dolastatin 14. J. Org. Chem. 1990, 55, 2989–2990. [Google Scholar] [CrossRef]
- Harrigan, G.G.; Yoshida, W.Y.; Moore, R.E.; Nagle, D.G.; Park, P.U.; Biggs, J.; Paul, V.J.; Mooberry, S.L.; Corbett, T.H.; Valeriote, F.A. Isolation, structure determination, and biological activity of dolastatin 12 and lyngbyastatin 1 from Lyngbya majuscula/Schizothrix calcicola cyanobacterial assemblages. J. Nat. Prod. 1998, 61, 1221–1225. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Bates, R.B.; Crane, Z.D.; Dicus, C.W.; Gramme, M.R.; Hamel, E.; Marcischak, J.; Martinez, D.S.; McClure, K.J.; Nakkiew, P.; et al. Dolastatin 11 conformations, analogues and pharmacophore. Bioorg. Med. Chem. 2005, 13, 4138–4152. [Google Scholar] [CrossRef] [PubMed]
- Thornburg, C.C.; Thimmaiah, M.; Shaala, L.A.; Hau, A.M.; Malmo, J.M.; Ishmael, J.E.; Youssef, D.T.; McPhail, K.L. Cyclic depsipeptides, grassypeptolides D and E and ibu-epidemethoxylyngbyastatin 3, from a Red Sea Leptolyngbya cyanobacterium. J. Nat. Prod. 2011, 74, 1677–1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettit, G.R.; Kamano, Y.; Dufresne, C.; Cerny, R.L.; Herald, C.L.; Schmidt, J.M. Isolation and structure of the cytostatic linear depsipeptide dolastatin 15. J. Org. Chem. 1989, 54, 6005–6006. [Google Scholar] [CrossRef]
- Pettit, G.R.; Herald, D.L.; Singh, S.B.; Thornton, T.J.; Mullaney, J.T. Antineoplastic agents. 220. Synthesis of natural (-)-dolastatin 15. J. Am. Chem. Soc. 1991, 113, 6692–6693. [Google Scholar] [CrossRef]
- Akaji, K.; Hayashi, Y.; Kiso, Y.; Kuriyama, N. Convergent synthesis of dolastatin 15 by solid phase coupling of an N-methylamino acid. J. Org. Chem. 1999, 64, 405–411. [Google Scholar] [CrossRef]
- Yokosaka, A.; Izawa, A.; Sakai, C.; Sakurada, E.; Morita, Y.; Nishio, Y. Synthesis and evaluation of novel dolastatin 10 derivatives for versatile conjugations. Bioorg. Med. Chem. 2018, 26, 1643–1652. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Advanced preclinical and clinical trials of natural products and related compounds from marine sources. Curr. Med. Chem. 2004, 11, 1693–1713. [Google Scholar] [CrossRef]
- Miller, J.H.; Field, J.J.; Kanakkanthara, A.; Owen, J.G.; Singh, A.J.; Northcote, P.T. Marine invertebrate natural products that target microtubules. J. Nat. Prod. 2018, 81, 691–702. [Google Scholar] [CrossRef]
- Bai, R.; Friedman, S.J.; Pettit, G.R.; Hamel, E. Dolastatin 15, a potent antimitotic depsipeptide derived from Dolabella auricularia: Interaction with tubulin and effects on cellular microtubules. Biochem. Pharmacol. 1992, 43, 2637–2645. [Google Scholar] [CrossRef]
- Ali, M.A.; Rosati, R.; Pettit, G.; Kalemkerian, G.P. Dolastatin 15 induces apoptosis and BCL-2 phosphorylation in small cell lung cancer cell lines. Anticancer Res. 1998, 18, 1021–1026. [Google Scholar] [PubMed]
- Sato, M.; Sagawa, M.; Nakazato, T.; Ikeda, Y.; Kizaki, M. A natural peptide, dolastatin 15, induces G2/M cell cycle arrest and apoptosis of human multiple myeloma cells. Int. J. Oncol. 2007, 30, 1453–1459. [Google Scholar] [CrossRef] [PubMed]
- Beckwith, M.; Urba, W.J.; Longo, D.L. Growth inhibition of human lymphoma cell lines by the marine products, dolastatins 10 and 15. JNCI J. Nat. Cancer Ins. 1993, 85, 483–488. [Google Scholar] [CrossRef]
- Bai, R.; Edler, M.C.; Bonate, P.L.; Copeland, T.D.; Pettit, G.R.; Luduena, R.F.; Hamel, E. Intracellular activation and deactivation of tasidotin, an analog of dolastatin 15: Correlation with cytotoxicity. Mol. Pharmacol. 2009, 75, 218–226. [Google Scholar] [CrossRef]
- Ray, A.; Okouneva, T.; Manna, T.; Miller, H.P.; Schmid, S.; Arthaud, L.; Luduena, R.; Jordan, M.A.; Wilson, L. Mechanism of action of the microtubule-targeted antimitotic depsipeptide tasidotin (formerly ILX651) and its major metabolite tasidotin C-carboxylate. Cancer Res. 2007, 67, 3767–3776. [Google Scholar] [CrossRef] [Green Version]
- Garg, V.; Zhang, W.; Gidwani, P.; Kim, M.; Kolb, E.A. Preclinical analysis of tasidotin HCl in Ewing’s sarcoma, rhabdomyosarcoma, synovial sarcoma, and osteosarcoma. Clin. Cancer Res. 2007, 13, 5446–5454. [Google Scholar] [CrossRef] [Green Version]
- Salvador, L.A.; Biggs, J.S.; Paul, V.J.; Luesch, H. Veraguamides A− G, cyclic hexadepsipeptides from a dolastatin 16-producing cyanobacterium Symploca cf. hydnoides from Guam. J. Nat. Prod. 2011, 74, 917–927. [Google Scholar] [CrossRef] [Green Version]
- Pettit, G.R.; Xu, J.P.; Hogan, F.; Williams, M.D.; Doubek, D.L.; Schmidt, J.M.; Cerny, R.L.; Boyd, M.R. Isolation and structure of the human cancer cell growth inhibitory cyclodepsipeptide dolastatin 16. J. Nat. Prod. 1997, 60, 752–754. [Google Scholar] [CrossRef]
- Nogle, L.M.; Gerwick, W.H. Isolation of four new cyclic depsipeptides, antanapeptins A− D, and dolastatin 16 from a Madagascan collection of Lyngbya majuscula. J. Nat. Prod. 2002, 65, 21–24. [Google Scholar] [CrossRef]
- Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. JNCI J. Natl. Cancer I. 1991, 83, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Pettit, G.R.; Xu, J.P.; Hogan, F.; Cerny, R.L. Isolation and structure of dolastatin 17. Heterocycles 1998, 47, 491–496. [Google Scholar] [CrossRef]
- Kobayashi, S.; Kobayashi, J.; Yazaki, R.; Ueno, M. Toward the total synthesis of onchidin, a cytotoxic cyclic depsipeptide from a mollusc. Chem. Asian J. 2007, 2, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Pettit, G.R.; Xu, J.P.; Williams, M.D.; Hogan, F.; Schmidt, J.M.; Cerny, R.L. Antineoplastic agents 370. Isolation and structure of dolastatin 18. Bioorg. Chem. Med. Lett. 1997, 7, 827–832. [Google Scholar] [CrossRef]
- Pettit, G.R.; Xu, J.P.; Doubek, D.L.; Chapuis, J.C.; Schmidt, J.M. Antineoplastic Agents. 510. Isolation and structure of dolastatin 19 from the Gulf of California sea hare Dolabella auricularia. J. Nat. Prod. 2004, 67, 1252–1255. [Google Scholar] [CrossRef]
- Moore, R.E. Toxins, anticancer agents, and tumor promoters from marine prokaryotes. Pure Appl. Chem. 1982, 54, 1919–1934. [Google Scholar] [CrossRef]
- Watson, M. Midgut gland toxins of Hawaiian sea hares. I. Isolation and preliminary toxicological observations. Toxicon 1973, 11, 259–267. [Google Scholar] [CrossRef]
- Watson, M.; Rayner, M.D. Midgut gland toxins of Hawaiian sea hares. II. A preliminary pharmacological study. Toxicon 1973, 11, 269–276. [Google Scholar] [CrossRef]
- Ashida, Y.; Yanagita, R.C.; Takahashi, C.; Kawanami, Y.; Irie, K. Binding mode prediction of aplysiatoxin, a potent agonist of protein kinase C, through molecular simulation and structure-activity study on simplified analogs of the receptor-recognition domain. Bioorg. Med. Chem. 2016, 24, 4218–4227. [Google Scholar] [CrossRef]
- Cardellina, J.H.; Marner, F.J.; Moore, R.E. Seaweed dermatitis: Structure of Lyngbyatoxin A. Science 1979, 204, 193–195. [Google Scholar] [CrossRef]
- Cardellina, J.H.; Marner, F.J.; Moore, R.E. Malyngamide A, a novel chlorinated metabolite of the marine cyanophyte Lyngbya majuscula. J. Am. Chem. Soc. 1979, 101, 240–242. [Google Scholar] [CrossRef]
- Capper, A.; Tibbetts, I.R.; O’Neil, J.M.; Shaw, G.R. The fate of Lyngbya majuscula toxins in three potential consumers. J. Chem. Ecol. 2005, 31, 1595–1606. [Google Scholar] [CrossRef] [PubMed]
- Suntornchashwej, S.; Chaichit, N.; Isobe, M.; Suwanborirux, K. Hectochlorin and morpholine derivatives from the Thai sea hare, Bursatella leachii. J. Nat. Prod. 2005, 68, 951–955. [Google Scholar] [CrossRef] [PubMed]
- Marquez, B.L.; Watts, K.S.; Yokochi, A.; Roberts, M.A.; Verdier-Pinard, P.; Jimenez, J.I.; Hamel, E.; Scheuer, P.J.; Gerwick, W.H. Structure and absolute stereochemistry of hectochlorin, a potent stimulator of actin assembly. J. Nat. Prod. 2002, 65, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Appleton, D.R.; Sewell, M.A.; Berridge, M.V.; Copp, B.R. A new biologically active malyngamide from a New Zealand collection of the sea hare Bursatella leachii. J. Nat. Prod. 2002, 65, 630–631. [Google Scholar] [CrossRef]
- Suntornchashwej, S.; Suwanborirux, K.; Koga, K.; Isobe, M. Malyngamide X: The first (7R)-lyngbic acid that connects to a new tripeptide backbone from the Thai sea hare Bursatella leachii. Chem. Asian J. 2007, 2, 114–122. [Google Scholar] [CrossRef]
- Fischel, J.L.; Lemee, R.; Formento, P.; Caldani, C.; Moll, J.L.; Pesando, D.; Meinesz, A.; Grelier, P.; Pietra, P.; Guerriero, A. Cell growth inhibitory effects of caulerpenyne, a sesquiterpenoid from the marine algae Caulerpa taxifolia. Anticancer Res. 1995, 15, 2155–2160. [Google Scholar]
- Cavas, L.; Baskin, Y.; Yurdakoc, K.; Olgun, N. Antiproliferative and newly contributed apoptotic activities from an invasive marine alga: Caulerpa racemosa var. cylindracea. J. Exp. Mar. Biol. Ecol. 2006, 339, 111–119. [Google Scholar] [CrossRef]
- Barbier, P.; Guise, S.; Huitorel, P.; Amade, P.; Pesando, D.; Briand, C.; Peyrot, V. Caulerpenyne from Caulerpa taxifolia has an antiproliferative activity on tumor cell line SK-N-SH and modifies the microtubule network. Life Sci. 2001, 70, 415–429. [Google Scholar] [CrossRef]
- Parent-Massin, D.; Fournier, V.; Amade, P.; Lemee, R.; Durand-Clement, M.; Delescluse, C.; Pesando, D. Evaluation of the toxicological risk to humans of caulerpenyne using human hematopoietic progenitors, melanocytes, and keratinocytes in culture. J. Toxicol. Environ. Health 1996, 47, 47–59. [Google Scholar] [CrossRef]
- Bourdron, J.; Barbier, P.; Allegro, D.; Villard, C.; Lafitte, D.; Commeiras, L.; Parrain, J.L.; Peyrot, V. Caulerpenyne binding to tubulin: Structural modifications by a non conventional pharmacological agent. Med. Chem. 2009, 5, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Pesando, D.; Pesci-Bardon, C.; Huitorel, P.; Girard, J.P. Caulerpenyne blocks MBP kinase activation controlling mitosis in sea urchin eggs. Eur. J. Cell. Biol. 1999, 78, 903–910. [Google Scholar] [CrossRef]
- Gao, J.; Hamann, M.T. Chemistry and biology of kahalalides. Chem. Rev. 2011, 111, 3208–3235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciavatta, M.L.; Devi, P.; Carbone, M.; Mathieu, V.; Kiss, R.; Casapullo, A.; Gavagnin, M. Kahalalide F analogues from the mucous secretion of Indian sacoglossan mollusc Elysia ornata. Tetrahedron 2016, 72, 625–631. [Google Scholar] [CrossRef]
- Ashour, M.; Edrada, R.; Ebel, R.; Wray, V.; Wätjen, W.; Padmakumar, K.; Müller, W.E.G.; Lin, W.H.; Proksch, P. Kahalalide derivatives fromthe Indian dacoglossan mollusk Elysia grandifolia. J. Nat. Prod. 2006, 69, 1547–1553. [Google Scholar] [CrossRef]
- Hamann, M.T.; Scheuer, P.J. Kahalalide F: A bioactive depsipeptide from the sacoglossan mollusk Elysia rufescens and the green alga Bryopsis sp. J. Am. Chem. Soc. 1993, 115, 5825–5826. [Google Scholar] [CrossRef]
- Kan, Y.; Fujita, T.; Sakamoto, B.; Hokama, Y.; Nagai, H. A new cyclic depsipeptide from the Hawaiian green alga Bryopsis species. J. Nat. Prod. 1999, 62, 1169–1172. [Google Scholar] [CrossRef]
- Suárez, Y.; González, L.; Cuadrado, A.; Berciano, M.; Lafarga, M.; Muñoz, A. Kahalalide F, a new marine-derived compound, induces oncosis in human prostate and breast cancer cells. Mol. Cancer Ther. 2003, 2, 863–872. [Google Scholar]
- Janmaat, M.L.; Rodriguez, J.A.; Jimeno, J.; Kruyt, F.A.E.; Giaccone, G. Kahalalide F induces necrosis-like cell death that involves depletion of ErbB3 and inhibition of Akt signaling. Mol. Pharmacol. 2005, 68, 502–510. [Google Scholar] [CrossRef] [Green Version]
- Pardo, B.; Paz-Ares, L.; Tabernero, J.; Ciruelos, E.; García, M.; Salazar, R.; López, A.; Blanco, M.; Nieto, A.; Jimeno, J.; et al. Phase I clinical and pharmacokinetic study of kahalalide F administered weekly as a 1-hour infusion to patients with advanced solid tumors. Clin. Cancer Res. 2008, 14, 1116–1123. [Google Scholar] [CrossRef] [Green Version]
- Rademaker-Lakhai, J.M.; Horenblas, S.; Meinhardt, W.; Stokvis, E.; de Reijke, T.M.; Jimeno, J.M.; Lopez-Lazaro, L.; Martin, J.A.L.; Beijnen, J.H.; Schellens, J.H. Phase I clinical and pharmacokinetic study of kahalalide F in patients with advanced androgen refractory prostate cancer. Clin. Cancer Res. 2005, 11, 1854–1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sewell, J.M.; Mayer, I.; Langdon, S.P.; Smyth, J.F.; Jodrell, D.I.; Guichard, S.M. The mechanism of action of Kahalalide F: Variable cell permeability in human hepatoma cell lines. Eur. J. Cancer 2005, 41, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Miguel-Lillo, B.; Valenzuela, B.; Peris-Ribera, J.E.; Soto-Matos, A.; Pérez-Ruixo, J.J. Population pharmacokinetics of kahalalide F in advanced cancer patients. Cancer Chemother. Pharmacol. 2015, 76, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Martín-Algarra, S.; Espinosa, E.; Rubió, J.; López, J.J.L.; Manzano, J.L.; Carrión, L.A.; Plazaola, A.; Tanovic, A.; Paz-Ares, L. Phase II study of weekly Kahalalide F in patients with advanced malignant melanoma. Eur. J. Cancer 2009, 45, 732–735. [Google Scholar] [CrossRef]
- Wang, B.; Waters, A.L.; Valeriote, F.A.; Hamann, M.T. An efficient and cost-effective approach to Kahalalide F N-terminal modifications using a nuisance algal bloom of Bryopsis pennata. Biochim. Biophys. Acta (BBA) Gen. Subj. 2015, 1850, 1849–1854. [Google Scholar] [CrossRef] [Green Version]
- Shilabin, A.G.; Hamann, M.T. In vitro and in vivo evaluation of select kahalalide F analogs with antitumor and antifungal activities. Bioorg. Med. Chem. 2011, 19, 6628–6632. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.; Fricke, W.F.; Hamann, M.T.; Esquenazi, E.; Dorrestein, P.C.; Hill, R.T. Characterization of the bacterial community of the chemically defended hawaiian sacoglossan Elysia rufescens. Appl. Environ. Microbiol. 2013, 79, 7073–7081. [Google Scholar] [CrossRef] [Green Version]
- Ling, Y.H.; Miguel, A.; Zou, Y.; Yuan, Z.; Lu, B.; José, J.; Ana, M.C.; Perez-Soler, R. PM02734 (elisidepsin) induces caspase-independent cell death associated with features of autophagy, inhibition of the Akt/mTOR signaling pathway, and activation of death-associated protein kinase. Clin. Cancer Res. 2011, 17, 5353–5366. [Google Scholar] [CrossRef] [Green Version]
- Serova, M.; de Gramont, A.; Bieche, I.; Riveiro, M.E.; Galmarini, C.M.; Aracil, M.; Jimeno, J.; Faivre, S.; Raymond, E. Predictive factors of sensitivity to elisidepsin, a novel Kahalalide F-derived marine compound. Mar. Drugs 2013, 11, 944–959. [Google Scholar] [CrossRef] [Green Version]
- Goldwasser, F.; Faivre, S.; Alexandre, J.; Coronado, C.; Fernandez-Garcıa, E.M.; Kahatt, C.M.; Paramio, P.G.; Dios, J.L.; Miguel-Lillo, B.; Raymond, E. Phase I study of elisidepsin (IrvalecR) in combination with carboplatin or gemcitabine in patients with advancedmalignancies. Invest. New Drugs 2014, 32, 500–509. [Google Scholar] [CrossRef]
- Ratain, M.J.; Geary, D.; Undevia, S.D.; Coronado, C.; Alfaro, V.; Iglesias, J.L.; Schilsky, R.L.; Miguel-Lillo, B. First-in-human, phase I study of elisidepsin (PM02734) administered as a 30-min or as a 3-hour intravenous infusion every three weeks in patients with advanced solid tumors. Invest. New Drugs 2015, 33, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Herrero, A.B.; Astudillo, A.M.; Balboa, M.A.; Cuevas, C.; Balsinde, J.; Moreno, S. Levels of SCS7/FA2H-mediated fatty acid 2-hydroxylation determine the sensitivity of cells to antitumor PM02734. Cancer Res. 2008, 68, 9779–9787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Váradi, T.; Roszik, J.; Lisboa, D.; Vereb, G.; Molina-Guijarro, J.M.; Galmarini, C.M.; Szöllősi, J.; Nagy, P. ErbB protein modifications are secondary to severe cell membrane alterations induced by elisidepsin treatment. Eur. J. Pharmacol. 2011, 667, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Molina-Guijarro, J.M.; García, C.; Macías, Á.; García-Fernández, L.F.; Moreno, C.; Reyes, F.; Martínez-Leal, J.F.; Fernández, R.; Martínez, V.; Valenzuela, C.; et al. Elisidepsin interacts directly with glycosylceramides in the plasma membrane of tumor cells to induce necrotic cell death. PLoS ONE 2015, 10, e0140782. [Google Scholar] [CrossRef]
- Salazar, R.; Jones, R.J.; Oaknin, A.; Crawford, D.; Cuadra, C.; Hopkins, C.; Gil, M.; Coronado, C.; Soto-Matos, A.; Cullell-Young, M.; et al. A phase I and pharmacokinetic study of elisidepsin (PM02734) in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 2012, 70, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Petty, R.; Anthoney, A.; Metges, J.P.; Alsina, M.; Gonçalves, A.; Brown, J.; Montagut, C.; Gunzer, K.; Laus, G.; Dios, J.L.I.; et al. Phase Ib/II study of elisidepsin in metastatic or advanced gastroesophageal cancer (IMAGE trial). Cancer Chemother. Pharmacol. 2016, 77, 819–827. [Google Scholar] [CrossRef]
- Ciavatta, M.L.; Villani, G.; Trivellone, E.; Cimino, G. Two new labdane aldehydes from the skin of the notaspidean Pleurobranchaea meckelii. Tetrahedron Lett. 1995, 36, 8673–8676. [Google Scholar] [CrossRef]
- Díaz-Marrero, A.R.; Dorta, E.; Cueto, M.; Rovirosa, J.; San Martín, A.; Loyola, L.A.; Darias, J. New polyhydroxylated steroids from the marine pulmonate Trimusculus peruvianus. Arkivoc J. Org. Chem. 2003, 10, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.; Riguera, R.; Debitus, C. The natural polypropionate-derived esters of the mollusk Onchidium sp. J. Org. Chem. 1992, 57, 4624–4632. [Google Scholar] [CrossRef]
- Zhou, Z.F.; Li, X.L.; Yao, L.G.; Li, J.; Gavagnin, M.; Guo, Y.W. Marine bis-γ-pyrone polypropionates of onchidione family and their effects on the XBP1 gene expression. Bioorg. Med. Chem. Lett. 2018, 28, 1093–1096. [Google Scholar] [CrossRef]
- Ireland, C.M.; Biskupiak, J.E.; Hite, G.J.; Rapposch, M.; Scheuer, P.J.; Ruble, J.R. Ilikonapyrone esters, likely defense allomones of the mollusk Onchidium verruculatum. J. Org. Chem. 1984, 49, 559–561. [Google Scholar] [CrossRef]
- Arimoto, H.; Cheng, J.-F.; Nishiyama, S.; Yamamura, S. Synthetic studies on fully substituted γ-pyrone-containing natural products: The absolute configurations of ilikonapyrone and peroniatriols I and II. Tetrahedron Lett. 1993, 34, 5781–5784. [Google Scholar] [CrossRef]
- Maschek, J.A. Chemical Investigation of the Antarctic Marine Invertebrates Austrodoris kerguelenensis & Dendrilla membranosa and the Antarctic Red Alga Gigartina skottsbergii. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2011. [Google Scholar]
- Morgan, J.B.; Mahdi, F.; Liu, Y.; Coothankandaswamy, V.; Jekabsons, M.B.; Johnson, T.A.; Sashidhara, K.V.; Crews, P.; Nagle, D.G.; Zhou, Y.D. The marine sponge metabolite mycothiazole: A novel prototype mitochondrial complex I inhibitor. Bioorg. Med. Chem. 2010, 18, 5988–5994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, K.J.; Singh, A.J.; Cameron, A.; Tan, A.S.; Leahy, D.C.; O’Sullivan, D.; Joshi, P.; La Flamme, A.C.; Northcote, P.T.; Berridge, M.V.; et al. Mitochondrial genome-knockout cells demonstrate a dual mechanism of action for the electron transport complex I inhibitor mycothiazole. Mar. Drugs 2012, 10, 900–917. [Google Scholar] [CrossRef] [PubMed]
- Hamann, M.T.; Scheuer, P.J.; Kelly-Borges, M. Biogenetically diverse, bioactive constituents of a sponge, order Verongida: Bromotyramines and sesquiterpene-shikimate derived metabolites. J. Org. Chem. 1993, 58, 6565–6569. [Google Scholar] [CrossRef]
- Kazlauskas, R.; Murphy, P.T.; Wells, R.J.; Noack, K.; Oberhansli, W.E.; Schonholzer, P. A new series of diterpenes from Australian Spongia species. Australian J. Chem. 1979, 32, 867–880. [Google Scholar] [CrossRef]
- Pettit, G.R.; Herald, C.L.; Allen, M.S.; Von Dreele, R.B.; Vanell, L.D.; Kao, J.P.; Blake, W. Antineoplastic agents. 48. The isolation and structure of aplysistatin. J. Am. Chem. Soc. 1977, 99, 262–263. [Google Scholar] [CrossRef]
- Fischbach, M.A.; Walsh, C.T. Antibiotics for emerging pathogens. Science 2009, 325, 1089–1093. [Google Scholar] [CrossRef]
- Kubo, I.; Taniguchi, M. Polygodial, an antifungal potentiator. J. Nat. Prod. 1988, 51, 22–29. [Google Scholar] [CrossRef]
- Benkendorff, K.; Davis, A.R.; Bremner, J.B. Chemical defense in the egg masses of benthic invertebrates: An assessment of antibacterial activity in 39 mollusks and 4 polychaetes. J. Invertebr. Pathol. 2001, 78, 109–118. [Google Scholar] [CrossRef]
- El Sayed, K.A.; Bartyzel, P.; Shen, X.; Perry, T.L.; Zjawiony, J.K.; Hamann, M.T. Marine natural products as anti-tuberculosis agents. Tetrahedron 2000, 56, 949–953. [Google Scholar] [CrossRef]
- Singh, E.K.; Ramsey, D.M.; McAlpine, S.R. Total synthesis of trans,trans-sanguinamide B and conformational isomers. Organic Lett. 2012, 14, 1198–1201. [Google Scholar] [CrossRef] [PubMed]
- Wahyudi, H.; Tantisantisom, W.; Liu, X.; Ramsey, D.M.; Singh, E.K.; McAlpine, S.R. Synthesis, structure-activity analysis, and Biological Evaluation of Sanguinamide B Analogues. J. Org. Chem. 2012, 77, 10596–10616. [Google Scholar] [CrossRef] [PubMed]
- Doralyn S., D.; Evan W., R.; Arthur S., E.; Tadeusz F., M. Structure Elucidation at the Nanomole Scale. 1. Trisoxazole Macrolides and Thiazole-Containing Cyclic Peptides from the Nudibranch Hexabranchus sanguineus. J. Nat. Prod. 2009, 72, 732–738. [Google Scholar]
- Zhang, W.; Gavagnin, M.; Guo, Y.W.; Mollo, E.; Ghiselin, M.T.; Cimino, G. Terpenoid metabolites of the nudibranch Hexabranchus sanguineus from the South China Sea. Tetrahedron 2007, 63, 4725–4729. [Google Scholar] [CrossRef]
- Guo, Y.; Gavagnin, M.; Mollo, E.; Trivellone, E.; Cimino, G.; Fakhr, I. Structure of the pigment of the Red Sea nudibranch Hexabranchus sanguineus. Tetrahedron Lett. 1998, 39, 2635–2638. [Google Scholar] [CrossRef]
- He, H.; Faulkner, D.J. Renieramycins E and F from the sponge Reniera sp. Reassignment of the stereochemistry of the renieramycins. J. Org. Chem. 1989, 54, 5822–5824. [Google Scholar] [CrossRef]
- Reddy, K.V.; Mohanraju, R.; Murthy, K.N.; Ramesh, C.; Karthick, P. Antimicrobial properties of nudibranchs tissues extracts from South Andaman, India. J. Coast. Life Med. 2015, 3, 582–584. [Google Scholar]
- Fahey, S.J.; Carroll, A.R. Natural products isolated from species of Halgerda Bergh, 1880 (Mollusca: Nudibranchia) and their ecological and evolutionary implications. J. Chem. Ecol. 2007, 33, 1226–1234. [Google Scholar] [CrossRef]
- Ishibashi, M.; Yamaguchi, Y.; Hirano, Y.J. Bioactive natural products from nudibranchs. In Biomaterials from Aquatic and Terrestrial Organisms; Fingerman, M., Nagabhushanam, R., Eds.; Science Publishers: Enfield, NH, USA, 2006; pp. 513–535. [Google Scholar]
- Ramya, M.S.; Sivasubramanian, K.; Ravichandran, S.; Anbuchezhian, R. Screening of antimicrobial compound from the sea slug Armina babai. Bangladesh J. Pharmacol. 2014, 9, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.; Seo, Y. Isolation of new ceramides from the gorgonian Acabaria undulata. J. Nat. Prod. 1995, 58, 948–953. [Google Scholar] [CrossRef]
- Hay, M.E.; Pawlik, J.R.; Duffy, J.E.; Fenical, W. Seaweed-herbivore-predator interactions: Host-plant specialization reduces predation on small herbivores. Oecologia 1989, 81, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Paul, V.J.; Fenical, W. Chemical defense in tropical green algae, order Caulerpales. Mar. Ecol. Prog. Ser. 1986, 34, 157–169. [Google Scholar] [CrossRef]
- Wright, A.D.; König, G.M.; Angerhofer, C.K.; Greenidge, P.; Linden, A.; Desqueyroux-Faundez, R. Antimalarial activity: The search for marine-derived natural products with selective antimalarial activity. J. Nat. Prod. 1996, 59, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Angerhofer, C.K.; Pezzuto, J.M.; König, G.M.; Wright, A.D.; Sticher, O. Antimalarial activity of sesquiterpenes from the marine sponge Acanthella klethra. J. Nat. Prod. 1992, 55, 1787–1789. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.D.; Wang, H.; Gurrath, M.; König, G.M.; Kocak, G.; Neumann, G.; Loria, P.; Foley, M.; Tilley, L. Inhibition of heme detoxification processes underlies the antimalarial activity of terpene isonitrile compounds from marine sponges. J. Med. Chem. 2001, 44, 873–885. [Google Scholar] [CrossRef]
- White, A.M.; Dao, K.; Vrubliauskas, D.; Könst, Z.A.; Pierens, G.K.; Mándi, A.; Andrews, K.T.; Skinner-Adams, T.S.; Clarke, M.E.; Narbutas, P.T.; et al. Catalyst-controlled stereoselective synthesis secures the structure of the antimalarial isocyanoterpene pustulosaisonitrile-1. J. Org. Chem. 2017, 82, 13313–13323. [Google Scholar] [CrossRef]
- Yang, S.S.; Cragg, G.M.; Newman, D.J.; Bader, J.P. Natural product-based anti-HIV drug discovery and development facilitated by the NCI developmental therapeutics program. J. Nat. Prod. 2001, 64, 265–277. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep. 2000, 17, 175–285. [Google Scholar] [CrossRef] [Green Version]
- Gochfeld, D.J.; El Sayed, K.A.; Yousaf, M.; Hu, J.; Bartyzel, P.; Dunbar, D.C.; Wilkins, S.P.; Zjawiony, J.K.; Schinazi, R.F.; Schlueter-Wirtz, S.; et al. Marine natural products as lead anti-HIV agents. Mini-Rev. Med. Chem. 2003, 3, 401–424. [Google Scholar] [CrossRef]
- Mitjà, O.; Clotet, B. Use of antiviral drugs to reduce COVID-19 transmission. Lancet Glob. Health 2020, 8, e639–e640. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Tietjen, I.; Chen, M.; Williams, D.E.; Daoust, J.; Brockman, M.A.; Andersen, R.J. Sesterterpenoids isolated from the sponge Phorbas sp. activate latent HIV-1 provirus expression. J. Org. Chem. 2016, 81, 11324–11334. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, R.S.; Bober, M.A.; Pinto, I.; Williams, A.B.; Jacobson, P.B.; de Carvalho, M.S. Pharmacological studies of marine novel marine metabolites. In Advances in Marine Biotechnology; Attaway, D.H., Zaborsky, O.R., Eds.; Plenum Press: New York, NY, USA, 1993; Volume 1, pp. 77–99. [Google Scholar]
- Cimino, G.; De Stefano, S.; Minale, L. Scalaradial, a third sesterterpene with the tetracarbocyclic skeleton of scalarin, from the sponge Cacospongia mollior. Experientia 1974, 30, 846–847. [Google Scholar]
- De Carvalho, M.S.; Jacobs, R.S. Two-step inactivation of bee venom phospholipase A2 by scalaradial. Biochem. Pharm. 1991, 42, 1621–1626. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Lobo-da-Cunha, A.; Taveira, M.; Ferreira, M.; Valentão, P.; Andrade, P.B. Digestive gland from Aplysia depilans Gmelin: Leads for inflammation treatment. Molecules 2015, 20, 15766–15780. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Romero, C.; Mayer, A.M.; Rodriguez, A.D. Dactyloditerpenol acetate, a new prenylbisabolane-type diterpene from Aplysia dactylomela with significant in vitro anti-neuroinflammatory activity. Bioorg. Med. Chem. Lett. 2014, 24, 344–348. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, K.A.; Hossain, C.F.; Zhang, L.; Bruick, R.K.; Zhou, Y.D.; Nagle, D.G. Laurenditerpenol, a new diterpene from the tropical marine alga Laurencia intricata that potently inhibits HIF-1 mediated hypoxic signaling in breast tumor cells. J. Nat. Prod. 2004, 67, 2002–2007. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.Y.; Choi, H. Natural products from marine organisms with neuroprotective activity in the experimental models of Alzheimer’s disease, Parkinson’s disease and ischemic brain stroke: Their molecular targets and action mechanisms. Arch. Pharm. Res. 2015, 38, 139–170. [Google Scholar] [CrossRef]
- Leiros, M.; Alonso, E.; Rateb, M.E.; Houssen, W.E.; Ebel, R.; Jaspars, M.; Alfonso, A.; Botana, L.M. Gracilins: Spongionella-derived promising compounds for Alzheimer disease. Neuropharmacol. 2015, 93, 285–293. [Google Scholar] [CrossRef]
- Llorach-Pares, L.; Rodriguez-Urgelles, E.; Nonell-Canals, A.; Alberch, J.; Avila, C.; Sanchez-Martinez, M.; Giralt, A. Meridianins and Lignarenone B as Potential GSK3β Inhibitors and Inductors of Structural Neuronal Plasticity. Biomolecules 2020, 10, 639. [Google Scholar] [CrossRef] [Green Version]
- Meijer, L.; Flajolet, M.; Greengard, P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol. Sci. 2004, 25, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.K.; Alkon, D.L. Bryostatin-1: Pharmacology and Therapeutic Potential as a CNS Drug. CNS Drug Rev. 2006, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cimino, G.; Spinella, A.; Sodano, G. Potential alarm pheromones from the Mediterranean opisthobranch Scaphander lignarius. Tetrahedron Lett. 1989, 30, 5003–5004. [Google Scholar] [CrossRef]
- Davis, W.J.; Mpitsos, G.J. Behavioral choice and habituation in the marine mollusk Pleurobranchaea californica MacFarland (Gastropoda, Opisthobranchia). Z. Vgl. Physiol. 1971, 75, 207–232. [Google Scholar]
- McNabb, P.; Selwood, A.I.; Munday, R.; Wood, S.A.; Taylor, D.I.; MacKenzie, L.A.; van Ginkel, R.; Rhodes, L.L.; Cornelisen, C.; Heasman, K.; et al. Detection of tetrodotoxin from the grey side-gilled sea slug Pleurobranchaea maculata, and associated dog neurotoxicosis on beaches adjacent to the Hauraki Gulf, Auckland, New Zealand. Toxicon 2010, 56, 466–473. [Google Scholar] [CrossRef]
- Salvitti, L.R.; Wood, S.A.; Winsor, L.; Cary, S.C. Intracellular immunohistochemical detection of tetrodotoxin in Pleurobranchaea maculata (Gastropoda) and Stylochoplana sp. (Turbellaria). Mar. Drugs 2015, 13, 756–769. [Google Scholar] [CrossRef] [Green Version]
- Chau, R.; Kalaitzis, J.A.; Neilan, B.A. On the origins and biosynthesis of tetrodotoxin. Aquat. Toxicol. 2011, 104, 61–72. [Google Scholar] [CrossRef]
- Salvitti, L.R.; Wood, S.A.; Fairweather, R.; Cary, S.C. In situ accumulation of tetrodotoxin in non-toxic Pleurobranchaea maculata (Opisthobranchia). Aquat. Sci. 2016, 79, 1–10. [Google Scholar] [CrossRef]
- Böhringer, N.; Fisch, K.M.; Schillo, D.; Bara, R.; Hertzer, C.; Grein, F.; Eisenbarth, J.-H.; Kaligis, F.; Schneider, T.; Wägele, H.; et al. Antimicrobial potential of bacteria associated with marine sea slugs from North Sulawesi, Indonesia. Front. Microbiol. 2017, 8, 1092. [Google Scholar] [CrossRef]
- Fisch, K.M.; Schäberle, T.F. Toolbox for antibiotics discovery from microorganisms. Arch. Pharm. 2016, 349, 683–691. [Google Scholar] [CrossRef]
- Newman, D.J. Developing natural product drugs: Supply problems and how they have been overcome. Pharmacol. Ther. 2016, 162, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hosta, L.; Pla-Roca, M.; Arbiol, J.; López-Iglesias, C.; Samitier, J.; Cruz, L.J.; Kogan, M.J.; Albericio, F. Conjugation of Kahalalide F with gold nanoparticles to enhance in vitro antitumoral activity. Bioconjugate Chem. 2009, 20, 138–146. [Google Scholar] [CrossRef] [PubMed]
Phylum Mollusca Class Gastropoda Subclass Heterobranchia | Species #* 80548 33193 | NPs #** | Main Types of Molecules ** | Main Diet ** |
---|---|---|---|---|
Nudibranchia | 2462 | ~250 | Terpenoids, alkaloids, macrolides, peptides, acidic secretions, etc. | Porifera, bryozoa, tunicata, cnidaria, other heterobranchs, crustacea, turbellaria |
Pleurobranchoidea | 96 | 25 | Terpenoids, alkaloids, peptides, acidic secretions, etc. | Tunicates, other animals |
Tylodinoidea | 12 | 6 | Alkaloids, diacylglycerols, etc. | Porifera |
Cephalaspidea | 875 | 40 | Polyketides, polypropionates, polyacetates, ethers, acidic secretions, etc. | Algae, other heterobranchs, porifera, other animals |
Anaspidea | 94 | ~200 | Polyketides, terpenoids, peptides, etc. | Algae, sea grasses, cyanobacteria |
Pteropoda | 409 | 5 | Polypropionates, etc. | Phytoplankton, other pteropods |
Sacoglossa | 362 | ~120 | Terpenoids, polypropionates, etc. | Algae |
Pulmonata | 500 *** | ~75 | Polypropionates, terpenoids, peptides, etc. | Algae |
Species (#) | Compounds (#) | Predator(s) Tested | References (#) |
---|---|---|---|
Nudibranchia (68) | |||
Bathydoris hodgsoni | Hodgsonal (1) | Sea star Odontaster validus, anemone Epiactis sp. | [54,55,56] |
Doris (Austrodoris) kerguelenensis | Diterpene diacylglycerides (2) | Sea star Odontaster validus, anemone Epiactis sp. | [58,59,60] |
Aldisa sanguinea | 3-Oxo-chol-4-ene-24-oic acid (3), unsaturated analogue (4) | Goldfish (Carassius auratus) | [73] |
Aldisa andersoni | 9-Chloro-phorbazole D (5), N1-methyl-phorbazole A (6), phorbazoles A (7), B (8), and D (9) | Shrimp | [54,56,75,76,77] |
Sclerodoris tanya | Tanyolides A (10) and B (11) | Fishes (Gibbonsia elegans and Paraclinus integrippinis) | [78] |
Paradoris (Discodoris) indecora | Variabilin (12) | Marine and freshwater fishes | [79] |
Dendrodoris limbata | Polygodial (13), olepupuane (14) | Marine and freshwater fishes | [80,81,83,84] |
Dendrodoris arborescens | 7-Deacetoxyolepupuane (15) | Feeding deterrence | [87] |
Dendrodoris carbunculosa | Dendrocarbins A–N (16) | Feeding deterrence | [86] |
Dendrodoris denisoni | Cinnamolide (17), olepupuane (14), polygodial (13) | Fish | [88] |
Doriopsilla pelseneeri | Pelseneeriols 1 (18) and 2, polygodial (13) | Feeding deterrence | [95,99] |
Doriopsilla albopunctata, D. areolata, D. janaina, D. pharpa | ent-pallescensin A (19), 15-acetoxy-ent-pallescensin (20) | Feeding deterrence | [96,97,99] |
Doriopsilla pharpa | Polygodial (13) | Fishes (Chasmodes bosquianus, Fundulus heteroclitus), crabs (Callinectes similus, Panopeus herbstii) | [98] |
Phyllidia varicosa | 9-Isocyanopupukeanane (21), 2-isocyanopupukeanane (22) | Fish | [106,107,108] |
Phyllidia coelestis, Phyllidiella pustulosa | Xidaoisocyanate A (24) | Fish | [117] |
P. pustulosa | Axisonitrile-3 (25), amphilectene (26), kalihinol A (27), kalihinol E (28), ent-stylotelline (29) | Goldfish (C. auratus) | [118,120,123] |
Cadlina luteomarginata | Isocyanides (30), albicanyl acetate (31), cadlinaldehyde (32), luteone (33), 1a,2a-diacetoxyalbicanyl acetate (34) | Fishes (Carassius auratura, Clinocottus analis) | [126,127,128,129,130] |
Chromodoris africana, C. (Glossodoris) quadricolor | Kurospongin (36), latrunculin B (37) | Fish (Tilapia mosambica) | [167,168,170,171] |
Chromodoris hamiltoni | Latrunculins A (38) and B (37), hamiltonins A–E (41,42) | Feeding deterrence | [153,155] |
Glossodoris vespa, G. averni, G. pallida | 12-Deacetoxy-12-oxoscalaradial (43) | Shrimp (Palaemon serenus) | [175,176,177] |
Glossodoris pallida | Scalaradial (44), deacetylscalaradial (45), deoxoscalarin (46) | Crabs (Leptodius sp.), fish (Abudefduf sexfasciatus) | [176,177,178] |
Ceratosoma trilobatum, C. gracillimum | Pallescensin B (47), (–)-furodysinin (48), (–)-dehydroherbadysidolide (49), (–)-herbadysidolide (50), nakafuran-9 (51), dendrolasin (55), furodysin (58), agassizin (59) | Goldfish (C. auratus) | [131,193,194,195,196] |
Felimare (Hypselodoris) picta webbi, F. (Hypselodoris) villafranca, F. (Hypselodoris) cantabrica, F. (Hypselodoris) tricolor, F. (Hypselodoris) fontandraui | Longifolin (52) | Shrimp (P. elegans) | [124,165] |
Felimare (Hypselodoris) fontandraui | Tavacpallescensin (53) | Shrimp (P. elegans) | [205,211] |
Hypselodoris capensis | Nakafuran-8 and -9 (54,51) | Feeding deterrence | [213] |
Hypselodoris obscura | Dendrolasin (55), (–)-euryfuran (56), (+)-pallescensin A (57), (–)-furodysinin (48), (–)-furodysin (58) | Feeding deterrence | [186] |
Hypselodoris whitei | (–)-Euryfuran (56), (–)-furodysin (58), (–)-furosydinin (48), dendrolasin (55) | Feeding deterrence | [186] |
Hypselodoris infucata | Nakafuran-8 and -9 (54,51), (–)-furodysinin (48) | Shrimp (Penaeus vannamei) | [157,165,186] |
Hypselodoris benneti | Euryfuran (56), agassizin (59), dehydroherbadysidolide (49), pallescensone (60) | Feeding deterrence | [178] |
Hypselodoris (Risbecia) tryoni | Dehydroherbadysidolide (49), furodysinin (48), nakafuran-9 (51), dendrolasin (55) | Feeding deterrence | [178] |
Hypselodoris kanga | Furodysinin (48) | Feeding deterrence | [166] |
Hypselodoris lajensis | Furodysinin lactone (61) | Feeding deterrence | [207] |
Mexichromis festiva | Euryfuran (56), dendrolasin (55) | Feeding deterrence | [178] |
Mexichromis marieri | Euryfuran (56) | Feeding deterrence | [178] |
Hexabranchus sanguineus | Kabiramide C (62), dihydrohalichondramide (63), sanguinamides A (64) and B | Fish (Thalassoma lunare), crab (Dardanus megistos) | [217,218,219,220,221,222] |
Tambja abdere, T. eliora | Tambjamines A–F (65–70), tambjamine aldehyde (71) | Fish | [160,224,225] |
Roboastra tigris, Nembrotha spp. | Tambjamines A–F (65–70), tambjamine aldehyde (71), tetrapyrrol (72) | Fish | [137,157,223,226,227] |
Tritonia hamnerorum | Julieannafuran (73) | Fish | [229] |
Tritoniella belli | 1-O-hexadecyl glycerol (74) | Seastar (O. validus) | [230] |
Tritoniopsis elegans | Tritoniopsins A–D (75–78) | Feeding deterrent | [234] |
Marionia blainvillea | Homarine (79) | Feeding deterrent | [235] |
Tethys fimbria, Melibe viridis | PGE2-1,15-lactone (80), PGE3-1,15-lactone (81) | Feeding deterrent | [237,238] |
Charcotia granulosa | Granuloside (82) | Seastar (O. validus) | [241,242] |
Cratena pilata, Cuthona gymnota, Hermissenda crassicornis, Phestilla lugubris, Cuthona coerulea, Flabellina exoptata, F. ischitana, F. pedata, F. affinis | Homarine (79) | Feeding deterrent | [235] |
Phyllodesmium magnum, Phyllodesmium guamensis | 11β-Acetoxypukalide (83) | Pufferfish (Canthigaster solandri) | [236,249] |
Phyllodesmium longicirrum | Trocheliophorol (84), 4-oxochatancin (85), (2S)-isosarcophytoxide (86), cembranoid bisepoxide 12 | Pufferfish (Canthigaster solandri) | [245,250,251] |
Tylodinoidea (3) | |||
Tylodina fungina, T. perversa | 3,5-Dibromotyrosine (87) | Feeding deterrent | [256,257] |
Tylodina corticalis | Bromotyrosine-derived alkaloids | Feeding deterrent | [258] |
Cephalaspidea (9) | |||
Bulla striata, Philinopsis depicta | Aglajnes 1–3 (88) | Fish (C. auratus) | [269] |
Bulla gouldiana, Navanax inermis | Pulo’upone (90) | Feeding deterrent | [278] |
Aglaja tricolorata | Homarine (79) | Reef fish | [235] |
Haminoea cymbalum | Kumepaloxane (91), tetrahydropyran | Porcupine fish | [280] |
Haminoea cyanomarginata | Tetrahydropyran | Shrimp (P. elegans) | [77] |
Sagaminopteron nigropunctatum, S. psychedelicum | 3,5 Dibromo-2-(2′,4′-dibromo-phenoxy)phenol (92) | Feeding deterrent | [282] |
Anaspidea (5) | |||
Aplysia californica, A. dactylomela, A. parvula | Aplysioviolin (93), phycoerythrobilin | Blue crabs, lobsters | [289,290,292] |
Aplysia parvula | Apakaochtodene A (94) and B, costatone (95) | Fish | [88,299,300] |
Stylocheilus longicauda | Aplysiatoxin (96), debromoaplysiatoxin (97), stylocheilamide (98), makalika ester (99), makalikone ester (100), lyngbyatoxin A acetate (101), malyngamide A (104), malyngamide B, malyngamide O (102), and malyngamide P (103) | Fish, amphipods, crabs, cephalaspidean | [302,303] |
Bursatella leachii | Bursatellin (105) | Fish (Oreochromis mossambicus and Caffragobius gilchristi) | [311,312] |
Pteropoda (1) | |||
Clione limacina | Pteroenone (106) | Fish | [314] |
Sacoglossa (9) | |||
Ascobulla ulla | Ascobullin A (107) and B | Feeding deterrent | [316] |
Elysia crispata | Crispatenine, onchidal (108) | Feeding deterrent | [131] |
Elysia translucens | Udoteal | Fish (Pomacentrus coeruleus) | [320] |
Thuridilla hopei | Thuridillins (110), nor-thuridillonal (111), epoxylactone | Shrimp (P. elegans) | [123,321,322] |
Costasiella ocellifera | Avrainvilleol (112) | Fish | [316,325] |
Cyerce cristallina, C. nigricans | Cyercenes (113), chlorodesmin (114) | Mosquito fish (Gambusia affinis) | [326,327,328] |
Mourgona germaineae | Cyclocymopol (115) | Fish | [330] |
Placida dendritica | Polypropionate γ-pyrones (116) | Feeding deterrent | [332] |
Pulmonata (11) | |||
Onchidella binneyi | Onchidal (108), ancistrodial (109) | Fish and crabs | [319] |
Peronia peronii, Onchidium ssp. | Onchidin (121), onchidione (122), onchidiol, 4-epi-onchidiol | Sea stars | [343,358,359,361,362] |
Trimusculus costatus | Labdanes 6β,7a-diacetoxylab-8,13-dien-15-ol (117), 2α,6β,7a-triacetoxylabda-8,13-dien-15-ol (118) | Fish (Pomadasys commersonnii) | [333] |
Trimusculus reticulatus, T. costatus, T. peruvianus | 6β-isovaleroxylabda-8,13-dien-7α, 15-diol, 2α,7α-diacetoxy-6/3-isovaleroxylabda-8,13-dien- 15-ol | Sea stars | [334,335,336,337] |
Siphonaria capensis, S. concinna, S. cristatus, S. serrata | Siphonarienolone (119), siphonarin A (120), diemenensins A and B | Fish | [341,342,344,347,350] |
Compounds (#) | Activity | References (#) | |
---|---|---|---|
Nudibranchia (22) | |||
Archidoris pseudoargus | Diterpenoic acid glycerides (123) | Ichthyotoxicity | [363,366] |
Doris verrucosa | Verrucosins A (124) and B | Ichthyotoxicity, potent activators of PKC, and promotion of tentacle regeneration in the freshwater hydrozoan Hydra vulgaris | [371,420] |
Phyllidia varicosa | 2-Isocyanopupukeanane (22), 9-isocyanopupukeanane (21), 2-isocyanoallopupukeanane (125), 9-Thiocyanatopupekeanane (126) | Toxic to brine shrimp, killifish (Oryzias latipes), and crustaceans | [106,110,123] |
Phyllidia pulitzeri | Axisonitrile-1 (127) | Toxic to fish (Chromis chromis and Carassius carassius) | [184] |
Phyllidiella rosans (P. bourguini) | 9-Isocyanopupukeanane (21), epi-9-isocyanopupukeanane | Ichthyotoxic to killifish Oryzias latipes | [373] |
Cadlina luteomarginata | Isocyanides (30), isothiocyanates (128) | Toxic to goldfish (Carassius auratus) | [126,127] |
Chromodoris africana | Kurospongin (36) | Ichthyotoxicity | [167,168,169] |
Chromodoris africana, C. quadricolor | Latrunculins A (38) and B (37), kurospongin (36), 2-thiazolidinone | Ichthyotoxicity | [167,170,171] |
Felimida (Chromodoris) luteorosea | Norrisolide (130), polyrhaphin C (131), chelonaplysin C (132), luteorosin (133), macfarlandin A (134) | Ichthyotoxicity | [149] |
Doriprismatica (Glossodoris) sedna | 12-Deacetyl-23-acetoxy-20-methyl-12-epi-scalaradial (135), 12-deacetyl-23-acetoxy-20-methyl-12-epi-deoxoscalarin, 12-deacetyl-20-methyl-12-epi-deoxoscalarin | Ichthyotoxic to Gambusia affinis | [183,421] |
Doriprismatica (Glossodoris) atromarginata | 12-Deacetoxy-12-oxodeoxoscalarin (136) | Ichthyotoxic to mosquito fish (G. affinis) | [380,381] |
Felimida (Glossodoris) dalli, Glossodoris rufomarginata, Glossodoris pallida, Glossodoris vespa, Ardeadoris (Glossodoris) averni | Homoscalarane, scalarane, 12-deacetyl-23-acetoxy-20-methyl-12-episcalaradial (135) | Ichthyotoxic to mosquito fish (G. affinis) | [175,183,383] |
Ceratosoma trilobatum, C. gracillimum | Pallescensin B (47), (-)-furodysinin (48), (-)-dehydroherbadysidolide (49), (-)-herbadysidolide (50), nakafuran-9 (51) | Ichthyotoxicity | [22,131,193] |
Tethys fimbria, Melibe viridis | Prostaglandin-1,15-lactones (80) | Ichthyotoxic to mosquito fish (G. affinis) | [77,240] |
Dermatobranchus ornatus | Ophirin (137), calicophirin B, 13-deacetoxyl calicophirin B, 13-deacetoxyl-3-deacetyl calicophirin B | Inhibitory activity against the growth of silkworm Bombyx mori, and inhibition of cell division in fertilized starfish eggs | [387,422,423] |
Janolus cristatus | Janolusimide (138) | Toxic to mice | [388,390] |
Tylodinoidea (1) | |||
Umbraculum mediterraneum | Umbraculumins A–C (139) | Ichthyotoxic to mosquito fish (G. affinis) | [263,391,392,393] |
Cephalaspidea (7) | |||
Bulla gouldiana | Niuhinone B, isopulo’upone (140) | Ichthyotoxicity and shrimp toxicity | [278] |
Bulla occidentalis | Niuhinone B | Ichthyotoxicity and shrimp toxicity | [274] |
Navanax inermis | Niuhinone-B, isopulo’upone (140), 5,6-dehydroagajne-3 (141) | Ichthyotoxicity and shrimp toxicity | [278] |
Philinopsis depicta | Niuhinone B, aglajne 3 (88) | Toxic to G. affinis and Artemia salina | [270] |
Philinopsis speciosa | Niuhinone A, B, pulo’upone (90), kulolide-1 (271), pupukeamide, tolytoxin-23-acetate | Ichthyotoxicity and shrimp toxicity | [272,273,275,276,277] |
Haminoea cyanomarginata | Brominated tetrahydropyran (142) | Ichthyotoxic to mosquito fish (G. affinis) | [77] |
Haminoea cymbalum | Brominated tetrahydropyran (142), kumepaloxane (91) | Ichthyotoxic to mosquito fish (G. affinis) | [280] |
Anaspidea (7) | |||
Aplysia fasciata | 4-Acetylaplykurodin-B (143), aplykurodinone B (144), 3-epi-aplykurodinone B (145) | Ichthyotoxicity | [396] |
Aplysia juliana | Pyropheophorbides a and b, halogenated diterpenoid lactone, julianin-S | Lethal to crabs | [288] |
Aplysia kurodai | Aplykurodin B (146) | Ichthyotoxicity | [398] |
Aplysia parvula | Aplyparvunin (147), (3Z)-bromofucin (148) | Ichthyotoxicity | [399,400] |
Aplysia vaccaria | Crenulides (149) | Ichthyotoxicity | [401,402] |
Aplysia depilans | Aplyolides A−E (150–151) | Ichthyotoxicity | [403] |
Stylocheilus longicauda | Makalika ester (99), makalikone ester (100), malyngamide I (152), malyngamide O (102), malyngamide P (103), lyngbyatoxin A acetate (101) | Ichthyotoxicity | [302,303,304] |
Sacoglossa (15) | |||
Oxynoe panamensis | Caulerpicin (153), caulerpin (154) | Toxic to rats and mice | [406] |
Oxynoe olivacea, Ascobulla fragilis | Caulerpenyne (155), oxytoxin 1 (156) and 2 | Ichthyotoxicity | [316,407] |
Lobiger serradifalci | Oxytoxin 1 (156) | Ichthyotoxicity | [316,407] |
Ascobulla ulla | Ascobullin A (107) and B | [316] | |
Ascobulla ulla, Oxynoe antillarum, Lobiger souberveii, Volvatella sp., Elysia subornata, E. patina, E. nisbeti | Caulerpenyne (155), oxytoxin-1 (156) | Ichthyotoxicity | [316,409] |
Elysia expansa | Caulerpenyne (155), dihydrocaulerpenyne, expansinol | Ichthyotoxicity | [411] |
Costasiella ocellifera (C. lilianae) | Avrainvilleol (112) | Toxic to sympatric reef fishes | [325] |
Placida dendritica | Iso-placidene-A (116) | Strong ichthyotoxicity against Gambusia affinis | [332] |
Cyerce cristallina | Cyercene A (157) and B, cyercenes 1–5 (158,159) | Strong ichthyotoxicity against G. affinis | [326,327] |
Pulmonata (2) | |||
Siphonaria maura | Vallartanones B | In laboratory assays against krill and fish (Thallasoma lunare) | [350] |
Trimusculus costatus | 6β,7a-Diacetoxylab-8,13-dien-15-ol (117), 2α,6β,7a-triacetoxylabda-8,13-dien-15-ol (118) | Toxic to brine shrimp (Artemia salina) | [333] |
Species (#) | Compounds (#) | Activity | References (#) |
---|---|---|---|
Nudibranchia (11) | |||
Notodoris citrina, Notodoris gardineri | Iso-naamidine-A (160) | Inhibits the AI-2 channel of the marine pathogen Vibrio harveyi | [123,426] |
Phyllidiella pustulosa, Phyllidia coelestis, Phyllidia varicosa, Phyllidia sp. | Xidaoisocyanate A (24), axisonitrile-3 (25), 4-isocyano-9-amorphene, 9-thiocyanato-pupukeanane (126), 3-isocyanotheonellin (161) | Antimicrobial | [103,110,114,115,117,118,427] |
Marionia blainvillea, Phestilla lugubris, Cuthona caerulea | Homarine (79) | Antimicrobial | [235] |
Cephalaspidea (1) | |||
Aglaja tricolorata | Homarine (79) | Antibacterial | [235] |
Anaspidea (3) | |||
Aplysia punctata | Glandulaurencianols A–C (162,163), punctatol (164) | Antibacterial | [429,430] |
Aplysia juliana | Pyropheophorbides a and b, halogenated diterpenoid lactone, julianin-S | Antibacterial | [288,432,433] |
Dolabella auricularia | Dolabellanin A | Antibacterial | [435] |
Pulmonata (4) | |||
Siphonaria spp. | Siphonarienolone (119), diemenensins A (165) and B, siphonarin A (120), Vallartanones A and B | Antimicrobial | [27,340,344,348] |
Siphonaria diemenensis | Diemenensin A (165) | Antibacterial | [341] |
Siphonaria pectinata | Pectinatone (166) | Antimicrobial | [341,343] |
Species (#) | Compounds (#) | Activity | References (#) |
---|---|---|---|
Nudibranchia (15) | |||
Phyllidia varicosa, Phyllidia rosans (P. bourguini) | 9-Isocyanopupukeanane (21), 3-isocyanotheonellin (161) | Antifouling against barnacle larvae | [93,106] |
Phyllidia sp. | 3-Isocyanotheonellin (161) | Antifouling activity against barnacle larvae | [114,115] |
Phyllidiella pustulosa | Sesquiterpene isonitrile | Antifouling against barnacle larvae | [101] |
Phyllidia ocelata, P. varicosa, P. coelestis, P. picta, Phyllidiella pustulosa, Phillidiopsis krempfi | 10-epi-Axisonitrile-3, 10-isocyano-4-cadinene, 2-isocyanotrachyopsane, 1,7-epidioxy-5-cadinene, 4-isocyano-9-amorphene and 10α-isocyano-4-amorphene, 9-thiocyanatopupukeanane sesquiterpenes | Antifouling activity against barnacle larvae | [110,112] |
Reticulidia fungía | Reticulidin A (215) | Antifouling activity | [438] |
Marionia blainvillea, Phestilla lugubris, Cratena pilata, Cuthona caerulea, Cuthona gymnota, Hermissenda crassicornis | Homarine (79) | Antifouling activity, prevents microbial colonization of the slug mucus | [235,428,439,441,442] |
Cephalaspidea (9) | |||
Aglaja tricolorata | Homarine (79) | Antifouling activity | [235,441] |
Sagaminopteron nigropunctatum, S. psychedelicum | 3,5 Dibromo-2-(2′,4′-dibromo-phenoxy)phenol (92) | Antifouling activity against marine bacteria, diatoms, barnacle larvae, and mussel juveniles | [282,443] |
Haminoea cyanomarginata, H. cymbalum | Brominated tetrahydropyran (142) | Antifouling activity | [77] |
Haminoea orteai | Haminol A,B,C (167–168) | Antifouling activity | [444] |
Haminoea orbignyana | Haminol 1-2 (169), haminol A and B (167–168) | Antifouling activity against larvae of the barnacle Amphibalanus amphitrite | [444,445,446] |
Haminoea fusari | Haminol 1–6 (169) | Antifouling activity | [445] |
Species (#) | Compounds (#) | Activity | References (#) |
---|---|---|---|
Nudibranchia (7) | |||
Tambja abdere, T. eliora, Roboastra tigris | Tambjamines (65–70) | Alarm pheromones and cues | [223] |
Tambja ceutae, Tambja stegosauriformis, Nembrotha spp. | Tambjamines (65–70) | Alarm pheromones and cues | [226,227,228] |
Cephalaspidea (10) | |||
Navanax inermis | Navenones A–C (170) | Alarm pheromones | [394,448] |
Haminoea exigua, H. fusari, H. orbignyana, H. orteai, H. navicula | Haminols (167–169) | Alarm pheromones employed during cross copulation, escape reaction in conspecifics | [19,449] |
Haminoea navicula | Haminols A and B (167,168) | Alarm pheromones | [449] |
Haminoea orteai | Haminols A–C (167,168) | Alarm pheromones | [444] |
Haminoea fusari, H. hydatis | Haminols 1-6 (169) | Alarm pheromones | [271,445] |
Haminoea japonica | Navenone-C (170) | Alarm pheromones | [271,445] |
Haminoea callidegenita | Haminols 7-11 | Alarm pheromones | [271,451] |
Scaphander lignarius | Lignarenones (171) | Alarm pheromones | [453,454,455] |
Anaspidea (1) | |||
Aplysia californica | Aplysiapalythines A–C (mycosporine-like amino acids, MAAs), asterina, palythine | Alarm cues, causing avoidance behaviors in neighboring conspecifics | [457,458] |
Species (#) | Compounds (#) | Activity | References (#) |
---|---|---|---|
Anaspidea (1) | |||
Aplysia californica | Aplysiapalythines A, B, C (mycosporine-like amino acids, MAAs), asterine, palythine | Sunscreens | [457] |
Pteropoda (2) | |||
Limacina helicina, Clione limacina | Mycosporine-like amino acids (MAAs) | UV photoprotection | [461] |
Sacoglossa (8) | |||
Cyerce cristallina | Cyercene A (157) and B, cyercenes 1–5 (158,159) | Protection against sunlight-induced damage | [326,327] |
Elysia patagonica | Phototridachiapyrone J (172) | Sunscreens | [412] |
Elysia crispata | Tridachiahydropyrone (173), phototridachiahydropyrone (174) | Sunscreens | [317,464] |
Elysia (Tridachiella) diomedea | Tridachiapyrones A–F (175,176), elysiapyrones (177) | Sunscreens, photoprotection | [417,418,419] |
Elysia viridis, E. chlorotica | Elysione (178) | Sunscreens | [463,465] |
Placobranchus ocellatus, Placobranchus sp. | 9,10-Deoxy-tridachione (179), photodeoxytridachione (180), tridachiahydropyrone B and C (181), iso-9,10-deoxy-tridachione, ocellapyrones (182) | Sunscreens | [466,468,469] |
Species (#) | Compounds (#) | Activity | References (#) |
---|---|---|---|
Nudibranchia (1) | |||
Tethys fimbria | PGE2-1,15-lactone (80), PGE3-1,15-lactone (81) | Predator distraction by the release of their cerata, cerata regeneration | [237,238] |
Sacoglossa (6) | |||
Ercolania viridis | Cyercenes (113, 157–159) | Cerata autotomy, cerata regeneration | [332] |
Cyerce cristallina, C. nigricans | Cyercenes (113, 157–159) | Cerata autotomy, cerata regeneration | [326,327,328] |
Aplysiopsis formosa | Aplysiopsenes A–D (183,184) | Cerata autotomy and cerata regeneration | [475] |
Mourgona germaineae, Costasiella ocellifera | Prenylated bromohydroquino-nes | Cerata autotomy | [325,330] |
Species (#) | Compounds (#) | Activity | References (#) |
---|---|---|---|
Nudibranchia (3) | |||
Doris kerguelenensis | Austrodoral (185), austrodoric acid (186) | Stress metabolites | [64,65] |
Tethys fimbria | PGs–lactones (80,81) | Role in reproduction | [237,238] |
Dermatobranchus ornatus | Eunicellin, ophirin (187), calicophirin B (188), 13-deacetoxycalicophirin B, 13-deacetoxy-3-deacetylcalicophirin | Inhibition of cell division in fertilized starfish eggs | [22,243,387,477] |
Species (#) | Compounds (#) | Activity | References (#) |
---|---|---|---|
Nudibranchia (59) | |||
Doris kerguelenensis | Palmadorins A (195), B (196), D (197), M (198), N (199), and O (200) | Inhibition of human erythroleukemia cells (HEL), inhibition of Jak2, STAT5, and Erk1/2 activation in HEL cells | [66,67,824] |
Doris verrucosa | Verrucosins A (124) and B | Activation of protein kinase C | [371,420] |
Notodoris citrina, N. gardineri | Naamidine A (201), iso-naamidine-A (160) | Inhibition of the epidermal growth factor (EGF), inhibition of human tumor xenografts in mice, and promotion of caspase-dependent apoptosis in tumor cells | [424,489,490] |
Adalaria loveni | Lovenone (202) | Cytotoxic to two HTCLs | [491] |
Polycera atra | Bryostatins (203) | Cytotoxic to P388 lymphocytic leukemia and Alzheimer’s disease cells | [424,486,487] |
Actinocyclus papillatus | (–)-Actisonitrile (204), actinofide (205) | Cytotoxic to tumor and non-tumor cells | [361,479,504,503] |
Aldisa andersoni | 9-Chloro-phorbazole D (5), N1-methyl-phorbazole A (6), phorbazoles A (7), B (8), and C | Cytostatic effects in vitro against several HTCLs (human SKMEL-28 melanoma and U373 glioblastoma cells) | [55,75,76] |
Dendrodoris carbunculosa | Dendocarbins A–N (16, 206), isodrimeninol (207), 11-epivaldiviolide (208) | Cytotoxic to murine leukemia P388 cell lines | [86,509] |
Phyllidiella coelestis | 1-Formamido-10(1→2)-abeopupukeanane (209), 2-formamidopupukeanane (210) | Cytotoxic to HeLa, MCF-7, KB, HT-29 cancer cell lines | [111] |
Phyllidiella pustulosa | Axinisothiocyanate K (211), isothiocyanate axisonitrile-3 (25) | Cytotoxic to NBT-T2 cells | [123,377] |
Phyllidiella coelestis, P. pustulosa | Bisabolane-type sesquiterpenoid (212), theonellin isothiocyanate (213), 7-isocyano-7,8-dihydro-α-bisabolene (214) | Cytotoxic to several HCCLs | [117] |
Reticulidia fungia | Reticulidins A (215) and B | Cytotoxic in vitro to KB cells and mouse L1210 leukemia cells | [438,511,512] |
Cadlina luteomarginata | Ansellone A (216) | Activation of the cyclic adenosine monophosphate (cAMP) signaling pathway | [513] |
Chromodoris elisabetina, C. hamiltoni, C. lochi, C. africana, C. annae, C. kuiteri, C. magnifica, C. quadricolor | Latrunculins A (38) and B (37) | Disruption of normal cell organization and function | [153,155,168,169,170,171] |
Chromodoris lochi | Mycothiazole (129) | Inhibition of the hypoxia-inducible factor-1 (HIF-1), and suppression of the mitochondrial respiration at complex I | [378,379,825,826] |
Chromodoris lochi | Laulimalide (39), isolaulimalide (40) | Cytotoxic to the KB cell line | [142,523,524] |
Chromodoris inornata | Inorolides A–C (217) | Cytotoxic to murine L1210 leukemia and human epidermoid carcinoma KB cell lines | [156,531] |
Chromodoris petechialis | Puupehenone (218) | Human peripheral blood mononuclear (PBM) cells | [827] |
Goniobranchus splendidus | Epoxygoniolide-1 (219) | Cytotoxic | [532] |
Goniobranchus (Chromodoris) sinensis | Aplyroseol-2 (220) | Cytotoxic to HeLa S3 cells | [131] |
Goniobranchus reticulatus | Spongian-16-one (221), aplytandiene-3 (222), aplysulfurin (223), aplyroseol-2 (220), gracilins A (224), B (225), C (226), G (227), and M (228) | Cytotoxic to P388 mouse leukemia, HTCLs cell lines, and BACE1 and ERK inhibition | [161,190] |
Goniobranchus (Chromodoris) obsoleta | Dorisenones A–D (229), 11β-hydroxyspongi-12-en-16-one (230), spongian-16-one (221) | Cytotoxic to murine lymphoma L1210 and KB cells | [154] |
Doriprismatica (Glossodoris) atromarginata | Spongiadiol (35), spongiadiol diacetate (231), epispongiadiol (232), 12-deacetoxy-12-oxodeoxoscalarin (136), heteronemin (233), mooloolabene D (234) | Cytotoxic to MCF-7 breast cancer cells | [180,182,381,828] |
Felimida (Glossodoris) dalli, Doriprismatica (Glossodoris) sedna, Glossodoris rufomarginata, G. pallida, G. vespa, Ardeadoris (Glossodoris) averni | 12-deacetyl-23-acetoxy-20-methyl-12-epi-scalaradial (135) | Inhibition of mammalian phospholipase A2 | [175,381] |
Hypselodoris infucata | (–)-Furodysinin (48) | Cytotoxic to HeLa cell | [214] |
Felimida (Chromodoris) macfarlandi | Macfarlandin E (235) | Golgi-modifying properties | [139,140,149,543] |
Hexabranchus sanguineus | Ulapualides A (190), B (236) and C (237), kabiramides A (238), B (239), C (62), D (240), E (241) and G (243), dihydrohalichondramide (63), 33-methylhalichondramide (242), halichondramide (244), Hurghadin | Cytotoxic to murine L1210 leukemia cells, cytotoxic to several HTCLs, and cytotoxic to human MCF-7 breast cancer cells | [545] |
Jorunna funebris | Jorumycin (189), jorunnamycins A–C (245), renieramycin M (246) | Cytotoxic to cancer cell lines P388, A549, HT29, and MEL28, and cytotoxic to human colon (HCT-116) and breast (MDA-MB-435) cancer cells | [560] |
Jorunna funebris | Fennebricins A and B, N-formyl-1,2-dihydrorenierol | Strong NF-κB inhibition, and cytotoxic to A549 and HL-60 tumor cell lines | [564,565] |
Peltodoris atromaculata | Petroformynes (247), hydroxyl-dehydroisofulvinol (248), fulvinol | Cytotoxic to murine P388 leukemia cells, A549 NSCLC, HT-29 colon cancer and SKMEL-28 melanoma cells | [567,568] |
Halgerda aurantiomaculata | Zooanemonin (367) | Antineoplastic | [829] |
Tambja capensis, T. ceutae, T. eliora, T. morosa, T. stegosauriformis, T. verconis, Roboastra tigris, Nembrotha spp. | Tambjamines (65–70), tambjamine K (249), tetrapyrrole (72) | Cytotoxic to several tumor cell lines (Caco-2 colon cancer cells, HeLa cervix cancer cells) | |
Tritonia sp. | Punaglandins (250) | Cytotoxic | [587] |
Doto pinnatifida | Dotofide (251) | Cytotoxic to Hs683 oligodendroglioma, U373 glioblastoma, A549 NSCLC human carcinoma, MCF-7 breast carcinoma, SKMEL-28, and mouse B16F10 cells | [243,505] |
Tritoniopsis elegans | Tritoniopsins A–D (75–78) | Cytotoxic to rat cell lines | [234] |
Dermatobranchus ornatus | Ophirin (187) | Cytotoxic | [22] |
Leminda millecra | Prenylated hydroquinone (252) | Cytotoxic to WHCO1, WHCO6 esophageal cancer cell lines | [588,589,590] |
Hermissenda crassicornis | L-6-bromohypaphorine (253) | Cytotoxic to human a7 nicotinic acetylcholine receptor (nAChR subtype) | [591] |
Phyllodesmium briareum | Brianthein W (254), excavatolide C (255) | Cytotoxic to cancer cell line P-388 | [248] |
Phyllodesmium magnum | 11-episinulariolide acetate (256) | Cytotoxic to cancer cell line P-388 | [248] |
Phyllodesmium longicirrum | Trocheliophorol (84) | Cytotoxic | [245] |
Phidiana militaris | Phidianidines A (257) and B | Cytotoxic to C6 and HeLa tumor cells | [592,593,595] |
Pleurobranchoidea (2) | |||
Pleurobranchus albiguttatus, P. forskalii | Chlorolissoclimide (258), dichlorolissoclimide (259), haterumaimides A (260), C (267), J (265), K (266), G (268), I (269), 3ß-hydroxylissoclimide (261) | Cytotoxic to melanoma cells | [610,619] |
P. forskalii | Keenamide A (262), cycloforskamide (263), ergosinine (264) | Cytotoxic to P-388, A-549, MEL-20, and HT-29 tumor cell lines | [611,612] |
Tylodinoidea (1) | |||
Tylodina perversa | Iso-fistularin 3 (270) | Cytotoxic to human HeLa cervix carcinoma cells | [257,625] |
Cephalaspidea (2) | |||
Philinopsis speciosa | Kulolides 1 (271), 2 (272) and 3 (273), kulokainalide 1 (274), lulokekahilides 1 (275) and 2 (276) | Cytotoxic to L-1210, P388 leukemia, human SK-OV-3 ovarian, tMDA-MB-435 breast cancer, human A549 NSCLC, K562 chronic myelogenous leukemia, HeLa cervix carcinoma, and MCF-7 breast cancer cell lines | [277,626,627,628] |
Scaphander lignarius | ARA, EPA, HTA (fatty acids) | Cytotoxic to a set of cancer and normal cell lines | [630] |
Anaspidea (11) | |||
Aplysia angasi, A. dactylomela, A. depilans, A. fasciata, A. juliana, A. kurodai, A. oculifera, A. punctata | Aplysistatin (277) | Cytotoxic to mouse P388 leukemia, human KB cancer, and HeLa cervix carcinoma cells | [613,631,820] |
Aplysia dactylomela | Elatol (278), obtusol (279), iso-obtusol (280), linear halogenated monoterpene (281) | Cytotoxic to ten cancer cell lines, B16F10 melanoma, HM02 gastric carcinoma, HEP-G2 liver carcinoma, and MCF-7 breast carcinoma cancer cells | [631,633,632,633] |
A. dactylomela | Parguerol (282), parguerol-16-acetate (283), iso-parguerol (284), iso-parguerol-16-acetate (285), deoxyparguerol (286) | Cytotoxic to P388 leukemia and Ehrlich ascite carcinoma cells | [611,636,640] |
A. dactylomela | Aplysqualenol A (287) | Cytotoxic to 60 cancer cell lines | [641,642] |
A. dactylomela | Thyrsiferol (288) | Cytotoxic to P388 leukemia and T47D human breast tumor cells, and suppression of hypoxic induction of HIF-1 target genes | [647,648,649] |
Aplysia depilans | Endoperoxide sterol (289) | Cytotoxic to human HCT-116 colorectal cancer cells | [650,651] |
Aplysia fasciata | 3-epi-aplykurodinone B (145) | Cytotoxic to mouse P388 leukemia, human A549 NSCLC, HT-29 colon cancer, and SKMEl-28 melanoma | [397] |
Aplysia juliana | Pyropheophorbides a and b, julianin S | Cytotoxic | [288,432] |
Aplysia kurodai | Aplyronines A (191), B (290), C (291), D (292) and H (293), aplaminal (294) | Cytotoxic to human HeLa S3 cervix carcinoma cells | [653,654,657,658] |
A. kurodai | Aplaminone (295), neoaplaminone (296), neoaplaminone sulfate (297) | Cytotoxic to human HeLa S3 cervix carcinoma cells | [667] |
A. kurodai | Aplysiaterpenoid A (298), aplysiapyranoids A–D (299) | Cytotoxic to Vero, MDCK, and B16 cells | [668,669] |
A. kurodai | Kurodainol (300), aplysiaterpenoids A–D (298), aplysin-20 (301), iso-aplysin-20, aplysiadiol (302), epi-aplysin-20, ent-isoconcinndiol (303), aplysianin A | Induction of growth inhibitory effects in various cancer cell lines | [668,669,670,671,672,673,674] |
A. kurodai | (-)-Aplysin (304), aplysinol (305), aplykurodins A (306) and B (146) | Cytotoxic to various cancer cell lines, human A549 NSCLC, and human glioma cells | [680,682,683] |
Aplysia oculifera | Oculiferane (308), epi-obtusane (309) | Cytotoxic to PC-3 prostate, A549 NSCLC, MCF-7 breast, HepG2 liver, and HCT116 colon cancer cell lines | [684] |
Aplysia punctata | Halogenated monoterpenes (310–312) | Cytotoxic to four tumor cell lines | [685] |
Dolabella auricularia | Dolabellanin A | Antineoplastic | [435] |
D. auricularia | Auripyrones A (319) and B, dolabelides A (320), B (321), C (322) and D (323) | Cytotoxic to human HeLa S3 cancer cells | [687,696,701,702] |
D. auricularia | Doliculide (325) | Cytotoxic to human HeLa S3, MCF-7, and MDA-MB-231 breast cancer cells | [708] |
D. auricularia | Dolastatins 3 (192), 10 (326), 11 (327), 12 (328), 13 (329), 14 (330), 15 (331), 16 (346), 17 (347), 18 (348), 19 (332), C (333), D (334), G (337) and H (335), iso-dolastatin H (336), debromoaplysiatoxin (97), anhydrodebromo-aplysiatoxin, aurilide (324), nor-dolastatin G (338), auristatins E (339), PHE (340), PYE (341), 2-AQ (342), 6-AQ (343) and PE (344), tasidotin (345) | Cytotoxic to renal, ovarian, prostate, hepatobiliary, pancreatic cancer cell lines, P388 murine leukemia, colon 26 cancer, Lewis lung carcinoma, B16 melanoma, M5076 sarcoma, human MX-1 breast cancer, LX-1, MCF-7, colon KM20L2 cancer, and SBC-3 SCLC cell lines | [46,688,694,703,705,717,718,719,721,722,724,744,750,751,766] |
Stylocheilus longicauda | Aplysiatoxin (96), debromoaplysiatoxin (97), makalika (99), makalikone (100), lyngbyatoxin A (349), lyngbyatoxin A acetate (101), malyngamide B, O (102) and P (103) | Cytotoxic to P388, A549, HT29, and HTB38 cancer cell lines, and toxic to mice | [302,304,305,307,777,778,779] |
Bursatella leachii | Lyngbyatoxin A (349), debromoaplysiatoxin (97), hectochlorin (351), deacetylhectochlorin (352), malyndamides S (350) and X (353) | Cytotoxic to murine P388 leukemia, human A549, NSCLC, NCI-H187 (SCLC), HT-29 colon cancer, HL60 leukemia, KB, and BC breast cancer | [783,784,785,786,787] |
Sacoglossa (3) | |||
Elysia subornata | Caulerpenyne (155) | Cytotoxic to neuroblastoma SK-N-SH cell line | [316,411,788,789,790] |
Elysia rufescens | Kahalide F (194), iso-kahalalide F (354) | Cytotoxic to A549 and Hs683 cell lines, and breast cancer cell lines SKBR3 and BT474 | [331,797,800] |
Elysia ornata | Kahalides F (194), Z1 (356), Z2 (355), elisidepsin (356) | Cytotoxic to A549 and Hs683, breast, colon, head, neck, lung, ovary, pancreas, prostate, and melanoma cell lines | [795,797,810,811,812] |
Pulmonata (9) | |||
Trimusculus peruvianus | Hydroxylated sterol (358) | Cytotoxic to human HCT-116 and HT29 colon cancer cell lines | [819] |
Trimusculus costatus | Secosterol (359) | Cytotoxic to WHCO1 esophageal cancer cell line | [337] |
Siphonaria capensis, S. concinna, S. cristatus, S. serrata | Siphonarienfuranon, capensinone, denticulatins | Cytotoxic | [339,346,352] |
Siphonaria spp. | Siphonarienolone (119), diemenensins A (165) and B, siphonarin A (120), vallartanones A and B | Cytotoxic | [27,134,340,341,342,343,344,348,351] |
Onchidium sp. | onchidin (121), onchidin B (360), onchidione (122), onchidiol (361), ilikonapyrones (362,363), onchidionol | Cytotoxic to murine P388 and KB oral cancer cells, and regulation of some genes related to tumor growth | [131,358,359,821] |
Species (#) | Compounds (#) | Activity | References (#) |
---|---|---|---|
Nudibranchia (21) | |||
Phyllidiella pustulosa | Axisonitrile-3 (25) | Antimycobacterial activity against Mycobacterium tuberculosis | [427] |
P. pustulosa, P. coelestis | Xidaoisocyanate A (24) | Antibiotic activity | [117] |
Phyllidia picta | Pictaisonitrile 1 (23) and 2 | Antibiotic activity | [112] |
Phyllidia varicosa | 9-Thiocyanatopupukeanane (126) | Antibiotic activity | [247] |
Phyllidiella rosans | 9-Isocyanopupukeanane (21), epi-9-isocyanopupukeanane | Antibacterial activity against Bacillus subtilis and Candida albicans | [110] |
Doriorismatica (Glossodoris) atromarginata | Scalaranes, heteronemin (233) | Antimycobacterial activity against M. tuberculosis H37Rv | [833] |
Glossodoris hikuerensis, G. vespa, G. cincta | Heteronemin (233), scalaradial (44), 12-deacetoxy-12-oxoscalaradial (43), 12-deacetoxy-12-oxo-deoxoscalarin (136), 12-epi-scalaradial | Antibiotic activity | [178] |
Felimida (Chromodoris) macfarlandi | Macfarlandines D and E (235) | Antibacterial activity against B. subtilis in the disk assay system at 10 gg per disk, and activity against Vibrio anguillarum and Beneckea harveyi at 100 gg per disk | [139,140,149,543] |
Chromodoris willani | Deoximanoalide (364), deoxysecomanoalide (365) | Antimicrobial activity against Escherichia coli and B. subtilis, and inhibitor of snake venom phospholipase A2 | [159] |
Chromodoris spp. | Nakafuran-8 (54), nakafuran-9 (51), puupehenone (218) | Antibacterial activity against E. coli, Staphylococcus aureus, Pseudomonas aeruginosa, B. subtilis, and antifungal activity against C. albicans | [157,158,165] |
Hexabranchus sanguineus | Kabiramides A–E (238, 239, 62, 240, 241), sanguinamides A (64), B (366), halichondriamides (244), ulapualides A (190) and B (236) | Antibacterial activity against P. aeruginosa, and antifungal activity against C. albicans | [208,219,221,222,545,834,835,836,837] |
Jorunna funebris | Jorumycin (189), jorunnamycins A–C (245) | Antimicrobial activityagainst B. subtilis and S. aureus | [166,553,560] |
Halgerda aurantiomaculata | Zooanemonin (367) | Antibacterial | [841] |
Roboastra tigris, Tambja abdere, T. eliora | Tambjamines (65–70, 249), tetrapyrrole (72) | Antibacterial activity against B. subtilis | [223] |
Leminda millecra | Millecrones A (368) and B (369), millecrols A (370) and B (371) | Antibiotic activity against C. albicans, S. aureus and B. subtilis | [588] |
Dermatobranchus otome | DO1 (372), DO2 (373), DO3 (374) | Antibacterial activity against B. subtilis | [842] |
Armina babai | Extracts | Antibacterial activity against Pseudomonas sp. and Proteus mirabilis | [843] |
Tylodinoidea (1) | |||
Tylodina corticalis | Hexadellin (375), aplysamine 2 (376) | Antibacterial activity against E. coli and S. aureus | [262] |
Anaspidea (5) | |||
Aplysia punctata | Glandulaurencianols A–C (162,163), punctatol (164) | Antibacterial activity against B. subtilis and E. coli | [429,430,431] |
Aplysia juliana | Julianin-S | Antibacterial activity | [288] |
Aplysia kurodai | Aplysianin E | Antifungal activity against C. albicans | [672,673,674] |
Dolabella auricularia | Dolabellanin A | Antibacterial activity against E. coli | [435] |
Bursatella leachii plei, B. leachii savignyana | Bursatellin (105) | Antibiotic activity | [311,312] |
Sacoglossa (4) | |||
Elysia rufescens | Kahalalides A (377) and F (194), iso-kahalalide F (354) | Antimycobacterial activity against Mycobacterium tuberculosis and M. intracellulare | [794] |
Elysia ornata, E. grandifolia | Kahalalide F (194) | Antimycobacterial activity against M. tuberculosis and M. intracellulare | [331,411,797] |
Cyerce nigricans | Chlorodesmin (114) | Antibacterial and antifungal activity | [845,846] |
Pulmonata (7) | |||
Siphonaria australis, S. diemenensis, S. capensis, S. concinna, S. cristatus, S. serrata, S. pectinata | Siphonarienolone (119), siphonarin A (120), pectinatone (166) | Antimicrobial activity | [340,341,342,343,346] |
Species (#) | Compounds (#) | Activity | References (#) |
---|---|---|---|
Nudibranchia (4) | |||
Phyllidiella pustulosa | Axisonitrile-3 (25), pustulosaisonitrile-1 (378), 10-thiocyano-4-cadinene (383) | Activity against Plasmodium falciparum | [118,123,848,849,850] |
Phyllidia ocellata | 2-Isocyanoclovene (379), 2-isocyanoclovane (380), 4,5-epi-10-isocyanoisodauc-6-ene (381), 1-isothiocyanatoepicaryolane (382) | Activity against Plasmodium falciparum | [376] |
Notodoris gardineri | Iso-naamidine-A (160), dorimidazole A (386) | Anthelminthic activity | [424,426] |
Chromodoris lochi | Mycothiazole (129) | Anthelminthic and toxic activity | [378] |
Sacoglossa (3) | |||
Elysia rufescens, E. ornata, E. grandifolia | Kahalalides (194,354–356,377) | Antileishmanial activity | [794,795,796,797] |
Species (#) | Compounds (#) | Activity | References (#) |
---|---|---|---|
Nudibranchia (7) | |||
Cadlina luteomarginata | Ansellone A (216) | Activation of the latent proviral HIV-1 gene expression | [855] |
Chromodoris mandapamensis, Glossodoris cincta | Spongiadiol (35), epi-spongiadiol (232) | Activity against herpes simplex virus, type 1 (HSV-1) and P388 murine leukemia cells | [166,535] |
Chromodoris hamiltoni | Latrunculins A (38) and B (37) | Activity against HIV-1 | [153,155] |
Chromodoris africana, C. quadricolor | Latrunculin B (37) | Activity against HIV-1 | [155,853] |
Chromodoris petechialis | Puupehenone (218) | Anti-HIV-1 | [797] |
Anaspidea (1) | |||
Dolabella auricularia | Dolastatin 3 (192) | Activity against HIV life cycle | [718,728,853] |
Sacoglossa (3) | |||
Elysia rufescens, E. grandifolia, E. ornata | Kahalalide F (194), iso-kahalalide F (354) | Activity against herpes simplex virus II | [331,794,795,797,853] |
Species (#) | Compounds (#) | Activity | References (#) |
---|---|---|---|
Nudibranchia (11) | |||
Glossodoris rufomarginata, G. pallida, G. vespa, G. averni, G. hikuerensis, G. atromarginata, G. cincta | Scalaradial (44) | Potent inhibition of PLA2, and potent anti-inflammatory activity | [175,177,381,383,856,857,858] |
Goniobranchus splendidus | Gracilins (224–228) | Cyclosporine A mimics, BACE1 and ERK inhibition | [190,533,534] |
Tethys fimbria, Melibe viridis | Prostaglandin E-1,15-lactones (80, 81) | Reduction of inflammation after autotomy and tissue regeneration | [77,240] |
Tritonia sp. | Punaglandins (250) | Anti-inflammatory activity | [587] |
Anaspidea (3) | |||
Aplysia depilans | Carotenoids, polyunsaturated fatty acids | Anti-inflammatory activity | [859] |
Aplysia dactylomela | Dactyloditerpenol acetate (385) | Anti-neuroinflammatory activity | [860,861] |
Bursatella leachii | Malyngamide S (350) | Anti-inflammatory activity | [786] |
Species (#) | Compounds (#) | Activity | References (#) |
---|---|---|---|
Nudibranchia (4) | |||
Polycera atra | Bryostatin 1 (203) | Alzheimer disease (AD) | [492,493,494,866] |
Goniobranchus obsoletus, G. splendidus | Gracilins (224–228) | Potential against neurodegenerative diseases | [533,534,863] |
Cadlina luteomarginata | Ansellone A (216) | cAMP activation (neurodegenerative diseases) | [513] |
Cephalaspidea (1) | |||
Scaphander lignarius | Lignarenone B (171) | Alzheimer disease (AD) | [864,867] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avila, C.; Angulo-Preckler, C. Bioactive Compounds from Marine Heterobranchs. Mar. Drugs 2020, 18, 657. https://doi.org/10.3390/md18120657
Avila C, Angulo-Preckler C. Bioactive Compounds from Marine Heterobranchs. Marine Drugs. 2020; 18(12):657. https://doi.org/10.3390/md18120657
Chicago/Turabian StyleAvila, Conxita, and Carlos Angulo-Preckler. 2020. "Bioactive Compounds from Marine Heterobranchs" Marine Drugs 18, no. 12: 657. https://doi.org/10.3390/md18120657
APA StyleAvila, C., & Angulo-Preckler, C. (2020). Bioactive Compounds from Marine Heterobranchs. Marine Drugs, 18(12), 657. https://doi.org/10.3390/md18120657