Nutritional Profiling and the Value of Processing By-Products from Gilthead Sea Bream (Sparus aurata)
Abstract
:1. Introduction
2. Results
2.1. Fish Dissection Characteristics of Gilthead Sea Bream By-Products
2.2. Nutritional Characterization of Gilthead Sea Bream By-Products
2.2.1. Proximate Composition of Gilthead Sea Bream By-Products
2.2.2. Fatty Acid Profile of Gilthead Sea Bream By-Products
2.2.3. Amino Acid Profile of Gilthead Sea Bream By-Products
2.2.4. Protein Quality: Chemical Score of Amino Acids of Gilthead Sea Bream By-Products
2.2.5. Mineral Content of Gilthead Sea Bream By-Products
3. Discussion
3.1. Processing Yield and Fish Dissection Characteristics of Gilthead Sea Bream
3.2. Nutritional Characterization of Gilthead Sea Bream By-Products
3.2.1. Proximate Composition of Gilthead Sea Bream By-Products
3.2.2. Fatty Acid Profile of Gilthead Sea Bream By-Products
3.2.3. Amino Acid Profile and Protein Quality of Gilthead Sea Bream By-Products
3.2.4. Mineral Content of Gilthead Sea Bream By-Products
4. Materials and Methods
4.1. Experimental Design and Fish Sampling
4.2. Chemical Composition
4.3. Fatty Acid Profile
4.4. Amino Acid Profile
4.5. Protein Quality: Chemical Score of Amino Acids
4.6. Mineral Content
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fisheries and Aquaculture Department Aquaculture. Available online: http://www.fao.org/fishery/aquaculture/en (accessed on 16 December 2019).
- FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018; ISBN 978-92-5-130562-1. [Google Scholar]
- Vázquez, J.J.; Meduíña, A.; Durán, A.A.; Nogueira, M.; Fernández-Compás, A.; Pérez-Martín, R.; Rodríguez-Amado, I. Production of Valuable Compounds and Bioactive Metabolites from By-Products of Fish Discards Using Chemical Processing, Enzymatic Hydrolysis, and Bacterial Fermentation. Mar. Drugs 2019, 17, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rustad, T.; Storrø, I.; Slizyte, R. Possibilities for the utilisation of marine by-products. Int. J. Food Sci. Technol. 2011, 46, 2001–2014. [Google Scholar] [CrossRef]
- Villamil, O.; Váquiro, H.; Solanilla, J.F. Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chem. 2017, 224, 160–171. [Google Scholar] [CrossRef]
- Erkan, N.; Özden, Ö. Proximate composition and mineral contents in aqua cultured sea bass (Dicentrarchus labrax), sea bream (Sparus aurata) analyzed by ICP-MS. Food Chem. 2007, 102, 721–725. [Google Scholar] [CrossRef]
- Gil, A.; Gil, F. Fish, a Mediterranean source of n-3 PUFA: Benefits do not justify limiting consumption. Br. J. Nutr. 2015, 113, S58–S67. [Google Scholar] [CrossRef] [Green Version]
- Al Khawli, F.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Gullón, P.; Kousoulaki, K.; Ferrer, E.; Berrada, H.; Barba, F.J. Innovative green technologies of intensification for valorization of seafood and their by-products. Mar. Drugs 2019, 17, 689. [Google Scholar] [CrossRef] [Green Version]
- Kundam, D.N.; Acham, I.O.; Girgih, A.T. Bioactive compounds in fish and their health benefits. Asian Food Sci. J. 2018, 4, 1–14. [Google Scholar] [CrossRef]
- Franco, D.; Munekata, P.E.S.; Agregán, R.; Bermúdez, R.; López-Pedrouso, M.; Pateiro, M.; Lorenzo, J.M. Application of Pulsed Electric Fields for Obtaining Antioxidant Extracts from Fish Residues. Antioxidants 2020, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Galanakis, C.M. Introduction. In Nutraceutical and Functional Food Components. Effects of Innovative Processing Techniques; Galanakis, C.M., Ed.; Elsevier: London, UK, 2017; pp. 1–14. [Google Scholar]
- Vázquez, J.A.; Durán, A.I.; Menduíña, A.; Nogueira, M.; Fraguas, J.; Mirón, J.; Valcárcel, J. Tailor-made process to recover high added value compounds from fishery by-products. In Green Extraction and Valorization of By-Products from Food Processing; Barba, F.J., Roselló-Soto, E., Brncic, M., Lorenzo, J.M., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 91–140. ISBN 9781138544048. [Google Scholar]
- Kim, S.-K.; Mendis, E. Bioactive compounds from marine processing byproducts—A review. Food Res. Int. 2006, 39, 383–393. [Google Scholar] [CrossRef]
- Olsen, R.L.; Toppe, J.; Karunasagar, I. Challenges and realistic opportunities in the use of by-products from processing of fish and shellfish. Trends Food Sci. Technol. 2014, 36, 144–151. [Google Scholar] [CrossRef]
- Sugiura, K.; Yamatani, S.; Watahara, M.; Onodera, T. Ecofeed, animal feed produced from recycled food waste. Vet. Ital. 2009, 45, 397–404. [Google Scholar] [PubMed]
- Ytrestøyl, T.; Aas, T.S.; Åsgård, T. Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture 2015, 448, 365–374. [Google Scholar] [CrossRef] [Green Version]
- Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 2012, 49, 278–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aspevik, T.; Oterhals, Å.; Rønning, S.B.; Altintzoglou, T.; Wubshet, S.G.; Gildberg, A.; Afseth, N.K.; Whitaker, R.D.; Diana Lindberg, D. Valorization of Proteins from Co- and By-Products from the Fish and Meat Industry. In Chemistry and Chemical Technologies in Waste Valorization; Springer: Cham, Switzerland, 2017; pp. 123–150. [Google Scholar]
- Létisse, M.; Comeau, L. Enrichment of eicosapentaenoic acid and docosahexaenoic acid from sardine by-products by supercritical fluid fractionation. J. Sep. Sci. 2008, 31, 1374–1380. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Sillero, J.; Gharsallaoui, A.; Prentice, C. Peptides from Fish By-product Protein Hydrolysates and Its Functional Properties: An Overview. Mar. Biotechnol. 2018, 20, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, V.; Carvalho, A.P.; Piccirillo, C.; Santos, M.M.; Castro, P.M.L.; Pintado, M.E. Extraction of high added value biological compounds from sardine, sardine-type fish and mackerel canning residues—A review. Mater. Sci. Eng. C 2013, 33, 3111–3120. [Google Scholar] [CrossRef]
- Tørris, C.; Småstuen, M.C.; Molin, M. Nutrients in fish and possible associations with cardiovascular disease risk factors in metabolic syndrome. Nutrients 2018, 10, 952. [Google Scholar] [CrossRef] [Green Version]
- Tocher, D.R.; Betancor, M.B.; Sprague, M.; Olsen, R.E.; Napier, J.A. Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: Bridging the gap between supply and demand. Nutrients 2019, 11, 89. [Google Scholar] [CrossRef] [Green Version]
- Oliva-Teles, A. Recent advances in European sea bass and gilthead sea bream nutrition. Aquac. Int. 2000, 8, 477–492. [Google Scholar] [CrossRef]
- Clarke, R.; Bostock, J. Regional Review on Status and Trends in Aquaculture Development in Europe; FAO: Rome, Italy, 2017. [Google Scholar]
- Lenas, D.S.; Triantafillou, D.J.; Chatziantoniou, S.; Nathanailides, C. Fatty acid profile of wild and farmed gilthead sea bream (Sparus aurata). J. Verbrauch. Leb. 2011, 6, 435–440. [Google Scholar] [CrossRef]
- MAPA Dorada. Ministerio de Agricultura, Pesca y Alimentación. Available online: https://www.mapa.gob.es/app/jacumar/especies/especies_listado.aspx (accessed on 21 January 2020).
- FAO/WHO/UNU. Amino Acid Requirements of Adults. Protein and Amino Acids Requirements in Human Nutrition; FAO/WHO/UNU: Geneva, Switzerland, 2007. [Google Scholar]
- He, S.; Franco, C.; Zhang, W. Characterisation of processing wastes of Atlantic Salmon (Salmo salar) and Yellowtail Kingfish (Seriola lalandi) harvested in Australia. Int. J. Food Sci. Technol. 2011, 46, 1898–1904. [Google Scholar] [CrossRef]
- Gencbay, G.; Turhan, S. Proximate composition and nutritional profile of the black sea anchovy (Engraulis encrasicholus) whole fish, fillets, and by-products. J. Aquat. Food Prod. Technol. 2016, 25, 864–874. [Google Scholar] [CrossRef]
- Shavandi, A.; Hou, Y.; Carne, A.; McConnell, M.; Bekhit, A.E.-D.A. Marine waste utilization as a source of functional and health compounds. In Advances in Food and Nutrition Research; Toldrá, F., Ed.; Academic Press: London, UK, 2019; pp. 187–254. [Google Scholar]
- Grigorakis, K. Compositional and organoleptic quality of farmed and wild gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) and factors affecting it: A review. Aquaculture 2007, 272, 55–75. [Google Scholar] [CrossRef]
- Özden, Ö.; Erkan, N. Comparison of biochemical composition of three aqua cultured fishes (Dicentrarchus labrax, Sparus aurata, Dentex dentex). Int. J. Food Sci. Nutr. 2008, 59, 545–557. [Google Scholar] [CrossRef]
- Tejada, M.; Huidobro, A. Quality of farmed gilthead seabream [Sparus aurata] during ice storage related to the slaughter method and gutting. Eur. Food Res. Technol. 2002, 215, 1–7. [Google Scholar] [CrossRef]
- Grigorakis, K.; Taylor, K.D.; Alexis, M. Seasonal patterns of spoilage of ice-stored cultured gilthead sea bream (Sparus aurata). Food Chem. 2003, 81, 263–268. [Google Scholar] [CrossRef]
- Huidobro, A.; Pastor, A.; López-Caballero, M.E.; Tejada, M. Washing effect on the quality index method (QIM) developed for raw gilthead seabream (Sparus aurata). Eur. Food Res. Technol. 2001, 212, 408–412. [Google Scholar] [CrossRef] [Green Version]
- Pleadin, J.; Lešić, T.; Krešić, G.; Barić, R.; Bogdanović, T.; Oraić, D.; Vulić, A.; Legac, A.; ZrnčIć, S. Nutritional quality of different fish species farmed in the Adriatic sea. Ital. J. Food Sci. 2017, 29, 537–549. [Google Scholar]
- Shahidi, F.; Naczk, M.; Pegg, R.B.; Synowiecki, J. Chemical composition and nutritional value of processing discards of cod (Gadus morhua). Food Chem. 1991, 42, 145–151. [Google Scholar] [CrossRef]
- Bechtel, P.J. Properties of different fish processing by-products from pollock, cod and salmon. J. Food Process. Preserv. 2003, 27, 101–116. [Google Scholar] [CrossRef]
- Toppe, J.; Albrektsen, S.; Hope, B.; Aksnes, A. Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2007, 146, 395–401. [Google Scholar] [CrossRef]
- Suseno, S.H.; Syari, C.; Zakiyah, E.R.; Jacoeb, A.M.; Izaki, A.F.; Saraswati, S.; Hayati, S. Chemical composition and fatty acid profile of small pelagic fish (amblygaster sirm and sardinella gibbosa) from Muara Angke, Indonesia. Orient. J. Chem. 2014, 30, 1153–1158. [Google Scholar] [CrossRef] [Green Version]
- Bechtel, P.J.; Morey, A.; Oliveira, A.C.M.; Wu, T.H.; Plante, S.; Bower, C.K. Chemical and nutritional properties of pacific ocean perch (Sebastes alutus) whole fish and by-products. J. Food Process. Preserv. 2010, 34, 55–72. [Google Scholar] [CrossRef]
- Tengku-Rozaina, T.M.; Shu Jeng, W.; Amiza, M.A. Nutritional Composition and Thermal Properties of Goldstripe Sardinella (Sardinella gibbosa) Fillets and By-Products. J. Aquat. Food Prod. Technol. 2018, 27, 667–679. [Google Scholar] [CrossRef]
- Malone, C.; Shaw, N.B.; Kerry, J.P. Effect of season on vitamin E, fatty acid profile, and nutritional value of fish by-products from cod, saithe, ling and haddock species caught in southern Irish coastal waters. J. Aquat. Food Prod. Technol. 2004, 13, 127–149. [Google Scholar] [CrossRef]
- Sun, T.; Xu, Z.; Prinyawiwatkul, W. FA composition of the oil extracted from farmed Atlantic salmon (Salmo salar L.) viscera. JAOCS J. Am. Oil Chem. Soc. 2006, 83, 615–619. [Google Scholar] [CrossRef]
- Wertz, P.W. Essential fatty acids and dietary stress. Toxicol. Ind. Health 2009, 25, 279–283. [Google Scholar] [CrossRef]
- Strobel, C.; Jahreis, G.; Kuhnt, K. Survey of n-3 and n-6 polyunsaturated fatty acids in fish and fish products. Lipids Health Dis. 2012, 11, 144. [Google Scholar] [CrossRef] [Green Version]
- Ferdosh, S.; Sarker, Z.I.; Norulaini, N.; Oliveira, A.; Yunus, K.; Chowdury, A.J.; Akanda, J.; Omar, M. Quality of Tuna Fish Oils Extracted from Processing the By-Products of Three Species of Neritic Tuna Using Supercritical Carbon Dioxide. J. Food Process. Preserv. 2015, 39, 432–441. [Google Scholar] [CrossRef]
- Oliveira, A.C.M.; Bechtel, P.J. Lipid composition of Alaska pink salmon (Oncorhynchus gorbuscha) and Alaska walleye pollock (Theragra chalcogramma) byproducts. J. Aquat. Food Prod. Technol. 2005, 14, 73–91. [Google Scholar] [CrossRef]
- Schneider, M. Marine phospholipids. In Omega-6/3 Fatty Acids: Functions, Sustainability Strategies and Perspectives; De Meester, F., Watson, R.R., Zibadi, S., Eds.; Springer Science & Business Media: New York, NY, USA, 2012; pp. 297–308. [Google Scholar]
- FAO. Fat and fatty acid requirements for adults. In Fats and Fatty Acids in Human Nutrition; FAO: Rome, Italy, 2010; Volume 91, pp. 55–62. ISBN 9789251067338. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Ghaly, A.E.; Ramakrishnan, V.V.; Brooks, M.S.; Budge, S.M.; Dave, D. Fish processing wastes as a potential source of proteins, amino acids and oils: A critical review. J. Microb. Biochem. Technol. 2013, 5, 107–129. [Google Scholar]
- Nagai, T.; Suzuki, N. Isolation of collagen from fish waste material—Skin, bone and fins. Food Chem. 2000, 68, 277–281. [Google Scholar] [CrossRef]
- Shoulders, M.D.; Raines, R.T. Collagen Structure and Stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef] [Green Version]
- Bechtel, P.J.; Johnson, R.B. Nutritional properties of pollock, cod and salmon processing by-products. J. Aquat. Food Prod. Technol. 2004, 13, 125–142. [Google Scholar] [CrossRef]
- Larsen, R.; Eilertsen, K.E.; Mæhre, H.; Jensen, I.J.; Elvevoll, E.O. Taurine content in marine foods: Beneficial health effects. In Bioactive Compounds from Marine Foods: Plant and Animal Sources; Hernández-Ledesma, B., Herrero, M., Eds.; John Wiley & Sons, Ltd.: West Sussex, UK, 2014; pp. 249–268. [Google Scholar]
- Yamori, Y.; Taguchi, T.; Hamada, A.; Kunimasa, K.; Mori, H.; Mori, M. Taurine in health and diseases: Consistent evidence from experimental and epidemiological studies. J. Biomed. Sci. 2010, 17, S6. [Google Scholar] [CrossRef] [Green Version]
- Konosu, S.; Watanabe, K.; Shimizu, T. Distribution of nitrogenous constituents in muscle extracts of eight species of fish. Bull. Jpn. Soc. Sci. Fish. 1974, 40, 909–915. [Google Scholar] [CrossRef] [Green Version]
- Spitze, A.R.; Wong, D.L.; Rogers, Q.R.; Fascetti, A.J. Taurine concentrations in animal feed ingredients; cooking influences taurine content. J. Anim. Physiol. Anim. Nutr. 2003, 87, 251–262. [Google Scholar] [CrossRef]
- Dragnes, B.T.; Larsen, R.; Ernstsen, M.H.; Mæhre, H.; Elvevoll, E.O. Impact of processing on the taurine content in processed seafood and their corresponding unprocessed raw materials. Int. J. Food Sci. Nutr. 2009, 60, 143–152. [Google Scholar] [CrossRef]
- Hoffman, L.C.; Kritzinger, B.; Ferreira, A.V. The effects of region and gender on the fatty acid, amino acid, mineral, myoglobin and collagen contents of impala (Aepyceros melampus) meat. Meat Sci. 2005, 69, 551–558. [Google Scholar] [CrossRef]
- Kaushik, S.J. Whole body amino acid composition of European seabass (Dicentrarchus labrax), gilthead seabream (Sparus aurata) and turbot (Psetta maxima) with an estimation of their IAA requirement profiles. Aquat. Living Resour. 1998, 11, 355–358. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Chen, C.; Shi, Z.; Wang, L. Amino Acid and Fatty Acid Composition of the Muscle Tissue of Yellowfin Tuna (Thunnus albacares) and Bigeye Tuna (Thunnus obesus). J. Food Nutr. Res. 2013, 1, 42–45. [Google Scholar]
- Zhong, S.; Liu, S.; Cao, J.; Chen, S.; Wang, W.; Qin, X. Fish Protein Isolates Recovered from Silver Carp (Hypophthalmichthys molitrix) By-Products Using Alkaline pH Solubilization and Precipitation. J. Aquat. Food Prod. Technol. 2016, 25, 400–413. [Google Scholar] [CrossRef]
- Alasalvar, C.; Taylor, K.D.A.; Zubcov, E.; Shahidi, F.; Alexis, M. Differentiation of cultured and wild sea bass (Dicentrarchus labrax): Total lipid content, fatty acid and trace mineral composition. Food Chem. 2002, 79, 145–150. [Google Scholar] [CrossRef]
- Petrović, M.; Krešic, G.; Zrncic, S.; Oraic, D.; Džafic, N.; Pleadin, J. Influence of season and farming location on the quality parameters of sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata). Ital. J. Food Sci. 2015, 27, 152–157. [Google Scholar]
- Kim, S.-K.; Jung, W.-K. Fish and bone as a calcium source. In Maximising the Value of Marine By-Products; Shahidi, F., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 328–339. [Google Scholar]
- Fawole, O.O.; Ogundiran, M.A.; Ayandiran, T.A.; Olagunju, O.F. Proximate and Mineral Composition in Some Selected Fresh Water Fishes in Nigeria. Internet J. Food Saf. 2007, 9, 52–55. [Google Scholar]
- Al-Yousuf, M.H.; El-Shahawi, M.S.; Al-Ghais, S.M. Trace metals in liver, skin and muscle of Lethrinus lentjan fish species in relation to body length and sex. Sci. Total Environ. 2000, 256, 87–94. [Google Scholar] [CrossRef]
- Jung, W.K.; Shahidi, F.; Kim, S.K. Calcium from fish bone and other marine resources. In Marine Nutraceuticals and Functional Foods; Barrow, C., Shahidi, F., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 419–431. [Google Scholar]
- Barlow, S.M.; Windsor, M.L. Fishery by-products. Int. Assoc. Fish. Meal Manuf. 1983, V.II, 253–272. [Google Scholar]
- Kinsella, J.E. Fish and seafoods-nutritional implications and quality issues. Food Technol. 1988, 42, 146–150. [Google Scholar]
- ISO 1442. International Standards Meat and Meat Products—Determination of Moisture Content; International Organization for Standarization: Geneva, Switzerland, 1997. [Google Scholar]
- ISO 937. International Standards Meat and Meat Products—Determination of Nitrogen Content; International Organization for Standarization: Geneva, Switzerland, 1978. [Google Scholar]
- ISO 936. International Standards Meat and Meat Products—Determination of Ash Content; International Organization for Standarization: Geneva, Switzerland, 1998. [Google Scholar]
- AOCS. AOCS Official Procedure Am5-04. Rapid Determination of Oil/Fat Utilizing High Temperature Solvent Extraction; American Oil Chemists Society: Urbana, IL, USA, 2005. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, R.; Crecente, S.; Borrajo, P.; Agregán, R.; Lorenzo, J.M. Effect of slaughter age on foal carcass traits and meat quality. Animal 2015, 9, 1713–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domínguez, R.; Borrajo, P.; Lorenzo, J.M. The effect of cooking methods on nutritional value of foal meat. J. Food Compos. Anal. 2015, 43, 61–67. [Google Scholar] [CrossRef]
- Shahidi, F.; Synowiecki, J. Nutrient composition of mechanically separated and surimi-like seal meat. Food Chem. 1993, 47, 41–46. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Bermúdez, R.; Domínguez, R.; Guiotto, A.; Franco, D.; Purriños, L. Physicochemical and microbial changes during the manufacturing process of dry-cured lacón salted with potassium, calcium and magnesium chloride as a partial replacement for sodium chloride. Food Control 2015, 50, 763–769. [Google Scholar] [CrossRef]
Cuts of Gilthead Sea Bream | Mean | SD |
---|---|---|
Fins | 1.75 | 0.28 |
Fishbone | 14.57 | 2.94 |
Gills | 2.63 | 0.20 |
Guts | 5.04 | 1.42 |
Head | 21.53 | 2.65 |
Heart | 0.23 | 0.11 |
Liver | 1.31 | 0.28 |
Muscle | 34.12 | 5.12 |
Skin | 10.25 | 1.92 |
Others | 3.89 | 1.05 |
Chemical Composition | Muscle | Fishbone | Gills | Guts | Head | Liver | Skin | SEM | Sig. |
---|---|---|---|---|---|---|---|---|---|
Moisture | 69.07 d | 57.64 c | 55.24 bc | 47.70 a | 52.51 b | 55.50 bc | 45.11 a | 0.94 | *** |
Fat | 7.86 a | 17.13 b | 21.55 bc | 34.11 d | 22.11 bc | 25.76 c | 26.78 c | 1.01 | *** |
Protein | 21.05 d | 16.39 c | 13.92 b | 12.89 b | 12.91 b | 10.11 a | 24.78 e | 0.49 | *** |
Ash | 1.47 a | 6.23 b | 6.45 b | 1.09 a | 9.14 c | 1.08 a | 1.35 a | 0.29 | *** |
Fatty Acid | Muscle | Fishbone | Gills | Guts | Head | Liver | Skin | SEM | Sig. |
---|---|---|---|---|---|---|---|---|---|
C14:0 | 2.38 b | 2.84 d | 2.62 c | 2.64 c | 2.79 d | 1.83 a | 2.61 c | 0.04 | *** |
C15:0 | 0.22 b | 0.28 d | 0.24 c | 0.23 c | 0.28 d | 0.17 a | 0.23 c | 0.01 | *** |
C16:0 | 13.99 bc | 13.84 bc | 14.13 c | 13.27 a | 13.99 bc | 13.93 bc | 13.54 ab | 0.07 | ** |
C16:1n-7 | 3.86 c | 4.90 e | 4.57 d | 3.68 b | 5.03 f | 3.49 a | 3.97 c | 0.07 | *** |
C17:0 | 0.18 a | 0.55 e | 0.19 b | 0.20 bc | 0.54 d | 0.20 c | 0.19 ab | 0.02 | *** |
C17:1n-7 | 0.16 a | 0.45 e | 0.20 c | 0.15 a | 0.43 d | 0.18 b | 0.16 a | 0.02 | *** |
C18:0 | 2.96 bc | 3.07 cd | 2.70 a | 3.19 d | 2.86 ab | 4.51 e | 2.87 ab | 0.07 | *** |
C18:1n-9 | 34.30 b | 32.99 a | 35.82 d | 35.23 c | 33.09 a | 35.91 d | 35.41 cd | 0.15 | *** |
C18:1n-7 | 2.63 b | 2.72 bc | 2.93 ef | 2.86 de | 2.75 cd | 2.98 f | 2.39 a | 0.03 | *** |
C18:2n-6 | 18.28 bc | 18.68 cd | 17.82 b | 19.58 e | 18.23 bc | 16.57 a | 18.87 d | 0.12 | *** |
C20:0 | 0.27 c | 0.27 c | 0.28 c | 0.30 d | 0.25 b | 0.18 a | 0.28 c | 0.01 | *** |
C18:3n-6 | 0.21 ab | 0.16 a | 0.21 ab | 0.21 ab | 0.16 a | 0.52 c | 0.22 b | 0.02 | *** |
C20:1n-9 | 2.91 c | 1.92 a | 2.99 cd | 3.06 d | 1.90 a | 2.13 b | 3.08 d | 0.06 | *** |
C18:3n-3 | 4.45 c | 3.86 a | 4.05 b | 4.71 d | 3.86 a | 4.13 b | 4.73 d | 0.05 | *** |
C20:2n-6 | 0.94 a | 0.88 a | 0.93 a | 0.97 a | 0.88 a | 1.08 b | 0.88 a | 0.01 | *** |
C22:1n-9 | 0.57 a | 0.65 d | 0.58 ab | 0.58 ab | 0.62 cd | 0.57 a | 0.60 bc | 0.01 | *** |
C20:3n-3 | 0.49 d | 0.39 a | 0.43 b | 0.47 c | 0.40 a | 0.57 e | 0.50 d | 0.01 | *** |
C20:4n-6 | 0.39 b | 0.45 c | 0.31 a | 0.28 a | 0.46 c | 0.50 d | 0.28 a | 0.01 | *** |
C20:5n-3 | 2.28 d | 2.77 e | 1.92 b | 1.83 a | 2.78 e | 1.91 b | 2.03 c | 0.05 | *** |
C24:1n-9 | 0.50 bc | 0.43 a | 0.52 e | 0.49 b | 0.41 a | 0.52 cd | 0.47 b | 0.01 | *** |
C22:5n-3 | 1.76 d | 2.00 e | 1.42 a | 1.55 b | 2.00 e | 2.04 e | 1.66 c | 0.03 | *** |
C22:6n-3 | 5.20 e | 4.58 c | 4.09 b | 3.51 a | 5.00 de | 4.90 d | 3.98 b | 0.08 | *** |
SFA | 20.00 a | 20.85 b | 20.16 a | 19.83 a | 20.72 b | 20.81 b | 19.72 a | 0.09 | *** |
MUFA | 44.92 b | 44.05 a | 47.61 d | 46.05 c | 44.23 a | 45.77 c | 46.08 c | 0.15 | *** |
PUFA | 34.00 d | 33.75 cd | 31.17 a | 33.10 c | 33.77 cd | 32.21 b | 33.15 c | 0.14 | *** |
n-3 | 14.18 d | 13.59 c | 11.91 a | 12.06 a | 14.03 d | 13.55 c | 12.89 b | 0.11 | *** |
n-6 | 19.82 cd | 20.16 cd | 19.26 b | 21.04 e | 19.73 c | 18.66 a | 20.26 d | 0.10 | *** |
Long chain n-3 † | 9.23 d | 9.35 d | 7.43 b | 6.89 a | 9.78 e | 8.86 c | 7.67 b | 0.13 | *** |
DHA/EPA | 2.28 e | 1.65 a | 2.13 d | 1.91 c | 1.80 b | 2.57 f | 1.96 c | 0.04 | *** |
n-6/n-3 | 1.40 a | 1.48 b | 1.62 c | 1.75 d | 1.41 a | 1.38 a | 1.57 c | 0.02 | *** |
PUFA/SFA | 1.70 d | 1.62 bc | 1.55 a | 1.67 cd | 1.63 c | 1.56 ab | 1.68 cd | 0.01 | *** |
Amino Acid | Muscle | Fishbone | Gills | Guts | Head | Liver | Skin | SEM | Sig. |
---|---|---|---|---|---|---|---|---|---|
Non-essential amino acids | |||||||||
Aspartic acid | 1665.94 b | 1490.45 b | 873.88 a | 707.01 a | 974.51 a | 579.97 a | 1684.35 b | 67.50 | *** |
Serine | 692.39 cd | 745.83 d | 500.13 ab | 384.69 a | 561.69 bc | 388.47 a | 781.13 d | 24.51 | *** |
Glutamic acid | 2452.18 b | 2152.00 b | 1405.68 a | 1052.31 a | 1504.07 a | 1001.47 a | 2541.65 b | 95.44 | *** |
Glycine | 947.23 ab | 1647.89 c | 1198.47 bc | 487.46 a | 1582.10 bc | 445.77 a | 1544.00 bc | 81.90 | *** |
Alanine | 915.46 cd | 1023.35 cd | 778.60 bc | 449.63 a | 825.64 bc | 559.99 ab | 1156.33 d | 38.85 | *** |
Proline | 571.67 ab | 932.44 b | 695.85 ab | 354.83 a | 883.46 b | 439.01 a | 948.60 b | 44.75 | ** |
Tyrosine | 587.79 c | 455.09 b | 252.92 a | 246.60 a | 285.10 a | 219.13 a | 532.17 bc | 22.97 | *** |
Total NE | 7832.65 abc | 8447.04 cd | 5705.50 ab | 3682.52 a | 6616.56 bc | 3633.82 a | 9188.23 d | 313.92 | *** |
Essential amino acids | |||||||||
Histidine | 561.41 c | 563.80 c | 345.73 ab | 242.66 a | 386.75 b | 251.50 a | 568.54 c | 20.05 | *** |
Arginine | 1097.24 bc | 1293.64 bc | 228.41 a | 602.08 a | 985.48 b | 219.63 a | 1456.75 c | 63.22 | *** |
Threonine | 833.56 e | 767.16 de | 629.81 cd | 413.81 ab | 541.25 bc | 308.63 a | 856.16 e | 30.20 | *** |
Valine | 914.89 b | 803.34 b | 547.55 a | 498.03 a | 514.60 a | 566.24 a | 924.32 b | 32.55 | *** |
Methionine | 346.52 d | 239.97 cd | n d a | n d a | 176.61 bc | 117.23 b | 285.22 c d | 18.24 | *** |
Lysine | 1705.13 b | 1344.78 b | 796.11 a | 456.78 a | 814.16 a | 450.36 a | 1646.93 b | 76.79 | *** |
Isoleucine | 801.69 b | 667.67 b | 377.97 a | 346.84 a | 387.14 a | 401.80 a | 769.59 b | 32.14 | *** |
Leucine | 1284.54 b | 1101.44 b | 676.58 a | 557.71 a | 655.64 a | 664.71 a | 1290.07 b | 51.00 | *** |
Phenylalanine | 736.54 b | 683.95 b | 423.38 a | 358.92 a | 440.62 a | 421.44 a | 737.63 b | 25.10 | *** |
Total E | 8460.81 b | 7465.74 b | 4025.51 a | 3476.82 a | 4902.25 a | 3401.53 a | 8535.21 b | 332.90 | *** |
E/NE | 1.08 c | 0.89 b | 0.71 a | 0.95 b | 0.75 a | 0.94 b | 0.94 b | 0.02 | *** |
Taurine | 127.02 b | 148.67 bc | n d a | 335.20 e | 166.53 cd | n d a | 187.91 d | 10.76 | *** |
Amino Acids | FAO/WHO/UNU * | By-Product | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Muscle | Fishbone | Gills | Guts | Head | Liver | Skin | SEM | Sig. | ||
Histidine | 1.5 | 178.21 bc | 229.84 e | 165.32 abc | 130.30 a | 200.32 cd | 165.91 abc | 153.53 ab | 5.90 | *** |
Isoleucine | 3.0 | 127.25 bc | 136.34 c | 90.43 a | 92.97 a | 100.19 ab | 132.58 bc | 103.99 abc | 3.84 | *** |
Leucine | 5.9 | 103.68 abc | 114.33 c | 82.30 a | 76.30 a | 86.31 ab | 111.54 bc | 88.64 abc | 3.04 | ** |
Lysine | 4.5 | 180.43 c | 182.97 c | 127.02 ab | 82.22 a | 140.46 bc | 99.10 ab | 148.38 bc | 6.21 | *** |
Methionine | 1.6 | 103.10 b | 91.69 b | nd a | nd a | 86.22 b | 72.54 b | 72.06 b | 5.68 | *** |
Phe + Lys | 3.8 | 165.95 ab | 183.45 b | 127.73 a | 128.31 a | 148.61 ab | 166.79 ab | 135.28 a | 4.43 | *** |
Threonine | 2.3 | 172.66 abc | 204.10 c | 196.41 c | 144.12 ab | 182.80 bc | 132.77 a | 150.79 ab | 5.17 | ** |
Valine | 3.9 | 111.71 ab | 126.10 bc | 100.74 ab | 102.51 ab | 102.50 ab | 143.68 c | 96.04 a | 3.13 | ** |
IEAA | 138.99 bc | 151.67 c | 66.73 a | 58.63 a | 123.51 bc | 124.02 bc | 114.22 b | 4.82 | *** |
Minerals | Muscle | Fishbone | Gills | Guts | Head | Liver | Skin | SEM | Sig. |
---|---|---|---|---|---|---|---|---|---|
Macro-minerals | |||||||||
Calcium | 29.11 a | 1618.83 b | 1873.24 c | 19.44 a | 2389.24 d | 12.81 a | 158.60 a | 92.72 | *** |
Magnesium | 34.68 b | 30.70 ab | 47.90 c | 34.40 b | 28.04 ab | 49.49 c | 26.71 a | 1.15 | *** |
Phosphorous | 256.38 a | 989.20 b | 955.92 b | 180.51 a | 1312.27 c | 207.93 a | 224.85 a | 42.80 | *** |
Potassium | 343.45 f | 300.67 e | 134.95 ab | 153.39 b | 184.53 c | 118.58 a | 223.97 d | 8.44 | *** |
Sodium | 100.00 a | 98.00 a | 258.80 c | 157.93 b | 159.30 b | 308.79 c | 119.24 ab | 9.58 | *** |
Micro-minerals | |||||||||
Copper | 0.28 d | 0.14 abc | 0.18 bcd | 0.23 cd | 0.04 a | 0.54 e | 0.11 ab | 0.02 | *** |
Iron | 1.01 b | 0.69 ab | 2.12 c | 1.98 c | 0.45 a | 3.82 d | 0.69 ab | 0.11 | *** |
Zinc | 0.46 a | 1.40 b | 2.12 d | 1.91 cd | 1.71 bc | 3.46 e | 2.14 d | 0.10 | *** |
Manganese † | 19.00 a | 206.76 d | 585.07 e | 63.64 b | 211.14 d | 154.70 c | 33.69 ab | 16.99 | *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pateiro, M.; Munekata, P.E.S.; Domínguez, R.; Wang, M.; Barba, F.J.; Bermúdez, R.; Lorenzo, J.M. Nutritional Profiling and the Value of Processing By-Products from Gilthead Sea Bream (Sparus aurata). Mar. Drugs 2020, 18, 101. https://doi.org/10.3390/md18020101
Pateiro M, Munekata PES, Domínguez R, Wang M, Barba FJ, Bermúdez R, Lorenzo JM. Nutritional Profiling and the Value of Processing By-Products from Gilthead Sea Bream (Sparus aurata). Marine Drugs. 2020; 18(2):101. https://doi.org/10.3390/md18020101
Chicago/Turabian StylePateiro, Mirian, Paulo E. S. Munekata, Rubén Domínguez, Min Wang, Francisco J. Barba, Roberto Bermúdez, and José M. Lorenzo. 2020. "Nutritional Profiling and the Value of Processing By-Products from Gilthead Sea Bream (Sparus aurata)" Marine Drugs 18, no. 2: 101. https://doi.org/10.3390/md18020101
APA StylePateiro, M., Munekata, P. E. S., Domínguez, R., Wang, M., Barba, F. J., Bermúdez, R., & Lorenzo, J. M. (2020). Nutritional Profiling and the Value of Processing By-Products from Gilthead Sea Bream (Sparus aurata). Marine Drugs, 18(2), 101. https://doi.org/10.3390/md18020101