COSMO-RS Based Prediction for Alpha-Linolenic Acid (ALA) Extraction from Microalgae Biomass Using Room Temperature Ionic Liquids (RTILs)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Capacity Values of ILs toward the ALA Molecules
2.1.1. Effect of Carbon Chain Length of Cation-Based ILs on the ALA Extraction Capacity
2.1.2. Effect of Anion-Based ILs on the ALA Extraction Capacity
2.2. Experimental Validation of COSMO-RS Prediction for the ALA Extraction
3. Methodology
3.1. COSMO-RS Computational Details and Calculations
3.2. Material and Methods of Experimental Validation
3.3. Microwave Assisted Extraction (MAE) of Lipid with ILs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duc, D.; Vigne, S.; Pot, C. Oxysterols in Autoimmunity. Int. J. Mol. Sci. 2019, 20, 4522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauritano, C.; Ianora, A. Marine organisms with anti-diabetes properties. Mar. Drugs 2016, 14, 220. [Google Scholar] [CrossRef] [PubMed]
- Ryckebosch, E.; Bruneel, C.; Muylaert, K.; Foubert, I. Microalgae as an alternative source of omega-3 long chain polyunsaturated fatty acids. Lipid Technol. 2012, 24, 128–130. [Google Scholar] [CrossRef]
- Sinn, N.; Milte, C.M.; Street, S.J.; Buckley, J.D.; Coates, A.M.; Petkov, J.; Howe, P.R.C. Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: A 6-month randomised controlled trial. Br. J. Nutr. 2012, 107, 1682–1693. [Google Scholar] [CrossRef] [Green Version]
- Domenichiello, A.F.; Kitson, A.P.; Bazinet, R.P. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? Prog. Lipid Res. 2015, 59, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Lemahieu, C.; Bruneel, C.; Ryckebosch, E.; Muylaert, K.; Buyse, J.; Foubert, I. Impact of different omega-3 polyunsaturated fatty acid (n-3 PUFA) sources (flaxseed, Isochrysis galbana, fish oil and DHA Gold) on n-3 LC-PUFA enrichment (efficiency) in the egg yolk. J. Funct. Foods 2015, 19, 821–827. [Google Scholar] [CrossRef]
- Gibson, R.A.; Muhlhausler, B.; Makrides, M. Conversion of linoleic acid and alpha-linolenic acid to long-chain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life. Matern. Child Nutr. 2011, 7, 17–26. [Google Scholar] [CrossRef]
- Kartikasari, L.R.; Hughes, R.J.; Geier, M.S.; Makrides, M.; Gibson, R.A. Dietary alpha-linolenic acid enhances omega-3 long chain polyunsaturated fatty acid levels in chicken tissues. Prostaglandins, Leukot. Essent. Fat. Acids 2012, 87, 103–109. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Z.; Gerken, H. Recent Advances in Microalgal Biotechnology Omega-3 Polyunsaturated Fatty Acids from Algae. Biotechnol. Adv. 2015, 8, 709–727. [Google Scholar]
- Handayania, N.A.; Ariyantib, D. Potential Production of Polyunsaturated Fatty Acids from Microalgae. Int. J. Sci. Eng. 2012, 1, 13–16. [Google Scholar] [CrossRef]
- Abedi, E.; Sahari, M.A. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr. 2014, 2, 443–463. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Yoo, C.; Jun, S.Y.; Ahn, C.Y.; Oh, H.M. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 2010, 101, S75–S77. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Arora, N.; Sartaj, K.; Pruthi, V.; Pruthi, P.A. Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses. Renew. Sustain. energy Rev. 2016, 62, 836–855. [Google Scholar] [CrossRef]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H. Bin Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017, 18, 20–31. [Google Scholar] [CrossRef]
- Mercer, P.; Armenta, R.E. Developments in oil extraction from microalgae. Eur. J. lipid Sci. Technol. 2011, 113, 539–547. [Google Scholar] [CrossRef]
- Ahn, D.-G.; Cho, C.-G.; Jeong, S.-H.; Lee, D.-G. Design of photobioreactor for mass production of microalgae. J. Korean Soc. Precis. Eng. 2011, 28, 140–153. [Google Scholar]
- Schneider, W.F.; Brennecke, J.F.; Maginn, E.J.; Mindrup, E.; Gurkan, B.; Price, E.; Goodrich, B. Ionic Liquids Comprising Heteraromatic Anions. U.S. Patent US2019/0031608A1, 31 January 2019. [Google Scholar]
- Rezaei Motlagh, S.; Harun, R.; Biak, D.R.A.; Hussain, S.A.; Wilfreda, C.D.; Krishnan, S. Screening of Long Chain Imidazolium Base Ionic Liquids for EPA and DHA Extraction from Microalgae Using COSMO-RS Model. 2019. Available online: http://www.akademiabaru.com/doc/ARFMTSV58_N1_P23_29.pdf (accessed on 15 August 2019).
- Lei, Z.; Chen, B.; Koo, Y.-M.; MacFarlane, D.R. Introduction: Ionic liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Ionic liquids and deep eutectic solvents in natural products research: Mixtures of solids as extraction solvents. J. Nat. Prod. 2013, 76, 2162–2173. [Google Scholar] [CrossRef]
- Saki, K.; Bahmani, M.; Rafieian-Kopaei, M. The effect of most important medicinal plants on two importnt psychiatric disorders (anxiety and depression)-a review. Asian Pac. J. Trop. Med. 2014, 7, S34–S42. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Park, S.; Kim, M.H.; Choi, Y.K.; Yang, Y.H.; Kim, H.J.; Kim, H.; Kim, H.S.; Song, K.G.; Lee, S.H. Ultrasound-assisted extraction of lipids from Chlorella vulgaris using [Bmim][MeSO4]. Biomass Bioenergy 2013, 56, 99–103. [Google Scholar] [CrossRef]
- Kim, Y.H.; Choi, Y.K.; Park, J.; Lee, S.; Yang, Y.H.; Kim, H.J.; Park, T.J.; Hwan Kim, Y.; Lee, S.H. Ionic liquid-mediated extraction of lipids from algal biomass. Bioresour. Technol. 2012, 109, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-A.; Oh, Y.-K.; Jeong, M.-J.; Kim, S.W.; Lee, J.-S.; Park, J.-Y. Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris. Renew. Energy 2014, 65, 169–174. [Google Scholar] [CrossRef]
- Durga, G.; Mishra, A. Ionic liquids: Industrial applications. Encycl. Inorg. Bioinorg. Chem. 2011, 1–13. [Google Scholar]
- Gonfa, G.; Bustam, M.a; Murugesan, T.; Man, Z.; Mutalib, M.I.A. Thiocyanate Based Task-specific Ionic Liquids for Separation of Benzene and Cyclohexane. Chem. Eng. Trans. 2012, 3, 1939–1944. [Google Scholar]
- Scheffczyk, J.; Fleitmann, L.; Schwarz, A.; Lampe, M.; Bardow, A.; Leonhard, K. COSMO-CAMD: A framework for optimization-based computer-aided molecular design using COSMO-RS. Chem. Eng. Sci. 2017, 159, 84–92. [Google Scholar] [CrossRef]
- Weis, D.C.; MacFarlane, D.R. Computer-aided molecular design of ionic liquids: An overview. Aust. J. Chem. 2012, 65, 1478–1486. [Google Scholar] [CrossRef]
- Xue, Z.; Mu, T.; Gmehling, J. Comparison of the a priori COSMO-RS models and group contribution methods: Original UNIFAC, modified UNIFAC (Do), and modified UNIFAC (Do) consortium. Ind. Eng. Chem. Res. 2012, 51, 11809–11817. [Google Scholar] [CrossRef]
- Klamt, A. The COSMO and COSMO-RS solvation models. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 699–709. [Google Scholar] [CrossRef]
- Pereiro, A.B.; Deive, F.J.; Esperança, J.; Rodríguez, A. Alkylsulfate-based ionic liquids to separate azeotropic mixtures. Fluid Phase Equilib. 2010, 291, 13–17. [Google Scholar] [CrossRef]
- Kumar, L.; Banerjee, T.; Mohanty, K. Prediction of selective extraction of cresols from aqueous solutions by ionic liquids using theoretical approach. Sep. Sci. Technol. 2011, 46, 2075–2087. [Google Scholar] [CrossRef]
- Meindersma, G.W.; De Haan, A.B. Cyano-containing ionic liquids for the extraction of aromatic hydrocarbons from an aromatic/aliphatic mixture. Sci. China Chem. 2012, 55, 1488–1499. [Google Scholar] [CrossRef]
- Paduszyński, K. An overview of the performance of the COSMO-RS approach in predicting the activity coefficients of molecular solutes in ionic liquids and derived properties at infinite dilution. Phys. Chem. Chem. Phys. 2017, 19, 11835–11850. [Google Scholar] [CrossRef] [PubMed]
- Domańska, U.; Marciniak, A. Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 4-methyl-N-butyl-pyridinium bis (trifluoromethylsulfonyl)-imide. J. Chem. Thermodyn. 2009, 41, 1350–1355. [Google Scholar] [CrossRef]
- Rezaei Motlagh, S.; Harun, R.; Biak, A.; Radiah, D.; Hussain, S.A.; Wan Ab Karim Ghani, W.A.; Khezri, R.; Wilfred, C.D.; Elgharbawy, A.A.M. Screening of Suitable Ionic Liquids as Green Solvents for Extraction of Eicosapentaenoic Acid (EPA) from Microalgae Biomass Using COSMO-RS Model. Molecules 2019, 24, 713. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.; Banerjee, T.; Mohanty, K. Quantum chemical based screening of ionic liquids for the extraction of phenol from aqueous solution. Ind. Eng. Chem. Res. 2010, 49, 2916–2925. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Zou, L.; Chi, R. Imidazolium-based ionic liquids with inorganic anions in the extraction of salidroside and tyrosol from Rhodiola: The role of cations and anions on the extraction mechanism. J. Mol. Liq. 2019, 275, 136–145. [Google Scholar] [CrossRef]
- Hawker, R.R.; Haines, R.S.; Harper, J.B. Variation of the Cation of Ionic Liquids: The Effects on Their Physicochemical Properties and Reaction Outcome. Targets Heterocycl. Syst. Prop. 2015, 141–213. [Google Scholar] [CrossRef]
- Du, F.-Y.; Xiao, X.-H.; Luo, X.-J.; Li, G.-K. Application of ionic liquids in the microwave-assisted extraction of polyphenolic compounds from medicinal plants. Talanta 2009, 78, 1177–1184. [Google Scholar] [CrossRef]
- Xu, W.; Chu, K.; Li, H.; Zhang, Y.; Zheng, H.; Chen, R.; Chen, L. Ionic liquid-based microwave-assisted extraction of flavonoids from Bauhinia championii (Benth.) Benth. Molecules 2012, 17, 14323–14335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilulya, K.F.; Msagati, T.A.M.; Mamba, B.B. Ionic liquid-based extraction of fatty acids from blue-green algal cells enhanced by direct transesterification and determination using GC× GC-TOFMS. Chromatographia 2014, 77, 479–486. [Google Scholar] [CrossRef]
- Severa, G.; Kumar, G.; Troung, M.; Young, G.; Cooney, M.J. Simultaneous extraction and separation of phorbol esters and bio-oil from Jatropha biomass using ionic liquid-methanol co-solvents. Sep. Purif. Technol. 2013, 116, 265–270. [Google Scholar] [CrossRef]
- Praveenkumar, R.; Lee, K.; Lee, J.; Oh, Y.-K. Breaking dormancy: An energy-efficient means of recovering astaxanthin from microalgae. Green Chem. 2015, 17, 1226–1234. [Google Scholar] [CrossRef]
- Cheong, L.-Z.; Guo, Z.; Yang, Z.; Chua, S.-C.; Xu, X. Extraction and enrichment of n-3 polyunsaturated fatty acids and ethyl esters through reversible π–π complexation with aromatic rings containing ionic liquids. J. Agric. Food Chem. 2011, 59, 8961–8967. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Wang, N.N.; Yu, Z.W. The hydrogen bonding interactions between the ionic liquid 1-Ethyl-3-methylimidazolium ethyl sulfate and water. J. Phys. Chem. B 2010, 114, 4747–4754. [Google Scholar] [CrossRef]
- Mu, X.; Jiang, N.; Liu, C.; Zhang, D. New Insight into the Formation Mechanism of Imidazolium-Based Ionic Liquids from N-Alkyl Imidazoles and Halogenated Hydrocarbons: A Polar Microenvironment Induced and Autopromoted Process. J. Phys. Chem. A 2017, 121, 1133–1139. [Google Scholar] [CrossRef]
- Zhang, Y.; Ward, V.; Dennis, D.; Plechkova, N.; Armenta, R.; Rehmann, L. Efficient Extraction of a Docosahexaenoic Acid (DHA)-Rich Lipid Fraction from Thraustochytrium sp. Using Ionic Liquids. Materials (Basel) 2018, 11, 1986. [Google Scholar] [CrossRef] [Green Version]
- Olkiewicz, M.; Plechkova, N.V.; Earle, M.J.; Fabregat, A.; Stüber, F.; Fortuny, A.; Font, J.; Bengoa, C. Biodiesel production from sewage sludge lipids catalysed by Brønsted acidic ionic liquids. Appl. Catal. B Environ. 2016, 181, 738–746. [Google Scholar] [CrossRef]
- Miazek, K.; Kratky, L.; Sulc, R.; Jirout, T.; Aguedo, M.; Richel, A.; Goffin, D. Effect of organic solvents on microalgae growth, metabolism and industrial bioproduct extraction: A review. Int. J. Mol. Sci. 2017, 18, 1429. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Wang, Z.; Alam, M.; Xu, J.; Zhu, S.; Yuan, Z.; Huo, S.; Guo, Y.; Qin, L.; Ma, L. Repeated Utilization of Ionic Liquid to Extract Lipid from Algal Biomass. Int. J. Polym. Sci. 2019, 2019. [Google Scholar] [CrossRef]
- Ullah, H.; Wilfred, C.D.; Shaharun, M.S. Comparative assessment of various extraction approaches for the isolation of essential oil from polygonum minus using ionic liquids. J. King Saud Univ. 2017, 31, 230–239. [Google Scholar] [CrossRef]
- Klamt, A. Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 1995, 99, 2224–2235. [Google Scholar] [CrossRef]
- Dreizler, R.M.; Gross, E.K.U. Density Functional Theory: An Approach to the Quantum Many-Body Problem; Springer Science & Business Media: New York, NY, USA, 2012; ISBN 3642861059. [Google Scholar]
- Grimme, S. Supramolecular binding thermodynamics by dispersion-corrected density functional theory. Chem. Eur. J. 2012, 18, 9955–9964. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Muppaneni, T.; Sun, Y.; Reddy, H.K.; Fu, J.; Lu, X.; Deng, S. Microwave-assisted extraction of lipids from microalgae using an ionic liquid solvent [BMIM][HSO4]. Fuel 2016, 178, 49–55. [Google Scholar] [CrossRef]
- Lewis, T.; Nichols, P.D.; McMeekin, T.A. Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J. Microbiol. Methods 2000, 43, 107–116. [Google Scholar] [CrossRef]
No. | Name of Anions | Acronym | Chemical Structures |
---|---|---|---|
1 | 1-ethyl-3-methyl imidazolium | [EMIM] | |
2 | 1-butyl-3-methyl imidazolium | [BMIM] | |
3 | 1-hexyl-3-methyl imidazolium | [HMIM] | |
4 | 1-octyl-3-methyl imidazolium | [OMIM] | |
5 | 1-ethyl-3-methyl pyridinium | [EMPyr] | |
6 | 1-butyl-3-methyl pyridinium | [BMPyr] | |
7 | 1-hexyl-3-methyl pyridinium | [HMPyr] | |
8 | 1-octhyl-3-methyl pyridinium | [OMPyr] | |
9 | 1-ethyl-1-methyl pyrrolidinium | [EMPyrro] | |
10 | 1-butyl-1-methyl pyrrolidinium | [BMPyrro] | |
11 | 1-hexyl-1-methyl pyrrolidinium | [HMPyrro] | |
12 | 1-methyl-1-octyl pyrrolidinium | [MOPyrro] | |
13 | 1-methyl-1-propyl piperidinium | [MPPipe] | |
14 | 1-butyl-1-methyl piperidinium | [BMPipe] | |
15 | 1-hexyl-1-methyl piperidinium | [HMPipe] | |
16 | Tetramethyl ammonium | [TMAm] |
No. | Name of Anions | Acronym/Chemical Structure Formula | Chemical Structures |
---|---|---|---|
1 | Chloride | Cl− | - |
2 | Bromide | Br− | - |
3 | Tetrafluoroborate | [BF4]− | |
4 | Hexafluorophosphate | [PF6]− | |
5 | Nitrate | [NO3]− | |
6 | Dicyanamide | [DCN]/[C2N3]− | |
7 | Tetrachloro aluminate | [AlCl4]− | |
8 | Thiocyanate | [SCN]− | |
9 | Dimethylphosphate | [C2H6PO4]− | |
10 | Diethylphosphate | [C4H10PO4]− | |
11 | Benzoate | [C7H5O2]− | |
12 | Methanesulfonate | [CH3SO3]− | |
13 | Toluene-4-sulfonate | [C7H7SO3]− | |
14 | Trifluoro methane sulfonate | [CF3SO3]− | |
15 | Sulfate | [SO4]2− | |
16 | Hydrogen sulfate | [HSO4]− | |
17 | Ethyl sulfate | [C2H5SO4]− | |
18 | Methyl sulfate | [CH3SO4]− | |
19 | Propanoate | [C3H5O2]− | |
20 | Bis(trifluoromethylsulfonyl)methane | [C3H2F6O4S2]− | |
21 | Trifluoro acetate | [CF3CO2]− | |
22 | Bis(trifluoromethylsulfonyl)amide | [Tf2N]]/[C2F6NO4S2]− |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezaei Motlagh, S.; Harun, R.; Awang Biak, D.R.; Hussain, S.A.; Omar, R.; Elgharbawy, A.A. COSMO-RS Based Prediction for Alpha-Linolenic Acid (ALA) Extraction from Microalgae Biomass Using Room Temperature Ionic Liquids (RTILs). Mar. Drugs 2020, 18, 108. https://doi.org/10.3390/md18020108
Rezaei Motlagh S, Harun R, Awang Biak DR, Hussain SA, Omar R, Elgharbawy AA. COSMO-RS Based Prediction for Alpha-Linolenic Acid (ALA) Extraction from Microalgae Biomass Using Room Temperature Ionic Liquids (RTILs). Marine Drugs. 2020; 18(2):108. https://doi.org/10.3390/md18020108
Chicago/Turabian StyleRezaei Motlagh, Shiva, Razif Harun, Dayang Radiah Awang Biak, Siti Aslina Hussain, Rozita Omar, and Amal A. Elgharbawy. 2020. "COSMO-RS Based Prediction for Alpha-Linolenic Acid (ALA) Extraction from Microalgae Biomass Using Room Temperature Ionic Liquids (RTILs)" Marine Drugs 18, no. 2: 108. https://doi.org/10.3390/md18020108
APA StyleRezaei Motlagh, S., Harun, R., Awang Biak, D. R., Hussain, S. A., Omar, R., & Elgharbawy, A. A. (2020). COSMO-RS Based Prediction for Alpha-Linolenic Acid (ALA) Extraction from Microalgae Biomass Using Room Temperature Ionic Liquids (RTILs). Marine Drugs, 18(2), 108. https://doi.org/10.3390/md18020108