Lack of Acute Toxicity and Mutagenicity from Recombinant Epinephelus lanceolatus Piscidin Expressed in Pichia pastoris
Abstract
:1. Introduction
2. Results
2.1. Oral Toxicity in Rats
2.2. Inhalation Toxicity in Rats
2.3. Eye Irritation in Rabbits
2.4. Skin Sensitization in Mice
2.5. Bacterial Reverse Mutation Test
2.6. Micronucleus Test in Chinese hamster ovary (CHO)-K1 Cells
3. Discussion
4. Materials and Methods
4.1. Expression of Recombinant Piscidin in Fermenter Cultures
4.2. Toxicology Studies
4.3. Acute Oral Toxicity Study
4.4. Acute Inhalation Toxicity Study
4.5. Acute Eye Irritation Study
4.6. Skin Sensitization Study (Local Lymph Node Assay)
4.7. Bacterial Reverse Mutation Test
4.8. Micronucleus Test in CHO-K1 Cell
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, W.C.; Chang, H.Y.; Chen, J.Y. Electrotransfer of the tilapia piscidin 3 and tilapia piscidin 4 genes into skeletal muscle enhances the antibacterial and immunomodulatory functions of Oreochromis niloticus. Fish Shellfish Immunol. 2016, 50, 200–209. [Google Scholar] [CrossRef]
- Tangcharoensathien, V.; Sattayawutthipong, W.; Kanjanapimai, S.; Kanpravidth, W.; Browne, R.; Sommanustweechai, A. Antimicrobial resistance: From global agenda to national strategic plan, Thailand. Bulletin 2017, 95, 599–603. [Google Scholar] [CrossRef] [Green Version]
- Zhen, X.; Lundborg, C.S.; Sun, X.; Hu, X.; Dong, H. Economic burden of antibiotic resistance in ESKAPE organisms: A systematic review. Antimicrob. Resist. Infect. Control 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Taviloglu, K.; Yanar, H. Necrotizing fasciitis: Strategies for diagnosis and management. World J. Emergency Surgery 2007, 2, 19. [Google Scholar] [CrossRef] [Green Version]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. P T 2015, 40, 277–283. [Google Scholar]
- Mahlapuu, M.; Hakansson, J.; Ringstad, L.; Bjorn, C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front. Cell. Infect. Microbiol. 2016, 6, 194. [Google Scholar] [CrossRef] [Green Version]
- Mookherjee, N.; Anderson, M.A.; Haagsman, H.P.; Davidson, D.J. Antimicrobial host defence peptides: Functions and clinical potential. Nat. Rev. Drug Discov. 2020. [Google Scholar] [CrossRef]
- Wang, Y.D.; Rajanbabu, V.; Chen, J.Y. Transcriptome analysis of medaka following epinecidin-1 and TH1-5 treatment of NNV infection. Fish Shellfish Immunol. 2015, 42, 121–131. [Google Scholar] [CrossRef]
- Rajanbabu, V.; Pan, C.Y.; Lee, S.C.; Lin, W.J.; Lin, C.C.; Li, C.L.; Chen, J.Y. Tilapia hepcidin 2-3 peptide modulates lipopolysaccharide-induced cytokines and inhibits tumor necrosis factor-alpha through cyclooxygenase-2 and phosphodiesterase 4D. J. Biol. Chem. 2010, 285, 30577–30586. [Google Scholar] [CrossRef] [Green Version]
- Rajanbabu, V.; Chen, J.Y. Applications of antimicrobial peptides from fish and perspectives for the future. Peptides 2011, 32, 415–420. [Google Scholar] [CrossRef]
- Ganz, T. Defensins: Antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 2003, 3, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.J.; Beazley, W.D.; Bibby, M.C.; Devine, D.A. Antimicrobial activity of cecropins. J. Antimicrob. Chemother. 1996, 37, 1077–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noga, E.J.; Silphaduang, U. Piscidins: A novel family of peptide antibiotics from fish. Drug News Perspect. 2003, 16, 87–92. [Google Scholar] [CrossRef] [PubMed]
- van Harten, R.M.; van Woudenbergh, E.; van Dijk, A.; Haagsman, H.P. Cathelicidins: Immunomodulatory Antimicrobials. Vaccines (Basel) 2018, 6, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.N.; Chan, Y.L.; Wu, C.J.; Chen, J.Y. Tilapia Piscidin 4 (TP4) Stimulates Cell Proliferation and Wound Closure in MRSA-Infected Wounds in Mice. Mar. Drugs 2015, 13, 2813–2833. [Google Scholar] [CrossRef] [PubMed]
- Wimley, W.C. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol. 2010, 5, 905–917. [Google Scholar] [CrossRef] [Green Version]
- Malanovic, N.; Lohner, K. Antimicrobial Peptides Targeting Gram-Positive Bacteria. Pharmaceuticals (Basel) 2016, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015, 20, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Georgieva, V.; Kamolvit, W.; Herthelius, M.; Luthje, P.; Brauner, A.; Chromek, M. Association between vitamin D, antimicrobial peptides and urinary tract infection in infants and young children. Acta. Paediatr. 2019, 108, 551–556. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; He, Y.; Ye, Y.; Ma, Y.; Zhang, P.; Zhu, H.; Xu, N.; Liang, S. Little antimicrobial peptides with big therapeutic roles. Protein Pept Lett. 2019. [Google Scholar] [CrossRef]
- Peng, K.C.; Lee, S.H.; Hour, A.L.; Pan, C.Y.; Lee, L.H.; Chen, J.Y. Five Different Piscidins from Nile Tilapia, Oreochromis niloticus: Analysis of Their Expressions and Biological Functions. PLoS ONE 2012, 7, e50263. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Hu, B.; Yang, X.; Gong, L.; Tan, J.; Deng, L. The putative mature peptide of piscidin-1 modulates global transcriptional profile and proliferation of splenic lymphocytes in orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol. 2019, 86, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.P.; Chen, D.W.; Pan, Y.Q.; Deng, L. Two isoforms of piscidin from Malabar grouper, Epinephelus malabaricus: Expression and functional characterization. Fish Shellfish Immunol. 2016, 57, 222–235. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, X.; Zhang, X.; Li, J.; Yi, Y.; Bian, C.; Shi, Q.; Lin, H.; Li, S.; Zhang, Y.; et al. Whole Genome Sequencing of the Giant Grouper (Epinephelus lanceolatus) and High-Throughput Screening of Putative Antimicrobial Peptide Genes. Mar Drugs 2019, 17, 503. [Google Scholar] [CrossRef] [Green Version]
- Tai, H.M.; Huang, H.N.; Tsai, T.Y.; You, M.F.; Wu, H.Y.; Rajanbabu, V.; Chang, H.Y.; Pan, C.Y.; Chen, J.Y. Dietary supplementation of recombinant antimicrobial peptide Epinephelus lanceolatus piscidin improves growth performance and immune response in Gallus gallus domesticus. PLoS ONE 2020, 15, e0230021. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Yao, S.; Chen, Y.; Gao, S.; Yang, Y.; Deng, J.; Ren, Z.; Shen, L.; Cui, H.; Hu, Y.; et al. Use of antimicrobial peptides as a feed additive for juvenile goats. Sci. Rep. 2017, 7, 12254. [Google Scholar] [CrossRef] [Green Version]
- Arteaga, M.E.; Mancebo, A.; Molier, T.; Gómez, D.; González, C.; Bada, A.M.; González, B.; Rojas, N.M.; Rodríguez, G. Dermal toxicity, eye and dermal irritation and skin sensitization evaluation of a new formulation of Bacillus thuringiensis var israelensis SH-14. Regul. Toxicol. Pharmacol. 2014, 68, 147–151. [Google Scholar] [CrossRef]
- Meher, S.M.; Bodhankar, S.L.; Arunkumar; Dhuley, J.N.; Khodape, D.J.; Naik, S.R. Toxicity studies of microbial insecticide Bacillus thuringiensis var. kenyae in rats, rabbits, and fish. Int. J. Toxicol. 2002, 21, 99–105. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Islam, J.; Hazarika, H.; Mazumder, B.; Raju, P.S.; Chattopadhyay, P. Safety profile of silver sulfadiazine-bFGF-loaded hydrogel for partial thickness burn wounds. Cutan. Ocul. Toxicol. 2018, 37, 258–266. [Google Scholar] [CrossRef]
- Ema, M.; Matsuda, A.; Kobayashi, N.; Naya, M.; Nakanishi, J. Dermal and ocular irritation and skin sensitization studies of fullerene C60 nanoparticles. Cutan. Ocul. Toxicol. 2013, 32, 128–134. [Google Scholar] [CrossRef]
- Allen, D.R.; McWhinney, B.C. Quadrupole Time-of-Flight Mass Spectrometry: A Paradigm Shift in Toxicology Screening Applications. Clin. Biochem. Rev. 2019, 40, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Michael, H.; Giovanni, A.; Thomas, E.; Robert, F.; Izzo Angelo, A.; Oliver, K.; Pezzuto John, M.; Alvaro, V. Best practice in research—Overcoming common challenges in phytopharmacological research. J. Ethnopharmacol. 2019. [Google Scholar] [CrossRef]
- Martin, B.L.; Thompson, L.C.; Kim, Y.; Williams, W.; Snow, S.J.; Schladweiler, M.C.; Phillips, P.; King, C.; Richards, J.; Haykal-Coates, N.; et al. Acute peat smoke inhalation sensitizes rats to the postprandial cardiometabolic effects of a high fat oral load. Sci. Total. Environ. 2018, 643, 378–391. [Google Scholar] [CrossRef]
- Moorthy, M.; Khoo, J.J.; Palanisamy, U.D. Acute oral toxicity of the ellagitannin geraniin and a geraniin-enriched extract from Nephelium lappaceum L rind in Sprague Dawley rats. Heliyon 2019, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alluri, V.K.; Dodda, S.; Kilari, E.K.; Golakoti, T.; Sengupta, K. Toxicological Assessment of a Standardized Boswellia serrata Gum Resin Extract. Int. J. Toxicol. 2019, 38, 423–435. [Google Scholar] [CrossRef] [PubMed]
- van Esch, B.C.; Abbring, S.; Diks, M.A.; Dingjan, G.M.; Harthoorn, L.F.; Vos, A.P.; Garssen, J. Post-sensitization administration of non-digestible oligosaccharides and Bifidobacterium breve M-16V reduces allergic symptoms in mice. Immun. Inflamm. Dis. 2016, 4, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Au - Weidner, M.; Au - Taupp, M.; Au - Hallam, S.J. Expression of Recombinant Proteins in the Methylotrophic Yeast Pichia pastoris. JoVE 2010. [Google Scholar] [CrossRef] [Green Version]
- Seman, W.M.K.W.; Bakar, S.A.; Bukhari, N.A.; Gaspar, S.M.; Othman, R.; Nathan, S.; Mahadi, N.M.; Jahim, J.; Murad, A.M.A.; Bakar, F.D.A. High level expression of Glomerella cingulata cutinase in dense cultures of Pichia pastoris grown under fed-batch conditions. J. Biotech. 2014, 184, 219–228. [Google Scholar] [CrossRef]
- Hayes, A.W.; Kruger, C.L. Hayes’ Principles and Methods of Toxicology, 6th ed.; CRC Press: London, UK, 2014. [Google Scholar]
- Kormos, E.; Tavaszi, J.; Budai, P.; Pongracz, A.; Lehel, J. Eye irritation study of some pesticides on chorioallantoic membrane of the egg. Commun. Agric. Appl. Biol. Sci. 2009, 74, 125–128. [Google Scholar]
- Lee, J.K.; Park, J.H.; Park, S.H.; Kim, H.S.; Oh, H.Y. A nonradioisotopic endpoint for measurement of lymph node cell proliferation in a murine allergic contact dermatitis model, using bromodeoxyuridine immunohistochemistry. J. Pharmacol. Toxicol. Methods 2002, 48, 53–61. [Google Scholar] [CrossRef]
- Ligon, B.L. Penicillin: Its discovery and early development. Semin. Pediatr. Infect. Diseases 2004, 15, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Lobanovska, M.; Pilla, G. Penicillin’s Discovery and Antibiotic Resistance: Lessons for the Future? Yale J. Biol. Med. 2017, 90, 135–145. [Google Scholar] [PubMed]
- Meek, R.W.; Vyas, H.; Piddock, L.J.V. Nonmedical Uses of Antibiotics: Time to Restrict Their Use? PLoS Biol. 2015, 13. [Google Scholar] [CrossRef] [PubMed]
- Sundberg, L.-R.; Ketola, T.; Laanto, E.; Kinnula, H.; Bamford, J.K.H.; Penttinen, R.; Mappes, J. Intensive aquaculture selects for increased virulence and interference competition in bacteria. Proc. Biol. Sci. 2016, 283. [Google Scholar] [CrossRef]
- Huang, H.-N.; Su, B.-C.; Tsai, T.-Y.; Rajanbabu, V.; Pan, C.-Y.; Chen, J.-Y. Dietary supplementation of recombinant tilapia piscidin 4-expressing yeast enhances growth and immune response in Lates calcarifer. Aquac. Reports 2020, 16. [Google Scholar] [CrossRef]
- Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 2019, 11, 3919–3931. [Google Scholar]
- Gobas, F.A.P.C.; Lee, Y.-S.; Lo, J.C.; Parkerton, T.F.; Letinski, D.J. A Toxicokinetic Framework and Analysis Tool for Interpreting Organisation for Economic Co-operation and Development Guideline 305 Dietary Bioaccumulation Tests. Environ. Toxicol. Chem. 2020, 39, 171–188. [Google Scholar] [CrossRef] [Green Version]
- Reshma, C.S.; Sruthi, S.; Syama, S.; Gayathri, V.; Mohanan, P.V. Assessing the systemic toxicity in rabbits after sub acute exposure to ocular irritant chemicals. Toxicol. Res. 2015, 31, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Yan, L.; Wu, Q.; Li, Y.; Li, Q.; Chen, S.; Yang, Y.; Gu, Z.; Xu, H.; Yin, Z.Q.J.N. Evaluation of the toxicity of graphene oxide exposure to the eye. Nanotoxicology 2016, 10, 1329–1340. [Google Scholar] [CrossRef]
- Eddleston, M. Poisoning by pesticides. Medicine 2020, 48, 214–217. [Google Scholar] [CrossRef]
- Vainio, H. Public health and evidence-informed policy-making: The case of a commonly used herbicide. Scand. J. Work Environ. Health 2020, 46, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Ladics, G.S.; Fry, J.; Goodman, R.; Herouet-Guicheney, C.; Hoffmann-Sommergruber, K.; Madsen, C.B.; Penninks, A.; Pomés, A.; Roggen, E.L.; Smit, J.; et al. Allergic sensitization: Screening methods. Clin. Transl. Allergy. 2014, 4, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dose Level (mg/kg) | Dosing Volume (mL/rat) | Survival | Mortality (%) | Observation Period (Day) | Clinical Signs | Gross Pathology Finding * |
---|---|---|---|---|---|---|
5000 (3/3) ** | 2.4 | Survival (3/3) ** | 0 | 14 | None (3/3) ** | None (3/3) ** |
Dose Level (mg/kg) | Body Weight (g) (Mean ± SD) | Body Weight Gain * (g) (Mean ± SD) | Body Weight Gain ** (%) (Mean ± SD) | ||||
---|---|---|---|---|---|---|---|
Day 0 | Day 7 | Day 14 | Day 7 | Day 14 | Day 7 | Day 14 | |
5000 | 240.7 ± 3.2 | 257.6 ± 8.3 | 272.6 ± 9.9 | 16.9 ± 5.2 | 31.9 ± 6.8 | 7.0 ± 2.1 | 13.2 ± 2.7 |
Time | Clinical Signs * | |
---|---|---|
Male | Female | |
1 h | tachypnea (5/5) | tachypnea (5/5) |
2 h | tachypnea (5/5), abdominal breathing (5/5) | tachypnea (5/5), abdominal breathing (5/5) |
4 h | piloerection (5/5), chromodacryorrhea (4/5), hemorrhage of nose (1/5), tachypnea (5/5) | piloerection (5/5), chromodacryorrhea (5/5), tachypnea (5/5) |
1 to 14 Days | None (5/5) | None (5/5) |
Sex | Group | Concentration of rEP (mg/L) | Weight Gain (%) 1 | ||
---|---|---|---|---|---|
Day 1 2 | Day 3 2 | ||||
Male | Blank Control | 0 | −0.4 ± 2.5 | −6.0 ± 0.9 | |
Treated group | 0.880 | 1.6 ± 0.9 | −1.7 ± 2.4 * | ||
Female | Blank Control | 0 | −0.5 ± 1.5 | 0.1 ± 2.8 | |
Treated group | 0.880 | 0.1 ± 2.1 | −1.6 ± 3.9 | ||
Combined | Blank Control | 0 | −0.5 ± 1.9 | −2.9 ± 3.8 | |
Treated group | 0.880 | 0.8 ± 1.7 | −1.7 ± 3.1 | ||
Sex | Group | Concentration of rEP (mg/L) | Weight Gain (%) 1 | ||
Day 7 2 | Day 14 2 | ||||
Male | Blank Control | 0 | 3.5 ± 2.2 | 7.8 ± 3.5 | |
Treated group | 0.880 | 0.9 ± 2.2 | 3.0 ± 2.1 * | ||
Female | Blank Control | 0 | 1.9 ± 3.1 | 0.5 ± 6.0 | |
Treated group | 0.880 | 3.3 ± 2.2 | 4.4 ± 5.6 | ||
Combined | Blank Control | 0 | 2.7 ± 2.6 | 4.1 ± 6.0 | |
Treated group | 0.880 | 2.1 ± 2.5 | 3.7 ± 4.1 |
Hour | Irritant Scoring | ||||
---|---|---|---|---|---|
Cornea | Iris | Conjunctiva | |||
Degree | Area | Damage | Redness | Chemosis | |
1 | 0 | 0 | 1 | 1.67 | 2.67 |
24 | 0 | 0 | 1 | 1.67 | 2 |
48 | 0 | 0 | 0 | 1 | 1 |
72 | 0 | 0 | 0 | 0 | 0 |
Groups | ||||||
---|---|---|---|---|---|---|
Sterile Water | AOO * | 2% DNCB | 25% rEP | 50% rEP | 100% rEP | |
Time (days) 1 | Clinical signs ** | |||||
1 | None (5/5) | Rough coat (5/5) | Rough coat (5/5), Piloerection (5/5), Erythema (5/5) | None (5/5) | Erythema (4/5) | Erythema (4/5) |
2 | None (5/5) | Rough coat (5/5), Erythema (5/5) | Rough coat (5/5), Piloerection (5/5), Erythema (5/5), Edema (5/5) | Erythema (3/5) | Erythema (5/5) | Alopecia (3/5), Erythema (5/5) |
3 | None (5/5) | Rough coat (5/5), Erythema (5/5) | Rough coat (5/5), Piloerection (5/5), Erythema (5/5), Edema (5/5) | Erythema (5/5) | Alopecia (3/5), Erythema (5/5) | Rough coat (1/5), Alopecia (5/5), Erythema (5/5) |
4 | None (5/5) | Rough coat (5/5), Erythema (5/5) | Rough coat (5/5), Piloerection (5/5), Erythema (5/5), Edema (5/5) | Erythema (5/5) | Alopecia (5/5), Erythema (5/5) | Alopecia (5/5), Erythema (5/5) |
5 | None (5/5) | Rough coat (1/5), Erythema (5/5) | Rough coat (5/5), Piloerection (5/5), Erythema (5/5), Edema (5/5) | Erythema (5/5) | Alopecia (5/5), Erythema (5/5) | Alopecia (5/5), Erythema (5/5) |
6 | None (5/5) | Erythema (5/5) | rough coat (5/5), piloerection (5/5), erythema (5/5), edema (5/5) | Erythema (2/5) | Alopecia (5/5), Erythema (2/5) | Alopecia (5/5), Erythema (5/5), Emaciation (1/5) |
Time (treatment) | Body weight (g) (mean ± SD) | |||||
Before dosing | 21.4 ± 1.2 | 22.0 ± 0.5 | 21.5 ± 1.0 | 22.0 ± 0.7 | 21.7 ± 0.5 | 21.8 ± 1.3 |
After dosing (before sacrifice) | 21.4 ± 1.1 | 22.4 ± 0.9 | 22.0 ± 0.8 | 22.5 ± 0.6 | 21.9 ± 0.6 | 21.2 ± 1.6 |
Group | Treatment BrdU Labelling Index ÷ Solvent Control BrdU Labelling Index = SI Value | ||||
---|---|---|---|---|---|
2% DNCB | 0.405 | ÷ | 0.239 | = | 1.69 |
25% rEP | 0.179 | ÷ | 0.231 | = | 0.77 |
50% rEP | 0.102 | ÷ | 0.231 | = | 0.44 |
100% rEP | 0.244 | ÷ | 0.231 | = | 1.06 |
Treatment | S9 | TA98 | TA100 | TA1535 | TA1537 | TA102 |
---|---|---|---|---|---|---|
± | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
BK (b) | - | 23.0 ± 1.7 | 119.7 ± 17.7 | 8.7 ± 1.5 | 8.0 ± 1.0 | 200.0 ± 13.1 |
NC (c) | - | 24.3 ± 1.5 | 110.0 ± 9.6 | 9.7 ± 1.5 | 8.7 ± 1.2 | 205.3 ± 16.8 |
PC (d) | - | 440.7 ± 40.5 **(18.1) | >2000 (e)**(18.2) | 1425.3 ± 113.2 **(147.4) | >2000 (e)**(230.8) | >2000 (e)**(9.7) |
Marine peptide (μg/plate) | ||||||
7 | - | 21.0 ± 1.0(0.9) | 118.0 ± 19.3(1.1) | 10.7 ± 1.2(1.1) | 9.7 ± 2.3(1.1) | 205.0 ± 22.6(1.0) |
21 | - | 21.7 ± 3.8(0.9) | 120.3 ± 18.6(1.1) | 8.7 ± 2.1(0.9) | 9.3 ± 1.5(1.1) | 193.3 ± 14.6(0.9) |
62 | - | 24.0 ± 0.0(1.0) | 125.0 ± 13.5(1.1) | 10.0 ± 2.0(1.0) | 9.0 ± 1.7(1.0) | 192.3 ± 32.9(0.9) |
185 | - | 26.0 ± 5.0(1.1) | 121.3 ± 4.7(1.1) | 11.3 ± 3.1(1.2) | 10.3 ± 2.3(1.2) | 186.7 ± 26.8(0.9) |
556 | - | 24.3 ± 2.1(1.0) | 126.7 ± 5.5(1.2) | 11.7 ± 1.5(1.2) | 11.3 ± 3.1(1.3) | 195.0 ± 16.0(0.9) |
1667 | - | 28.7 ± 2.3(1.2) | 116.0 ± 19.0(1.1) | 12.0 ± 3.6(1.2) | 10.0 ± 3.0(1.2) | 193.3 ± 9.6(0.9) |
5000 | - | 27.7 ± 1.2(1.1) | 135.0 ± 8.2(1.2) | 12.0 ± 2.0(1.2) | 6.0 ± 1.7(0.7) | 196.3 ± 20.0(1.0) |
Dose response (f) | 0.845 ** | 0.283 | 0.602 * | 0.115 | 0.105 |
Treatment | S9 | TA98 | TA100 | TA1535 | TA1537 | TA102 |
---|---|---|---|---|---|---|
± | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
BK (b) | + | 24.0 ± 1.0 | 126.7 ± 10.0 | 9.7 ± 0.6 | 7.3 ± 0.6 | 227.0 ± 18.1 |
NC (c) | + | 26.0 ± 3.6 | 133.7 ± 12.1 | 10.7 ± 1.5 | 9.0 ± 1.7 | 214.3 ± 4.7 |
PC (d) | + | >2000 (e) **(76.9) | 1812.7 ± 106.7 **(13.6) | 227.7 ± 23.9 **(21.3) | 117.0 ± 24.9 **(13.0) | 1228.0 ± 200.0 **(5.7) |
Marine peptide (μg/plate) | ||||||
7 | + | 26.3 ± 3.1(1.0) | 120.3 ± 17.1(0.9) | 11.0 ± 1.7(1.0) | 9.3 ± 2.3(1.0) | 210.7 ± 12.5(1.0) |
21 | + | 26.7 ± 3.5(1.0) | 116.3 ± 20.0(0.9) | 10.0 ± 1.0(0.9) | 8.7 ± 0.6(1.0) | 215.7 ± 18.0(1.0) |
62 | + | 23.3 ± 3.2(0.9) | 118.3 ± 21.6(0.9) | 9.3 ± 1.5(0.9) | 8.3 ± 2.3(0.9) | 202.3 ± 9.7(0.9) |
185 | + | 25.7 ± 3.2(1.0) | 128.3 ± 18.2(1.0) | 11.7 ± 2.5(1.1) | 7.7 ± 1.5(0.9) | 203.0 ± 24.6(0.9) |
556 | + | 23.0 ± 3.0(0.9) | 118.0 ± 9.2(0.9) | 10.3 ± 2.5(1.0) | 9.3 ± 2.5(1.0) | 202.0 ± 24.6(0.9) |
1667 | + | 25.7 ± 3.2(1.0) | 115.0 ± 10.4(0.9) | 13.7 ± 1.5(1.3) | 8.0 ± 2.0(0.9) | 211.3 ± 16.3(1.0) |
5000 | + | 25.7 ± 2.9(1.0) | 138.3 ± 11.0(1.0) | 9.7 ± 1.2(0.9) | 7.7 ± 1.5(0.9) | 202.3 ± 24.3(0.9) |
Dose response (f) | 0.054 | 0.222 | 0.050 | 0.331 | 0.215 |
Treatment | S9 | TA98 | TA100 | TA1535 | TA1537 | TA102 |
---|---|---|---|---|---|---|
± | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
BK (b) | - | 23.0 ± 2.6 | 113.0 ± 14.4 | 11.0 ± 1.0 | 9.0 ± 2.6 | 200.7 ± 9.0 |
NC (c) | - | 25.7 ± 3.5 | 105.7 ± 7.2 | 13.7 ± 2.5 | 8.3 ± 0.6 | 202.0 ± 27.2 |
PC (d) | - | 445.0 ± 35.8 **(17.3) | >2000 (e)**(18.9) | 1488.0±150.7 **(108.9) | >2000 (e)**(240.0) | >2000 (e)**(9.9) |
Marine peptide | ||||||
(μg/plate) | ||||||
313 | - | 24.7 ± 0.6(1.0) | 112.3 ± 4.9(1.1) | 12.3 ± 3.1(0.9) | 7.7 ± 1.5(0.9) | 203.0 ± 8.9(1.0) |
625 | - | 26.0 ± 1.0(1.0) | 100.0 ± 7.2(0.9) | 9.7 ± 1.2(0.7) | 9.3 ± 2.1(1.1) | 195.7 ± 8.5(1.0) |
1250 | - | 25.7 ± 6.1(1.0) | 112.0 ± 9.5(1.1) | 9.0 ± 0.0(0.7) | 7.7 ± 0.6(0.9) | 197.3 ± 25.9(1.0) |
2500 | - | 26.7 ± 3.1(1.0) | 136.7 ± 24.7(1.3) | 10.3 ± 2.5(0.8) | 11.0 ± 2.6(1.3) | 225.7 ± 30.7(1.1) |
5000 | - | 24.7 ± 0.6(1.0) | 126.3 ± 28.5(1.2) | 10.7 ± 2.1(0.8) | 8.3 ± 2.1(1.0) | 216.0 ± 30.8(1.1) |
Dose response (f) | 0.015 | 0.517 | 0.113 | 0.114 | 0.471 |
Treatment | S9 | TA98 | TA100 | TA1535 | TA1537 | TA102 |
---|---|---|---|---|---|---|
± | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
BK (b) | + | 22.7 ± 2.3 | 109.0 ± 4.0 | 10.7 ± 2.1 | 7.3 ± 1.2 | 209.7 ± 18.1 |
NC (c) | + | 25.3 ± 2.5 | 105.3 ± 1.5 | 11.7 ± 3.2 | 10.3 ± 0.6 | 208.3 ± 4.7 |
PC (d) | + | >2000 (e)**(78.9) | 961.3 ± 82.8 **(9.1) | 167.0 ± 13.0 **(14.3) | 100.7 ± 10.3 **(9.7) | 1087.7 ± 160.0 **(5.2) |
Marine peptide (μg/plate) | ||||||
313 | + | 26.3 ± 6.1(1.0) | 97.7 ± 2.3(0.9) | 8.7 ± 2.1(0.7) | 10.3 ± 2.9(1.0) | 209.7 ± 7.6(1.0) |
625 | + | 30.0 ± 2.6(1.2) | 97.3 ± 11.0(0.9) | 13.7 ± 2.1(1.2) | 11.3 ± 2.5(1.1) | 185.7 ± 20.6(0.9) |
1250 | + | 19.7 ± 3.1(0.8) | 102.0 ± 4.0(1.0) | 13.3 ± 2.9(1.1) | 7.3 ± 0.6(0.7) | 187.7 ± 14.2(0.9) |
2500 | + | 23.0 ± 2.0(0.9) | 99.3 ± 7.8(0.9) | 12.0 ± 2.0(1.0) | 8.3 ± 2.1(0.8) | 199.0 ± 12.5(1.0) |
5000 | + | 29.0 ± 5.3(1.1) | 107.7 ± 14.6(1.0) | 12.3 ± 2.5(1.1) | 10.7 ± 1.2(1.0) | 185.7 ± 15.6(0.9) |
Dose response (f) | 0.004 | 0.667 | 0.204 | 0.048 | 0.268 |
Exposure Time | (3 + 20) h-S9 | (3 + 20) h + S9 | (24 + 0) h-S9 |
---|---|---|---|
Treatment | Micronucleus Assay | ||
(μg/mL) | Frequency of Micronuclei (%) (a) | ||
BK (b) | 4.10 | 3.25 | 4.85 |
NC (c) | 3.75 | 3.85 | 4.75 |
125 | 4.55 | 3.95 | 4.60 |
250 | 3.95 | 4.00 | 3.95 |
500 | 3.55 | 3.25 | 5.20 |
1000 | 3.80 | 3.15 | 4.85 |
2000 | 3.90 | 3.75 | 5.55 |
PC (d) | 9.60 ** | 7.20 ** | 11.40 ** |
Dose response (p value) (e) | 0.601 | 0.299 | 0.134 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-C.; Pan, C.-Y.; Rajanbabu, V.; Lee, Y.-Y.; Tsai, W.-R.; Chen, J.-Y. Lack of Acute Toxicity and Mutagenicity from Recombinant Epinephelus lanceolatus Piscidin Expressed in Pichia pastoris. Mar. Drugs 2020, 18, 206. https://doi.org/10.3390/md18040206
Chen H-C, Pan C-Y, Rajanbabu V, Lee Y-Y, Tsai W-R, Chen J-Y. Lack of Acute Toxicity and Mutagenicity from Recombinant Epinephelus lanceolatus Piscidin Expressed in Pichia pastoris. Marine Drugs. 2020; 18(4):206. https://doi.org/10.3390/md18040206
Chicago/Turabian StyleChen, Hsiao-Ching, Chieh-Yu Pan, Venugopal Rajanbabu, Yen-Yun Lee, Wei-Ren Tsai, and Jyh-Yih Chen. 2020. "Lack of Acute Toxicity and Mutagenicity from Recombinant Epinephelus lanceolatus Piscidin Expressed in Pichia pastoris" Marine Drugs 18, no. 4: 206. https://doi.org/10.3390/md18040206
APA StyleChen, H. -C., Pan, C. -Y., Rajanbabu, V., Lee, Y. -Y., Tsai, W. -R., & Chen, J. -Y. (2020). Lack of Acute Toxicity and Mutagenicity from Recombinant Epinephelus lanceolatus Piscidin Expressed in Pichia pastoris. Marine Drugs, 18(4), 206. https://doi.org/10.3390/md18040206