Brown Seaweed Fucoidan in Cancer: Implications in Metastasis and Drug Resistance
Abstract
:1. Introduction
2. General Structure of Fucoidans
3. Fucoidans and Metastasis
4. Fucoidans and Drug Resistance in Cancer
5. Fucoidan Clinical Trials
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DNMT3B | DNA methyltransferase 3B |
MTSS1 | metastasis suppressor 1 |
ADAM12 | a disintegrin and metalloproteinase 12 |
PTEN | phosphatase and tensin homolog |
TGF-β | Transforming growth factor beta (β) |
TGFRs | Transforming growth factor b receptors |
VEGFC | vascular endothelial growth factor C |
VEGFR3 | VEGF receptor 3 |
TIMPs | tissue inhibitor of metalloproteinases |
MMP | matrix metalloproteinase |
NF-κB | nuclear factor kappa-beta |
ECM | extracellular matrix |
GAGs | glycosaminoglycans |
EMT | epithelial-mesenchymal transition |
FAK | Focal adhesion kinase |
UPP | ubiquitination proteasome pathway |
miRs | microRNAs |
P-gp | P-glycoprotein 1 |
ABCB1 | ATP Binding Cassette Subfamily B Member 1 |
ABCG2 | breast cancer resistance protein |
PrPC | cellular prion protein |
TME | tumor microenvironment |
IL-6 | interleukin-6 |
CCL2/MCP-1 | chemokine (C-C motif) ligand 2/ monocyte chemoattractant protein 1 |
ROS | reactive oxygen species |
HIF-1 | Hypoxia Inducible Factor |
FOLFIRI | Combination chemotherapy with Irinotecan plus 5-Fuorouracil/leucovorin |
FOLFOX | Combination chemotherapy with Oxaliplatin plus 5-Fuorouracil/leucovorin |
References
- Mourão, P.A.; Pereira, M.S. Searching for alternatives to heparin: Sulfated fucans from marine invertebrates. Trends Cardiovasc. Med. 1999, 9, 225–232. [Google Scholar] [CrossRef]
- Iwamoto, R.; Mine, N.; Kawaguchi, T.; Minami, S.; Saeki, K.; Mekada, E. HB-EGF function in cardiac valve development requires interaction with heparan sulfate proteoglycans. Development 2010, 137, 2205–2214. [Google Scholar] [CrossRef] [Green Version]
- Nishino, T.; Nishioka, C.; Ura, H.; Nagumo, T. Isolation and partial characterization of a novel amino sugar-containing fucan sulfate from commercial Fucus vesiculosus fucoidan. Carbohydr. Res. 1994, 255, 213–224. [Google Scholar] [CrossRef]
- Barahona, T.; Chandía, N.P.; Encinas, M.V.; Matsuhiro, B.; Zúñiga, E.A. Food Hydrocolloids Antioxidant capacity of sulfated polysaccharides from seaweeds. A kinetic approach. Food Hydrocoll. 2011, 25, 529–535. [Google Scholar] [CrossRef]
- Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: Structure and Bioactivity. Molecules 2008, 13, 1671–1695. [Google Scholar] [CrossRef] [Green Version]
- Kylin, H. Zur Biochemie der Meeresalgen. Z. für Physiol. Chem. 1913, 83, 171–197. [Google Scholar] [CrossRef]
- Springer, G.F.; Wurzel, H.A.; McNeal, G.M.; Ansell, N.J.; Doughty, M.F. Isolation of Anticoagulant Fractions from Crude Fucoidin. Exp. Biol. Med. 1957, 94, 404–409. [Google Scholar] [CrossRef]
- Kadam, S.; Alvarez, C.; Tiwari, B.; O’Donnell, C.P. Extraction of biomolecules from seaweeds. Seaweed Sustain. 2015, 243–269. [Google Scholar] [CrossRef]
- Chevolot, L.; Foucault, A.; Chaubet, F.; Kervarec, N.; Sinquin, C.; Fisher, A.-M.; Boisson-Vidal, C. Further data on the structure of brown seaweed fucans: Relationships with anticoagulant activity. Carbohydr. Res. 1999, 319, 154–165. [Google Scholar] [CrossRef]
- Percival, E.; McDowell, R.H. Chemistry and Enzymology of Marine Algal Polysaccharides, 1st ed.; Academic Press: Cambridge, MA, USA, 1967. [Google Scholar]
- Patankar, M.S.; Oehninger, S.; Barnett, T.; Williams, R.L.; Clark, G.F. A revised structure for fucoidan may explain some of its biological activities. J. Biol. Chem. 1993, 268, 21770–21776. [Google Scholar]
- Duarte, M.E.R.; A Cardoso, M.; Noseda, M.D.; Cerezo, A.S. Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carbohydr. Res. 2001, 333, 281–293. [Google Scholar] [CrossRef]
- Percival, E.E.; Jara, M.F.V.; Weigel, H. Carbohydrates of the brown seaweed lessonia nigrescens. Phytochem. 1983, 22, 1429–1432. [Google Scholar] [CrossRef]
- Chandía, N.; Matsuhiro, B. Characterization of a fucoidan from Lessonia vadosa (Phaeophyta) and its anticoagulant and elicitor properties. Int. J. Biol. Macromol. 2008, 42, 235–240. [Google Scholar] [CrossRef]
- Lim, S.J.; Aida, W.M.W.; Maskat, M.Y.; Latip, J.; Badri, K.H.; Hassan, O.; Yamin, B.M. Characterisation of fucoidan extracted from Malaysian Sargassum binderi. Food Chem. 2016, 209, 267–273. [Google Scholar] [CrossRef]
- Bilan, M.I.; Grachev, A.A.; Shashkov, A.S.; Nifantiev, N.E.; Usov, A.I. Structure of a fucoidan from the brown seaweed Fucus serratus L. Carbohydr. Res. 2006, 341, 238–245. [Google Scholar] [CrossRef]
- Usoltseva, R.V.; Anastyuk, S.D.; Ishina, I.; Isakov, V.V.; Zvyagintseva, T.N.; Thinh, P.D.; Zadorozhny, P.A.; Dmitrenok, P.S.; Ermakova, S.P. Structural characteristics and anticancer activity in vitro of fucoidan from brown alga Padina boryana. Carbohydr. Polym. 2018, 184, 260–268. [Google Scholar] [CrossRef]
- Chen, L.-M.; Liu, P.-Y.; Chen, Y.-A.; Tseng, H.-Y.; Shen, P.-C.; Hwang, P.-A.; Hsu, H.-L. Oligo-Fucoidan prevents IL-6 and CCL2 production and cooperates with p53 to suppress ATM signaling and tumor progression. Sci. Rep. 2017, 7, 11864. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Lan, Y.; Liu, J.; Zhang, F.; Zhang, L.; Li, B.; Zhao, X. The structure property and endothelial protective activity of fucoidan from Laminaria japonica. Int. J. Biol. Macromol. 2017, 105, 1421–1429. [Google Scholar] [CrossRef]
- Synytsya, A.; Kim, W.-J.; Kim, S.-M.; Pohl, R.; Synytsya, A.; Kvasnicka, F.; Čopíková, J.; Park, Y.I. Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohydr. Polym. 2010, 81, 41–48. [Google Scholar] [CrossRef]
- Fletcher, H.; Biller, P.; Ross, A.; Adams, J. The seasonal variation of fucoidan within three species of brown macroalgae. Algal Res. 2017, 22, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Vilela-Silva, A.C.E.S.; Alves, A.-P.; Valente, A.P.; Vacquier, V.D.; Mourão, P.A. Structure of the sulfated -L-fucan from the egg jelly coat of the sea urchin Strongylocentrotus franciscanus: Patterns of preferential 2-O- and 4-O-sulfation determine sperm cell recognition. Glycobiology 1999, 9, 927–933. [Google Scholar] [CrossRef] [Green Version]
- Kariya, Y.; Mulloy, B.; Imai, K.; Tominaga, A.; Kaneko, T.; Asari, A.; Suzuki, K.; Masuda, H.; Kyogashima, M.; Ishii, T. Isolation and partial characterization of fucan sulfates from the body wall of sea cucumber Stichopus japonicus and their ability to inhibit osteoclastogenesis. Carbohydr. Res. 2004, 339, 1339–1346. [Google Scholar] [CrossRef]
- Chang, Y.; Hu, Y.; Yu, L.; McClements, D.J.; Xu, X.; Liu, G.; Xue, C. Primary structure and chain conformation of fucoidan extracted from sea cucumber Holothuria tubulosa. Carbohydr. Polym. 2016, 136, 1091–1097. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.G.; Sanders, A.J.; Katoh, M.; Ungefroren, H.; Gieseler, F.; Prince, M.; Thompson, S.K.; Zollo, M.; Spano, D.; Dhawan, P.; et al. Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin. Cancer Biol. 2015, 35, 244–275. [Google Scholar] [CrossRef]
- Gupta, G.P.; Massagué, J. Review Cancer Metastasis: Building a Framework. Cell 2006, 127, 679–695. [Google Scholar] [CrossRef] [Green Version]
- Lambert, A.W.; Pattabiraman, D.R.; Weinberg, R.A. Review Emerging Biological Principles of Metastasis. Cell 2016, 168, 670–691. [Google Scholar] [CrossRef] [Green Version]
- Fontebasso, Y.; Dubinett, S.M. Drug Development for Metastasis Prevention. Crit. Rev. Oncog. 2015, 20, 449–473. [Google Scholar] [CrossRef]
- Alizadeh, A.M.; Shiri, S.; Farsinejad, S. Metastasis review: From bench to bedside. Tumor Biol. 2014, 35, 8483–8523. [Google Scholar] [CrossRef]
- Yang, J.; Weinberg, R.A. Review Epithelial-Mesenchymal Transition: At the Crossroads of Development and Tumor Metastasis. Dev. Cell. 2008, 14, 818–829. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Pei, Z.; Ji, C.; Zhang, X.; Xu, J.; Wang, J. Chapter 15: Novel Insights into the Role of the Cytoskeleton in Cancer. In Cytoskeleton-Structure, Dynamics, Function and Disease; IntechOpen: London, UK, 2017; pp. 299–313. [Google Scholar]
- Coombe, D.R.; Parish, C.R.; Ramshaw, I.A.; Snowden, J.M. Analysis of the inhibition of tumour metastasis by sulphated polysaccharides. Int. J. Cancer 1987, 39, 82–88. [Google Scholar] [CrossRef]
- He, X.; Xue, M.; Jiang, S.; Li, W.; Yu, J.; Xiang, S. Fucoidan Promotes Apoptosis and Inhibits EMT of Breast Cancer Cells. Biol. Pharm. Bull. 2019, 42, 442–447. [Google Scholar] [CrossRef] [Green Version]
- Hsu, H.-Y.; Lin, T.-Y.; Hwang, P.-A.; Tseng, L.-M.; Chen, R.-H.; Tsao, S.-M.; Hsu, J. Fucoidan induces changes in the epithelial to mesenchymal transition and decreases metastasis by enhancing ubiquitin-dependent TGF receptor degradation in breast cancer. Carcinogenesis 2012, 34, 874–884. [Google Scholar] [CrossRef]
- Hsu, H.-Y.; Lin, T.-Y.; Wu, Y.-C.; Tsao, S.-M.; Hwang, P.-A.; Shih, Y.-W.; Hsu, J. Fucoidan inhibition of lung cancer in vivo and in vitro: Role of the Smurf2-dependent ubiquitin proteasome pathway in TGFβ receptor degradation. Oncotarget 2014, 5, 7870–7885. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.-D.; Lai, G.-M.; Chow, J.-M.; Chang, C.-L.; Hwang, P.-A.; Chuang, S.-E.; Whang-Peng, J.; Lai, G.-M. Fucoidan Elevates MicroRNA-29b to Regulate DNMT3B-MTSS1 Axis and Inhibit EMT in Human Hepatocellular Carcinoma Cells. Mar. Drugs 2015, 13, 6099–6116. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Yan, M.; Wu, A.T.H.; Yuan, K.S.; Liu, S.H. Brown Seaweed Fucoidan Inhibits Cancer Progression by Dual Regulation of mir-29c / ADAM12 and miR-17-5p/PTEN Axes in Human Breast Cancer Cells. J. Cancer 2016, 7, 2408–2419. [Google Scholar] [CrossRef] [Green Version]
- Pan, T.; Li, L.; Zhang, J.; Yang, Z.; Shi, D.; Yang, Y. Antimetastatic Effect of Fucoidan-Sargassum against Liver Cancer Cell Invadopodia Formation via Targeting Integrin α V β 3 and Mediating α V β 3 / Src / E2F1 Signaling. J. Cancer 2019, 10, 4777–4792. [Google Scholar] [CrossRef]
- Atashrazm, F.; Lowenthal, R.; Woods, G.M.; Holloway, A.; Dickinson, J. Fucoidan and Cancer: A Multifunctional Molecule with Anti-Tumor Potential. Mar. Drugs 2015, 13, 2327–2346. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Liu, Z.; Liu, X.; Teng, H.; Zhang, C.; Hou, L.; Zou, X. Anti-Metastasis Effect of Fucoidan from Undaria pinnatifida Sporophylls in Mouse Hepatocarcinoma Hca-F Cells. PLoS ONE 2014, 9, e106071. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.S.; Lee, J.; Lee, S. Fucoidan inhibits the migration and proliferation of HT-29 human colon cancer cells via the phosphoinositide-3 kinase / Akt / mechanistic target of rapamycin pathways. Mol. Med. Rep. 2015, 12, 3446–3452. [Google Scholar] [CrossRef]
- Hsu, W.; Lin, M.; Kuo, T.; Chou, C. Fucoidan from luminaria japonica exerts antitumor effects on angiogenesis and micrometastasis in triple-negative breast cancer cells. Int. J. Biol Macromol. 2020, 149, 600–608. [Google Scholar] [CrossRef]
- Teng, H.; Yang, Y.; Wei, H.; Liu, Z.; Liu, Z.; Ma, Y.; Gao, Z.; Hou, L.; Zou, X. Fucoidan Suppresses Hypoxia-Induced Lymphangiogenesis and Lymphatic Metastasis in Mouse Hepatocarcinoma. Mar. Drugs 2015, 13, 3514–3530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soisuwan, S.; Warisnoicharoen, W. Eco-Friendly Synthesis of Fucoidan-Stabilized Gold Nanoparticles Kriengsak Lirdprapamongkol and 3 Jisnuson Svasti Pharmaceutical Technology (International Program), Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences. Am. J. Appl. Sci. 2010, 7, 1038–1042. [Google Scholar]
- Cho, Y.; Yoon, J.-H.; Yoo, J.-J.; Lee, M.; Lee, D.H.; Cho, E.J.; Lee, J.-H.; Yu, S.J.; Kim, Y.J.; Kim, C.Y. Fucoidan protects hepatocytes from apoptosis and inhibits invasion of hepatocellular carcinoma by up-regulating p42/44 MAPK-dependent NDRG-1/CAP43. Acta Pharm. Sin. B 2015, 5, 544–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Sun, J.; Song, B.; Zhang, L.; Shao, Q.; Liu, Y.; Yuan, D.; Zhang, Y.; Qu, X. Fucoidan inhibits CCL22 production through NF-κB pathway in M2 macrophages: A potential therapeutic strategy for cancer. Sci. Rep. 2016, 6, 35855. [Google Scholar] [CrossRef]
- Hsu, H.; Lin, T.; Hu, C.; Ta, D.; Shu, F.; Lu, M. Fucoidan upregulates TLR4/CHOP-mediated caspase-3 and PARP activation to enhance cisplatin-induced cytotoxicity in human lung cancer cells. Cancer Lett. 2018, 432, 112–120. [Google Scholar] [CrossRef]
- Qiu, W.L.; Tseng, A.J.; Hsu, H.Y.; Hsu, W.H.; Lin, Z.H.; Hua, W.J.L.T. Fucoidan increased the sensitivity to gefitinib in lung cancer cells correlates with reduction of TGFβ-mediated Slug expression. Int. J. Biol. Macromol. 2020, 153, 796–805. [Google Scholar] [CrossRef]
- Li, W.; Xue, D.; Xue, M.; Zhao, J.; Liang, H.U.I.; Liu, Y.; Sun, T. Fucoidan inhibits epithelial-to-mesenchymal transition via regulation of the HIF-1 α pathway in mammary cancer cells under hypoxia. Oncol. Lett. 2019, 18, 330–338. [Google Scholar] [CrossRef]
- Burney, M.; Mathew, L.; Gaikwad, A.; Nugent, E.K.; Gonzalez, A.O.; Smith, J.A. Evaluation Fucoidan Extracts From Undaria pinnatifida and Fucus vesiculosus in Combination With Anticancer Drugs in Human Cancer Orthotopic Mouse Models. Integr. Cancer Ther. 2017, 17, 755–761. [Google Scholar] [CrossRef] [Green Version]
- Pawar, V.K.; Singh, Y.; Sharma, K.; Shrivastav, A.; Sharma, A.; Singh, A.; Meher, J.G.; Singh, P.; Raval, K.; Kumar, A.; et al. Improved chemotherapy against breast cancer through immunotherapeutic activity of fucoidan decorated electrostatically assembled nanoparticles bearing doxorubicin. Int. J. Biol. Macromol. 2019, 122, 1100–1114. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, D.; Yang, S.; Yao, H.; Li, M.; Zhao, C.; Zhang, J.; Xu, G.-T.; Li, H.; Wang, F. Protective Effects of Fucoidan on Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells and Progression of Proliferative Vitreoretinopathy. Cell. Physiol. Biochem. 2018, 46, 1704–1715. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.H.; Kwon, M.J.; Nam, T.J. Differences in cell death and cell cycle following fucoidan treatment in high-density HT-29 colon cancer cells. Mol. Med. Rep. 2017, 15, 4116–4122. [Google Scholar] [CrossRef] [Green Version]
- Yun, C.W.; Yun, S.; Lee, J.H.; Han, Y.-S.; Yoon, Y.M.; An, D.; Lee, S.H. Silencing Prion Protein in HT29 Human Colorectal Cancer Cells Enhances Anticancer Response to Fucoidan. Anticancer. Res. 2016, 36, 4449–4458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, H.-Y.; Hwang, P.-A. Clinical applications of fucoidan in translational medicine for adjuvant cancer therapy. Clin. Transl. Med. 2019, 8, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, S.-W.; Jung, W.; Choi, C.; Kim, S.-Y.; Son, A.; Kim, H.; Lee, N.; Park, H.C. Fucoidan-Manganese Dioxide Nanoparticles Potentiate Radiation Therapy by Co-Targeting Tumor Hypoxia and Angiogenesis. Mar. Drugs 2018, 16, 510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rui, X.; Pan, H.-F.; Shao, S.-L.; Xu, X.-M. Anti-tumor and anti-angiogenic effects of Fucoidan on prostate cancer: Possible JAK-STAT3 pathway. BMC Complement. Altern. Med. 2017, 17, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Teruya, K.; Yoshida, T.; Eto, H.; Shirahata, S. Fucoidan Extract Enhances the Anti-Cancer Activity of Chemotherapeutic Agents in MDA-MB-231 and MCF-7 Breast Cancer Cells. Mar. Drugs 2013, 11, 81–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakur, V.; Lu, J.; Roscilli, G.; Aurisicchio, L.; Cappelletti, M. The natural compound fucoidan from New Zealand Undaria pinnatifida synergizes with the ERBB inhibitor lapatinib enhancing melanoma growth inhibition Fucoidan extracted from New Zealand. Oncotarget 2017, 8, 17887–17896. [Google Scholar] [CrossRef]
- Tsai, H.-L.; Tai, C.-J.; Huang, C.-W.; Chang, F.-R.; Wang, J.-Y. Efficacy of Low-Molecular-Weight Fucoidan as a Supplemental Therapy in Metastatic Colorectal Cancer Patients: A Double-Blind Randomized Controlled Trial. Mar. Drugs 2017, 15, 122. [Google Scholar] [CrossRef] [Green Version]
- Foley, S.; Szegezdi, E.; Mulloy, B.; Samali, A.; Tuohy, M.G. An Unfractionated Fucoidan fromAscophyllum nodosum: Extraction, Characterization, and Apoptotic Effects in Vitro. J. Nat. Prod. 2011, 74, 1851–1861. [Google Scholar] [CrossRef]
- Riou, D.; Colliec-Jouault, S.; Du Sel, D.P.; Bosch, S.; Siavoshian, S.; Le Bert, V.; Tomasoni, C.; Sinquin, C.; Durand, P.; Roussakis, C. Antitumor and antiproliferative effects of a fucan extracted from ascophyllum nodosum against a non-small-cell bronchopulmonary carcinoma line. Anticancer Res. 1996, 16, 1213–1218. [Google Scholar]
- Deslandes, E.; Pondaven, P.; Auperin, T.; C, C.R.; Guezennec, J.; Stiger-Pouvreau, V.; Payri, C. Preliminary study of the in vitro antiproliferative effect of a hydroethanolic extract from the subtropical seaweed Turbinaria ornata (Turner) J. Agardh on a human non-small-cell bronchopulmonary carcinoma line (NSCLC-N6). Environ. Biol. Fishes 2000, 12, 257–262. [Google Scholar] [CrossRef]
- Thanh, T.T.T.; Tran, V.T.T.; Yuguchi, Y.; Bui, L.M.; Nguyen, T.T. Structure of Fucoidan from Brown Seaweed Turbinaria ornata as Studied by Electrospray Ionization Mass Spectrometry (ESIMS) and Small Angle X-ray Scattering (SAXS) Techniques. Mar. Drugs 2013, 11, 2431–2443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.J.; Mustapha, W.A.W.; Schiehser, S.; Rosenau, T.; Böhmdorfer, S. Structural elucidation of fucoidan from Cladosiphon okamuranus (Okinawa mozuku). Food Chem. 2019, 272, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Kang, K.; Chae, A.; Kim, Y.-K.; Jang, H.; Min, D.-H. Fucoidan-coated coral-like Pt nanoparticles for computed tomography-guided highly enhanced synergistic anticancer effect against drug-resistant breast cancer cells. Nanoscale 2019, 11, 15173–15183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Cancer Institute Home Page. Types of Cancer Treatment. Available online: https://www.cancer.gov/about-cancer/treatment/types (accessed on 3 April 2020).
- Alfarouk, K.; Stock, C.-M.; Taylor, S.; Walsh, M.; Muddathir, A.K.; Verduzco, D.; Bashir, A.; Mohammed, O.Y.; ElHassan, G.O.; Harguindey, S.; et al. Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp. Cancer Cell Int. 2015, 15, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.-J.; Gao, J.-B. Molecular mechanisms of chemoresistance in gastric cancer. World J. Gastrointest. Oncol. 2016, 8, 673–681. [Google Scholar] [CrossRef]
- Sun, S.; Cai, J.; Yang, Q.; Zhu, Y.; Zhao, S.; Wang, Z. Prognostic Value and Implication for Chemotherapy Treatment of ABCB1 in Epithelial Ovarian Cancer: A Meta-Analysis. PLoS ONE 2016, 11, e0166058. [Google Scholar] [CrossRef]
- Balch, C.; Huang, T.H.-M.; Brown, R.; Nephew, K.P. The epigenetics of ovarian cancer drug resistance and resensitization. Am. J. Obstet. Gynecol. 2004, 191, 1552–1572. [Google Scholar] [CrossRef]
- Niero, E.L.; Rocha-Sales, B.; Lauand, C.; Cortez, B.A.; De Souza, M.M.; Rezende-Teixeira, P.; Urabayashi, M.; Martens, A.A.; Neves, J.H.; Machado-Santelli, G.M. The multiple facets of drug resistance: One history, different approaches. J. Exp. Clin. Cancer Res. 2014, 33, 37. [Google Scholar] [CrossRef] [Green Version]
- Szakács, G.; Jakab, K.; Antal, F.; Sarkadi, B. Diagnostics of multidrug resistance in cancer. Pathol. Oncol. Res. 1998, 4, 251–257. [Google Scholar]
- Rabik, C.; Dolan, M.E. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat. Rev. 2006, 33, 9–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnstone, R.W.; Ruefli, A.A.; Tainton, K.M.; Smyth, M.J. A Role for P-Glycoprotein in Regulating Cell Death. Leuk. Lymphoma 2000, 38, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Harfe, B.D. MicroRNAs in vertebrate development. Curr. Opin. Genet. Dev. 2005, 15, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Hwang, W.; Hwang, Y.; Lee, S.; Lee, D.S. Rule-based multi-scale simulation for drug effect pathway analysis. BMC Med. Inform. Decis. Mak. 2013, 13, S4. [Google Scholar] [CrossRef] [Green Version]
- Galluzzi, L.; Senovilla, L.; Vitale, I.; Michels, J.; Martins, I.; Kepp, O.; Castedo, M.; Kroemer, G. Molecular mechanisms of cisplatin resistance. Oncogene 2011, 31, 1869–1883. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Yun, C.W.; Lee, S.H. Cellular Prion Protein Enhances Drug Resistance of Colorectal Cancer Cells via Regulation of a Survival Signal Pathway. Biomol. Ther. 2017, 26, 313–321. [Google Scholar] [CrossRef]
- Jones, V.S.; Huang, R.-Y.; Chen, L.-P.; Chen, Z.-S.; Fu, L.; Huang, R.-P. Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochim. Biophys. Acta (BBA)-Bioenerg. 2016, 1865, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Aldinucci, D.; Colombatti, A. The Inflammatory Chemokine CCL5 and Cancer Progression. Mediat. Inflamm. 2014, 2014, 292376. [Google Scholar] [CrossRef] [Green Version]
- Salgado, R.; Junius, S.; Benoy, I.; Van Dam, P.A.; Vermeulen, P.; Van Marck, E.; Huget, P.; Dirix, L. Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int. J. Cancer 2002, 103, 642–646. [Google Scholar] [CrossRef]
- Bar-Eli, M. Role of interleukin-8 in tumor growth and metastasis of human melanoma. Pathobiology 1999, 67, 12–18. [Google Scholar] [CrossRef]
- Benoy, I.; Salgado, R.; Van Dam, P.A.; Geboers, K.; Van Marck, E.; Scharpe, S.; Vermeulen, P.B.; Dirix, L. Increased Serum Interleukin-8 in Patients with Early and Metastatic Breast Cancer Correlates with Early Dissemination and Survival. Clin. Cancer Res. 2004, 10, 7157–7162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kornienko, A.E.; Guenzl, P.M.; Barlow, D.P.; Pauler, F.M. Gene regulation by the act of long non-coding RNA transcription. BMC Biol. 2013, 11, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, G.; Salcedo, R.; Welniak, L.; Howard, O.; Murphy, W. The diverse role of chemokines in tumor progression: Prospects for intervention (Review). Int. J. Mol. Med. 2001, 8, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Carreno-Gomez, B.; Duncan, R. Compositions with Enhanced Oral Bioavailability. U.S. Patent 20030211072A1, 13 November 2003. [Google Scholar]
- Hwang, P.-A.; Lin, X.-Z.; Kuo, K.-L.; Hsu, F.-Y. Fabrication and Cytotoxicity of Fucoidan-Cisplatin Nanoparticles for Macrophage and Tumor Cells. Mater. 2017, 10, 291. [Google Scholar] [CrossRef] [Green Version]
- Tocaciu, S.; Oliver, L.J.; Lowenthal, R.M.; Peterson, G.M.; Patel, R.; Shastri, M.; McGuinness, G.; Olesen, I.; Fitton, J.H. The Effect of Undaria pinnatifida Fucoidan on the Pharmacokinetics of Letrozole and Tamoxifen in Patients With Breast Cancer. Integr. Cancer Ther. 2016, 17, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Ikeguchi, M.; Yamamoto, M.; Arai, Y.; Maeta, Y.; Ashida, K.; Katano, K.; Miki, Y.; Kimura, T. Fucoidan reduces the toxicities of chemotherapy for patients with unresectable advanced or recurrent colorectal cancer. Oncol. Lett. 2011, 2, 319–322. [Google Scholar] [CrossRef]
- Nagamine, T.; Kadena, K.; Tomori, M.; Nakajima, K.; Iha, M. Activation of NK cells in male cancer survivors by fucoidan extracted from Cladosiphon okamuranus. Mol. Clin. Oncol. 2019, 12, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Kawaguchi, M.; Kitamura, K.; Narumiya, S.; Kawamura, M.; Tengan, I.; Nishimoto, S.; Hanamure, Y.; Majima, Y.; Tsubura, S.; et al. An Exploratory Study on the Anti-inflammatory Effects of Fucoidan in Relation to Quality of Life in Advanced Cancer Patients. Integr. Cancer Ther. 2017, 17, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Nishimoto, S. Clinical Improvement in Cancer Patients through Integrated Medicine, Mainly Using Low Molecular Weight Fucoidan Supplements. J. Int. Soc. Life Inf. Sci. 2015, 33, 25–37. [Google Scholar]
Source | Fucoidan Structure | Cancer Type/Model | Effects/Pathways | Refs |
---|---|---|---|---|
Fucus vesiculosus | This fucoidan has a central core formed by α-L-fucose (1,3)-linked, sulphated at C4. In addition, several branching points (every two or three fucose residues) were present in α-(1,2) or α-(1,4)-linked, on the main chain. | Hepatocellular carcinoma (HCC) | [45] | |
In vitro Huh-7 and SNU-761 cell lines | Effects on metastasis by avoiding invasion ↑p42/44MAPK-dependent NDRG-1/CAP43 ↑p42/44 MAPK-dependent VMP-1 | |||
In vivo Distant metastasis model in C3H mice | Effects on metastasis by avoiding invasion ↓MMPs (MMP-2) ↓NF-κB ↓VEGF | |||
In vitro MHCC-97H cell line | Nanoparticle drug resistance fucoidan downregulate chemokines and cytokines involved in chemoresistance | [46] | ||
Lung cancer | [35] | |||
In vitro NSCLC CL1-5 human cells A549 human cells LLC1 mouse cells | Effects on metastasis by avoiding migration and proliferation ↓TGFRI and TGFRII ↓p-SMAD2/3 ↓AKT ↓ERK1/2 ↓p-FAK | |||
In vivo Xenograft | Drug resistance and Combined therapy ↑ Cisplatin cytotoxicity ↑Caspase 3, PARP and apoptosis | [47] | ||
Lung cancer cell line In vitro | Synergize with gefitinib and ↑apoptosis | [48] | ||
Breast cancer | [34] | |||
In vitro MDA-MB-231 and MCF-7 human breast cancer cells In vivo 4T1 mouse breast adenocarcinoma | Effects on metastasis by avoiding EMT ↑E-Cadherin, ↑γ-Catenin ↓N-Cadherin ↓SNAIL, SLUG and TWIST ↓p-SMAD2/3 ↓SMAD4 ↓TGFRI and TGFRII ↓MMP-9 | |||
In vitro MDA-MB-231 cells | Effects on metastasis by avoiding EMT ↓N-Cadherin and ↓vimentin ↑ZO-1, ↑E-Cadherin ↓Nuclear translocation of HIF-1α ↓TWIST-1, SNAIL, CAIX and GLUT-1 | [49] | ||
In vitro MCF-7 and ZR-75 In vivo Orthotopic Mouse model | Combined therapy increase effect Tamoxifen | [50] | ||
In vitro MDA-MB-231 human breast cancer cells, 4T1 mouse breast cells and J774.1A mouse macrophage cells. In vivo BALB/c mice | Nanoparticle combined therapy ↑ immunostimulatory activity and increase doxorubicin effect | [51] | ||
Proliferative vitreoretinopathy (PVR) | [52] | |||
In vitro Human primary RPE cells In vivo PVR model in rabbits | Effects on metastasis by avoiding EMT ↓TGF-β1-induced SMAD2/3 phosphorylation ↓α-SMA and fibronectin ↓E-cadherin | |||
Colorectal cancer (CRC) | [41,53] | |||
In vitro HT29 human cells | Effects on proliferation ↓Cyclin D1/E and ↓CDK2/4 Effects on apoptosis ↓BCL2 ↑BAX, ↑Caspase-3, ↑PARP1 | |||
In vitro HT29 human colon cancer cells | Effects on metastasis by avoiding migration ↓MMP-2 ↓PI3K-AKT-mTOR drug resistance by effect in P38 and JNK pathways | [41] | ||
Drug resistance related decrease prion protein and decrease cell survival and could | [54] | |||
HCT-8 human ileocecal In vitro | Combined therapy ↑cytotoxicity than those treated with cisplatin alone | [55] | ||
Pancreatic cancer | [56] | |||
In vitro AsPC-3 and BxPC-3 human pancreatic cancer cell lines | Effects on metastasis by avoiding hypoxia and angiogenesis ↓Hypoxia induced radioresistance ↓HIF-1α ↓Tumor growth and angiogenesis | |||
In vivo Xenograft | Combined therapy | |||
Prostate cancer | [57] | |||
In vitro DU-145 human cells In vivo Xenograft | Effects on metastasis by avoiding angiogenesis ↓CD31 and CD105 ↓p-JAK and p-STAT3 ↓VEGF, Bcl-xL, Cyclin D1 | |||
Cladosiphon navae-caledoniae | Low molecular weight fraction (72%, MW < 500 Da) and non-digested fractions (less than 28%, peak MW: 800 kDa). Fucose (73%), xylose (12%) and mannose (7%). The ratio of sulphation was 14.5%. | Breast cancer | [58] | |
In vitro ER-positive MCF-7 cells ER-negative MDA-MB-231 cells | Effects on metastasis and apoptosis ↓p-ERK and ↓AKT in MDA-MB-231 cells ↑p-ERK in MCF-7 cells ↑IC-ROS and ↓GSH in both cell lines | |||
Effects on drug resistance ↑cisplatin, tamoxifen and paclitaxel efficacy ↓Cell growth, ↑apoptosis ↓Bcl-xL, ↓Mcl-1 ↑ROS Combined therapy | ||||
Undaria pinnatifida | This sulphated galactofucan is composed of: Galactose 44.6% and Fucose 50.9%. Xylose (4.2%) Mannose (0.3%), uronic acids were not detected. A significant number of O-acetyl groups | Hepatocellular carcinoma (HCC) | [20,40,43] | |
In vitro Hca-F cell line | Effects on metastasis ↓VEGF C/VEGFR 3 ↓HGF/c-MET, cyclin D1. ↓PI3K, p-AKT, p-ERK 1/2, and NF-κB Effects on metastasis by avoiding hypoxia ↓HIF-1α ↓p-PI3K, ↓p-AKT, ↓p-mTOR ↓p-ERK ↓NF-κB ↓MMP-2, ↓MMP-9 ↑TIMP-1 | |||
In vivo Hca-F cells were inoculated subcutaneously into the footpads of the mice | Effects on metastasis by deregulating adhesion/invasion ↓ L-Selectin ↑TIMPs Effects on metastasis by avoiding lymph angiogenesis and lymphatic infiltration ↓VEGF-C, ↓HGF | |||
Melanoma cancer | ||||
In vitro WM266-4, WM115 (mutated BRAF), SKMEL2 (RAS mutated), MeWo and FEMX (wild type) | Effects on drug resistance and combined therapy Fucoidan increase Lapatinib (ERBB inhibitor) effect in drug resistance cell | [59] | ||
Breast cancer | ||||
In vitro MCF-7 and ZR-75 In vivo Orthotopic Mouse model | Combined therapy Increase effect in Tamoxifen treatment | [50] | ||
Sargassum hemiphyllum | Colorectal cancer (CRC) | [60] | ||
Double-Blind Randomized Controlled Trial | Fucoidan as a supplemental therapy to chemotarget agents in patients with metastatic CRC | |||
Hepatocellular carcinoma (HCC) | [36] | |||
In vitro Huh6, Huh7, SK-Hep1 and HepG2 human cells. | Effects on metastasis by avoiding EMT ↑miR-29b, ↓DNMT3B, ↑MTSS1 ↑E-Cadherin, ↓N-Cadherin | |||
↑TIMP-1, ↓MMP-2/9 | ||||
Breast Cancer | [37] | |||
In vitro MCF-10A, MCF-7 | Effects on metastasis by avoiding migration and invasion ↑miR-29c, ↓ADAM12 ↓miR-17-5p, ↑PTEN | |||
MDA-MB-231 human cells. | Effects on metastasis by avoiding EMT ↑E-Cadherin, ↓N-Cadherin | |||
Ascophyllum nodosum | This fucoidan is composed of fucose (52.1%), galactose (6.1%), glucose (21.3%), and xylose (16.5%). Sulphate content is 19%. Two main size fractions (47 and 420 kDa). | NSCLC (Lung cancer) | [61,62] | |
In vitro NSCLC-N6 | Effects on cell cycle arrest | |||
In vivo Xenograft | ||||
Turbinaria ornate | The results showed that the fucoidan has a sulphate content of 25.6% and is mainly composed of fucose and galactose residues (Fuc:Gal ≈ 3:1). The fucoidan has a backbone of 3-linked α-L-Fucose residues with branches, →4)-Galp(1→ at C-4 of the fucan chain. Sulphate groups are attached mostly at C-2 and sometimes at C-4 of both fucose and galactose residues. | NSCLC (Lung cancer) | [63,64] | |
In vitro NSCLC-N6 | Effects on cell cycle arrest | |||
Cladosiphon okamuranus | The fucoidan is composed of 70.13 ± 0.22 wt% fucose and 15.16 ± 1.17 wt% sulphate. Other minor monosaccharides are D-xylose, D-galactose, D-mannose, D-glucose, D-arabinose, D-rhamnose and D-glucuronic acid. Linkage analysis revealed that fucopyranoside units along the backbone are linked, through α-1,3-glycosidic bonds, with fucose branching at C-2, and one sulphate group at C-4 per every three fucose units, i.e. the structure of fucoidan from Japanese Cladosiphon okamuranus is [→3)-α-fuc(1→]0.52[→3)-α-fuc-4-OSO3-(1→]0.33[→2)-α-fuc]0.14. | Breast cancer | [65,66] | |
In vitro MCF-7 ADR (drug resistant human breast cancer cell line) | Combination therapy (Synergistic effect doxorubicin and photothermal nanocarrier) ↑doxorubicin delivery ↑ morphology-control in Pt-nanoparticles | |||
In vivo Xenograft | ||||
Sargassum fusiforme | The fucoidan is composed of fucose, xylose, galactose, mannose, glucuronic acid, and 20.8% sulphate. The 17 sulphate groups are attached to diverse positions of fucose, xylose, mannose, and galactose residues. The backbone consists of alternate 1, 2-linked α-D-Mannose and 1, 4-linked β-D-GlcpA | Hepatocellular carcinoma (HCC) | [38] | |
In vitro SMMC-7721, Huh7 and HCCLM3 cells | Effects on metastasis by avoiding migration and invasion | |||
In vivo Xenograft | ↓Invadopodia-related proteins (Src, Cortactin, N-WASP, ARP3, CDC42, MMP2, MT1-MMP) ↓Integrin αVβ3 |
Source | Cancer Type (No Patients) | Fucoidan Dosage | Effects | Refs |
---|---|---|---|---|
Undaria pinnatifida | Breast cancer (20 patients) | Capsule of 500 mg twice a day for 3 weeks | Letrozole (n = 10) or Tamoxifen (n = 10) co-administration with fucoidan no decrease drugs in steady-state plasma and was well tolerated. | [89] |
Sargassum hemiphyllum | Colorectal cancer (54 patients) | 4 g twice a day for 6 months | Supplemental therapy, fucoidan combined with FOLFIRI chemotherapy plus Bevacizumab improved disease control rate. | [60] |
Cladosiphon okamuranus | Unresectable advanced or recurrent cases of colorectal cancer (20 patients). | 4.05 g for day | Decreases toxicity of chemotherapy FOLFOX or FOLFIRI. | [90] |
Survivors of diverse cancer types (11 patients). | 1.5 g twice a day for 6 months | Activation of NK cells in male cancer survivors | [91] | |
Advanced cases of several types of cancer (20 patients). | 4 g for day for 4 weeks | Anti-inflammatory effect, decreases IL-1β, IL-6 and TNF-α | [92] | |
Nemacystis decipiens | Cervical cancer (1 case study) Kidney cancer (1 case study) Breast cancer (1 case study) | 200 mL/day 60 mLx3L/day 200 mL/day | No concluded information | [93] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes, M.E.; Riquelme, I.; Salvo, T.; Zanella, L.; Letelier, P.; Brebi, P. Brown Seaweed Fucoidan in Cancer: Implications in Metastasis and Drug Resistance. Mar. Drugs 2020, 18, 232. https://doi.org/10.3390/md18050232
Reyes ME, Riquelme I, Salvo T, Zanella L, Letelier P, Brebi P. Brown Seaweed Fucoidan in Cancer: Implications in Metastasis and Drug Resistance. Marine Drugs. 2020; 18(5):232. https://doi.org/10.3390/md18050232
Chicago/Turabian StyleReyes, María Elena, Ismael Riquelme, Tomás Salvo, Louise Zanella, Pablo Letelier, and Priscilla Brebi. 2020. "Brown Seaweed Fucoidan in Cancer: Implications in Metastasis and Drug Resistance" Marine Drugs 18, no. 5: 232. https://doi.org/10.3390/md18050232
APA StyleReyes, M. E., Riquelme, I., Salvo, T., Zanella, L., Letelier, P., & Brebi, P. (2020). Brown Seaweed Fucoidan in Cancer: Implications in Metastasis and Drug Resistance. Marine Drugs, 18(5), 232. https://doi.org/10.3390/md18050232