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Abstract

:

Conotoxins are short, cysteine-rich peptides of great interest as novel therapeutic leads and of great concern as lethal biological agents due to their high affinity and specificity for various receptors involved in neuromuscular transmission. Currently, of the approximately 6000 known conotoxin sequences, only about 3% have associated structural characterization, which leads to a bottleneck in rapid high-throughput screening (HTS) for identification of potential leads or threats. In this work, we combine a graph-based approach with homology modeling to expand the library of conotoxin structures and to identify those conotoxin sequences that are of the greatest value for experimental structural characterization. The latter would allow for the rapid expansion of the known structural space for generating high quality template-based models. Our approach generalizes to other evolutionarily-related, short, cysteine-rich venoms of interest. Overall, we present and validate an approach for venom structure modeling and experimental guidance and employ it to produce a 290%-larger library of approximate conotoxin structures for HTS. We also provide a set of ranked conotoxin sequences for experimental structure determination to further expand this library.
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1. Introduction


Toxins have for a long time been considered a rich natural source of therapeutic leads because of their high specificity and binding affinity for various receptors involved in different biological pathways [1,2]. The drug ziconotide, for example, is a potent analgesic derived from a toxin produced by the aquatic cone snail species Conus magus [3]. The on-average smaller size of toxins–typically <100 amino acids along with a sizeable proportion <30 amino acids long [4]—means they can be employed with relative ease in in silico high-throughput screening (HTS) to rationally identify candidates for initial scaffolds interacting with a particular receptor of interest. Although traditional HTS has focused largely on small molecules, the dwindling rate at which such drugs come to market has led to a need to search for other spaces in which to identify ligands for binding with receptors of interest. Natural products, in general, are expected to be a good source of potential therapeutic candidates, and the computational advancements in various HTS strategies make it possible to apply approaches such as docking to more than just small molecules [5,6,7]. Short toxins in particular are of interest because of their pre-existing strong affinities for protein receptors, and software has been developed for in silico screening of them [8]. In one recent study of note, for example, the authors employed a docking approach to identify  α -conotoxin BuIA, produced by species Conus bullatus, as a competitive agonist for the lysophosphatidic acid receptor 6, a G-protein coupled receptor involved in the development of several cancers [9]. Aside from their therapeutic value, toxins such as these also pose a threat to biosecurity. Rapid advances in synthetic biology have created challenges in determining the health risks posed by natural toxins or modified toxins with even higher pathogenicity [10]. Thus, in tandem with HTS for therapeutic design, it is necessary to simultaneously perform HTS for threat identification. However, HTS approaches for any application are limited by the necessity of possessing a library of at least low-resolution structures of potential toxin candidates: more structures mean a larger search space and hence a higher likelihood of identifying good initial leads [11]. Thus, structural characterization stands as a rate-limiting step for HTS for both therapeutic design and toxin threat characterization, as identified sequences often far outnumber determined structures. Indeed, only about 3% of sequences isolated from cone snail venom have corresponding experimentally-determined structures [12].



If the structures of proteins could be rapidly predicted strictly from their sequences, structural determination would not be a bottleneck; however, structure prediction from sequence still remains a challenging proposition [13]. Ab initio or de novo modeling approaches for obtaining protein structure predictions by modeling essential folding physics are prohibitively expensive except for small proteins of about 20–62 residues in size [14,15,16,17]. Even for proteins short enough to be de novo modeled in isolation, such techniques can become expensive if a large number of different structures are desired. Structure prediction for a query sequence becomes more tractable when experimentally-resolved structures are available for evolutionarily related sequences: this is referred to as homology modeling [18]. For typical proteins (at least 100 amino acids long), a useful rule of thumb for building a homology model of a protein with unknown structure using a structurally characterized protein as the template is that both proteins should share at least 25% sequence identity [19,20]; however, this does not apply to shorter peptides, since the shorter the peptide, the more likely a sequence identity of 25% is to have arisen due to random chance [21,22]. To apply the homology modeling framework for shorter peptides, a reasonable heuristic instead becomes that the alignment length and percent identity fall above the phenomenological curve introduced by Rost [23] (see Equation (1) and Appendix A Figure A1). The relative steepness of the Rost curve for alignment lengths of less than fifty amino acids provides an illustration of why, for peptides of such lengths, it is important to use the actual functional form, rather than a static cutoff, to assess whether a pairwise alignment contains sufficient information for homology modeling.



In this article, we employ a simple sequence graph-based algorithm for homology modeling of related toxin sequences and use the resultant graph to suggest a set of sequences of interest for experimental structural characterization. Network or graph theory is, broadly speaking, the study of the ways in which different types of objects may be related to one another [24]. In essence, the basis of such approaches is to consider a set of related objects as nodes in a graph and the relationships between them as edges between those nodes. This is a versatile framework of thinking that has been profitably employed in diverse domains in the biological sciences [25,26]: e.g., biological systems modeling, in which nodes may be, for example, proteins, and edges may be chemical reactions [27,28]; elucidating allosteric pathways in proteins, in which nodes can be defined as residues, and edges as inter-residue distances [29]; antibody design, in which nodes may be glycans and edges may be the inverses of the spatial distance between them such that gaps in the network represent likely locations for antibodies to dock on a glycosylated protein [30]; or biased sampling of cluster formation, in which the nodes may be particles and edges may be physical contact between them [31]. Thus, for large datasets, network analysis techniques can help wean out salient global attributes from an otherwise confounding plethora of features. Because of the subject’s long history, casting biological problems in the form of a graph allows for the immediate application of well-verified techniques.



Since sequences of proteins may be related in many different ways, including simple amino acid identity and evolutionary relationships, it is no surprise that graph theory has a long and storied history of usage for sequence-grouping tasks such as homology detection [32], structure prediction [33,34,35], protein family identification [36,37], and even direct homology modeling [35]. For large heterogeneous databases, it can be challenging to identify homologs and a number of sophisticated algorithms have been developed for such purposes; we instead focus on the problem of homology modeling a set of cysteine-rich toxins known to be evolutionarily related. In our approach, we employ the number and placement of cysteines within a sequence as a rough initial estimate of functional and structural relatedness.



In the following sections, we present our graph-based approach and employ it to construct sequence graphs and identify good libraries of templates for homology modeling. We demonstrate that, despite the known relationship between the conotoxins, these libraries improve outcomes for structure homology modeling over using a 25% flat cutoff (plus 5% padding). We use our sequence graphs to construct a set of tables indicating sequences in which experimental structural characterization is predicted to be most valuable in creating a broad structure library by using homology modeling. Finally, we employ the graphs and libraries as part of a homology modeling procedure that results in a library of low-resolution structures for the conotoxins that will be of use in future high-throughput studies.




2. Results


We initialize the algorithm (see Figure 1 for a schematic illustration of the procedure) by separating a set of over 2000 known conotoxin sequences into databases containing four, six, eight, and ten cysteines, respectively. For each database, we construct graphs of sequences (cf. Figure 2) in which an edge between two nodes (i.e., sequences) represents a pairwise alignment that is of sufficient length and percent identity to fall into the safe homology modeling zone above the Rost curve (cf. Equation (1) and Figure A1). Some portions of the sequences have known structures, such that the corresponding nodes are annotated with the relevant PDB ID(s). We employ the graphs thus generated to iteratively add nodes with structures to a library of templates for homology modeling. We term this set of sequences   {  L ex  }  , the set of existing structural library templates. Nodes are added to   {  L ex  }   in a greedy manner, in order of highest node degree, such that the resulting library will contain enough templates to homology model the maximum number of non-structurally-characterized sequences possible but with minimal sequence overlap and retaining a number of non-library structures for quality assessment. Since this is approximately the vertex-covering problem of a graph, we cannot find a globally optimal solution, as that problem is NP-complete [38]. We halt the procedure once either we have no further nodes with structures to add or there are no remaining sequences in a given connected component of the graph that are not connected to at least one library template sequence, such that all sequences in that component may be structurally characterized by homology modeling. We refer to the set of sequences that may be homology modeled based on set   {  L ex  }   as set   { C   L ex   }     that are covered by   {  L ex  }  . We next perform a similar procedure—but without the constraint of structure annotation—on the nodes absent   {  L ex  }   to identify the sets   {  L proj  }   that are of interest for experimental structural characterization such that they cover the remaining set   { C   L proj   }    . Note that it is possible for nodes to belong to both   { C   L ex   }     and   {  L proj  }  , and indeed, a small number do.



In Figure 2, we present the sequence graphs for sets of conotoxin sequences with four, six, eight, and ten cysteines, respectively. We specifically display   {  L proj  }   (in green), the experimental structural characterization of which would lead to coverage by homology modeling of the set   { C   L proj   }   (in magenta) that comprises sequences with no characterized structure and not covered by set   {  L ex  }  . We also show the set   {  L ex  }   (in orange), which we employ to predict structures for the set   { C   L ex   }   (in blue) by homology modeling. In Figure A2, we present the same sequence graphs, but we color the nodes by relative sequence length instead of set occupation. A significant proportion of isolated sequences (nodes with no connections that therefore cannot be homology modeled) are relatively short (cf. the ring of small red nodes in Figure A2A and to a lesser extent in Figure A2B), which demonstrates that a high proportion of isolated nodes may be characterized well through rapid ab initio modeling rather than needing full experimental characterization, particularly for the four and six cysteine sequences.



These figures are a graphical illustration of the sequence space of conotoxins that may be used as a guide to experiment or to produce low-resolution structures for initial HTS. Specifically, out of the 801 sequences with four cysteines, 61 (7.6% of total) currently have experimentally-resolved structures. The graph-based approach selected 49 (6.1% of total) of these structures as comprising the four cysteine template library (set   {  L ex  }  ; blue circles in Figure 2A, while the 12 unselected structures are represented in black), which allowed for homology modeling of 143 (17.9% of total) sequences (set   { C   L ex   }  ; orange circles in Figure 2A). This corresponds to an increase of over 230% (143/61) for the number of structures employable for HTS over the original 61. The graph-based approach indicated that seven sequences from   { C   L ex   }   (hybrid green/blue circles in the graph) and a further 74 sequences (81 overall—10.1% of total) would need to be characterized experimentally to allow for homology modeling of the remaining 151 (18.9% of total). Of the 453 sequences assigned to   {  L proj  }  , 372 (82.1%) are isolated nodes with no edges; of these, 298 (80.1%) are shorter than 20 amino acids, and 353 (94.9%) are shorter than 30 amino acids in length and thus many of this remainder may be rapidly modeled using ab initio techniques.



For conotoxins with six cysteines (cf. Figure 2B), 44 (4.0% of total) out of the 1113 sequences currently have experimentally-resolved structures. The graph-based approach selected 30 (2.7% of total) of these structures as comprising the six cysteine template library, which allowed for homology modeling of 148 (13.3% of total) sequences. This corresponds to an increase of over 330% (148/44) for the number of structures employable for HTS over the original 44. The graph-based approach indicated that seven sequences from   { C   L ex   }   and a further 180 sequences (187 overall–16.8% of total) would need to be characterized experimentally to allow for homology modeling of the remaining 509 (45.7% of total). Of the 419 sequences assigned to   {  L proj  }  , 239 (57.0%) are isolated nodes; of these, 86 (36.0%) are shorter than 20 amino acids, and 163 (68.2%) are shorter than 30 amino acids in length.



For conotoxins with eight cysteines (cf. Figure 2C), 2 (1.1% of total) out of the 190 sequences currently have experimentally-resolved structures. These two structures were selected as comprising the entire template library here, which allowed for homology modeling of a 17 (8.9% of total) sequences. This corresponds to an increase of 850% (17/2) for the number of structures employable for HTS over the original two. The graph-based approach indicated that one sequence from   { C   L ex   }   and a further 29 (30 overall—15.8% of total) would need to be characterized experimentally to allow for homology modeling of the remaining 101 (53.1% of total). Of the 71 sequences assigned to   {  L proj  }   sequences, 41 (57.7%) are isolated nodes, but of these, only 5 (12.2%) are shorter than 30 amino acids in length, leaving a good proportion that would likely require experimental characterization to solve their structures. Finally, there are no known structures corresponding to ten cysteine sequences so there is no current coverage (cf. Figure 2D). The graph-based approach indicated that a further 9 of the total 53 sequences (17.0%) would have to be characterized to allow for homology modeling of the remaining 34 (64.2%). Of the 19 sequences assigned to   {  L proj  }   (52.6%), 10 are isolated nodes, and of these, none are shorter than 30 amino acids in length.



For characterization of the remaining structures, focusing efforts on the nodes of the highest degree in the graphs is disproportionately rewarding, since a greater degree in the graph corresponds to the ability to cover a greater number of sequences. In Table 1, Table 2, Table 3 and Table 4, we present and rank the set of conotoxins that are of greatest interest for experimental characterization, as availability of experimental structures for these sequences (belonging to set   {  L proj  }  ) would allow homology modeling of the remainder of the sequences (belonging to set   { C   L proj   }    ). Thus, we suggest that experimental structural resolution begin with those sequences listed at the top of their respective tables and work downwards in order to most rapidly and efficiently structurally characterize the sequence space of the conotoxins.



In Figure 3, we assess the quality of the template libraries (Table A1, Table A2 and Table A3) constructed using the graph-based approach employing the Rost cutoff, and compared with a set of template libraries based on a static 25% rule-of-thumb cutoff. We perform two assessments: an “in-library” assessment, and an “out-of-library” assessment. In the in-library assessment (Figure 3A,B), we construct homology models for each structure in the library using the rest of the library as potential templates and compute the backbone root-mean-square deviation (RMSD) between each modeled structure and the corresponding experimental structure. Compared to the static cutoff, the Rost cutoff produces modeled structures with lower RMSD: the mean RMSD employing the Rost cutoff has a downwards shift from   4 . 0 ± 0 . 7   Å to   1 . 5 ± 0 . 2   Å for the four cysteine library and from   3 . 8 ± 0 . 6   Å to   2 . 1 ± 0 . 2   Å for the six cysteine library. In the out-of-library assessment (Figure 3C,D), we construct homology models for the known structures that were not employed as part of the template libraries (Figure 2, black nodes), and compute the backbone RMSD between each modeled structure and the corresponding experimental structure. The mean RMSD has a downward shift from   1 . 7 ± 0 . 1   Å to   1 . 0 ± 0 . 2   Å for the four cysteine library and from   1 . 82 ± 0 . 09   Å to   1 . 4 ± 0 . 1   Å for the six cysteine library. The relatively low RMSD for the in-library assessment demonstrates that the template libraries cover a substantial proportion of the known sequence space, while the relatively low RMSD for the out-of-library assessment demonstrates the utility of the homology-modeled structures as part of HTS [41]. Despite the known relationships among the toxins, there is a statistically significant improvement (downwards shift in the distribution, two-tailed Kolmogorov–Smirnov test with   p < 0 . 05  ) for both in- and out-of-library structures when using the Rost cutoff as compared to the 25% cutoff.



Finally, in Supporting File “finalmodels.zip”, we attach the set of structures computed by homology modeling (see Figure 4 for a schematic of the procedure), corresponding to sequences in the set   { C   L ex   }  , with the four, six, and eight cysteine library structures used as templates. Because we divided the sequences into subsets based on the number of cysteines in a sequence, we are able to use the cysteines aligned as an additional criterion during the homology modeling procedure. The average PROCHECK G-factor, which is a log-odds score based on the likelihood of observing the given distributions of  ϕ - ψ  and   χ 1  -  χ 2   angles in proteins, is   0 . 086 ± 0 . 005   for the reported four cysteine models,   − 0 . 103 ± 0 . 007   for the reported six cysteine models, and   − 0 . 2 ± 0 . 1   for the report eight cysteine models. Since this score is not a relative measure and values above   − 0 . 5   are generally considered acceptable, this provides evidence that the structures we have computed are physically reasonable. We further assess the quality of the homology modeling protocol by using it to model each structure in the library with templates selected from other structures in that library. The distribution of root-mean-square deviation (RMSD) values of the top three models based on our ranking criteria (see Materials and Methods for details) compared with each experimental structure is shown in Figure 5A,B. We see that our method performs well [41]: the average RMSD in the four cysteine architecture is   2 . 00 ± 0 . 09   Å with at least 80% of the models having less than 3 Å RMSD, and the average RMSD in the six cysteine architecture is   2 . 3 ± 0 . 2   Å with 75% of the models having less than 3 Å RMSD. Most of the higher RMSD values are contributed by the flexible loops and coils. When we look at the RMSD distribution after rejecting those atoms that cannot be structurally aligned, as in case of loops and coils, the distributions improve significantly (Figure A3), with a mean of   1 . 55 ± 0 . 09   Å for the four cysteine architecture and a mean of   1 . 2 ± 0 . 1   Å for the six cysteine architecture, with 100% of the models for both archtiectures having less than 3.5 Å deviations. A second test for validating our method was performed by checking the distribution of native contacts in the modeled structures (Figure 5C,D). Two pairs of residues were defined to have a native contact if the distance between the C α  atoms in the native experimental structure was less than 8 Å, and the pair was at least four residues apart (C   α i  – C   α  i + 4   ). At least 60% of the native structures were captured in our models, with the distribution means of   80 % ± 1  % and   81 % ± 1  % for the four and six cysteine architectures, respectively.




3. Discussion


By employing a conceptually simple heuristic approach that may also be used for analysis of other short, disulfide-rich, evolutionarily-related peptides, we have constructed a set of sequence graphs that allowed us to rank non-isolated sequences without corresponding characterized structures in an order that would allow for the most rapid expansion of the conotoxin structure library. We constructed template libraries for homology modeling of conotoxins based on the number of cysteines contained in the sequence. We demonstrated that libraries constructed to account for the shorter lengths of the conotoxins produce homology models that are more accurate than libraries constructed with a static 25% cutoff. Currently, sufficient information is not available to homology model any sequences containing more than eight cysteines, as experimental characterization has focused preferentially on the shorter conotoxins. We employed our libraries to predict a set of structures from sequence using homology modeling, allowing us to expand the library of conotoxin structures usable for HTS by about 290% overall, although a number of sequences remain without any associated structural predictions. We assessed the quality of these structures through standard techniques to demonstrate they are expected to be reasonably accurate and therefore may be employed for high-throughput screening of conotoxins as novel therapeutics for new receptor targets. We note that of those sequences that were isolated in our graphs—that is, had no edges—80% of those containing four cysteines and 36% of those containing six cysteines were under 20 amino acids long, marking them as good candidates for a high-throughput ab initio modeling procedure, rather than necessarily for experimental characterization, as they will likely be tractable but will not contain any information about other sequences.



For experimentalists interested in investigating the conotoxins we suggest in the table, we note that the preponderance of peptide structures that we employed for the structure libraries were determined with solution nuclear magnetic resonance (NMR). Maintenance of the tertiary fold of conopeptides, particularly after their secretion into the extracellular environment, depends more on its disulfide bonds and less on the presence of a hydrophobic core [44]. As such, compression artifacts on the free/unbound structures of these disulfide-rich peptides can arise due to crystal packing forces in X-ray studies, which has been observed in the literature [45]. It was also shown recently that solution NMR structures of disulfide-rich peptides based primarily on nuclear Overhauser effects (NOEs) are comparable to a crystallographic resolution of around 2.5 Å, while refinement with residual dipolar couplings (RDCs) can improve this to around 1–1.5 Åresolution [46]. Solution NMR studies, therefore, in addition to providing ensembles that inform on the conformational dynamics, can yield highly appropriate and cost-effective structures compared to those obtained from X-ray or cryo-EM [47].



One important point about short, disulfide-rich peptides that we have not addressed in this work is the existence of so-called “disulfide isomers.” Under certain environmental conditions, there is experimental evidence suggesting that some toxins do not exist as a single set of “native” structures but as a heterogeneous—perhaps metastable—ensemble populated with strikingly different conformations corresponding to differing patterns of cysteine connectivity [48]. Although many conotoxins do have a single thermodynamically stable native state as dictated by their sequence similarity, [49,50] or can be stabilized in one through the use of dicarba or diselenide bonds [51,52], these disulfide isomers, if kinetically or thermodynamically controlled, may be employed to expand the library of structures for HTS. This represents an important area of future work.



Although we do not directly address the question of structure–function relationships in this work, the graph-based method does suggest an interesting route forward. It has been shown that in addition to strict structural contributions, conotoxin binding is also heavily related to surface electrostatics [53], and, indeed, this concept was formalized (as “Protein Surface Topography”) and employed by Kasheverov et al. [54] to design stronger-binding  α -conotoxin mutants. Another intriguing line of further study, therefore, might be to construct a graph on the basis of the Protein Surface Topography similarities for those structures we have modeled in this work and compare and contrast between that and sequence similarity.




4. Materials and Methods


4.1. Data Acquisition and Curation


For use in construction of the template libraries, we employed a set of 142 conotoxin structures downloaded from the PDB [55], which we found by searching “conotoxin” on the PDB. We manually removed several false positives, such as a crystal structure of the acetylcholine-binding protein that was identified due to the title of the associated paper. We also manually removed several sequences that were identical to natural conotoxin sequences but modified by the replacement of disulfide bonds with dicarba bonds. We did not remove redundant sequences consisting of multiple characterization methods and, in a few cases, structural isomers resulting from different disulfide-bond connections. In future, further work will be done to properly assess the likelihood of multiple stable or metastable states, but we do not address this consideration further here.



For use in the analysis detailed in this article, we downloaded a set of 6255 peptide sequences from the Conoserver [40] using the “Tools > Download Conoserver’s Data” command. We retained only sequences containing four, six, eight, or ten cysteines. We removed anything with the word “precursor” or “patent” in the name, as precursor sequences contain, in addition to the mature peptide sequence that folds into the toxin, a signal sequence and N- and C-terminal pro-regions that are cleaved in the endoplasmic reticulum and Golgi apparatus [56]. A manual inspection of sequences labeled “patent” revealed that many were insufficiently characterized—for example, they noted only the cysteine pattern or they mixed precursor and mature toxin sequences with no indication. We also added to the sequence list any sequence that corresponded to one of the PDB structures that was not already contained in the list. Once the set of all sequences was finalized, we split it into four subsets corresponding to the number of cysteines contained. In the end we retained for analysis a total of 801 unique sequences containing four cysteines, 1113 unique sequences containing six cysteines, 190 unique sequences containing eight cysteines, and 53 unique sequences containing ten cysteines.




4.2. Details of Library Template Selection Procedure


For each subset of sequences corresponding to a different number of contained cysteines, we created an alignment graph as follows. For every sequence, we computed a pairwise alignment with every other sequence, using the “PairwiseAligner” class in the “Align” module of the Biopython package [57], in global mode, with a gap-open penalty of -10 and a gap-extend penalty of −0.5. Employing the networkx Python package [58], we constructed a graph in which nodes represented sequences and we placed an edge between two nodes whenever the percent identity of the highest-percentage pairwise alignment of the two corresponding sequences was greater than [23],


   p rost  = n + 480  L  − 0 . 32  1 + exp  −  L 1000      ,  



(1)




where L is the length of the alignment in numbers of amino acid residues and we set   n = 5   (%).



We constructed two different template libraries for each subset of sequences, one from the pairwise alignment graph and one from a static 25%-identity cutoff (with   n = 5   %). When creating the graph-based libraries (see also Figure 1), we first identified all connected components in the graph. For each connected component, we chose first the sequence with the highest node degree (number of distinct edges) that corresponded to a structure in the set of 142 structures downloaded from the PDB, added it to the library, and removed that sequence and all sequences it shared an edge with from the graph. We continued this procedure until one of two criteria was satisfied: (i) there were no longer any sequences in the connected component with corresponding structures or (ii) there were no longer any sequences in the connected component without corresponding structures. These criteria corresponded to the following two situations, respectively: (i) there were no other structures available for inclusion in the library or (ii) the entire connected component was able to be homology modeled based on the structures included in the library up until that point. For construction of the static sequence-identity cutoff library, sequences within each data set were clustered and a representative sequence from each cluster chosen by using the “sequence_db.filter” command of MODELLER version 9.20 (UCSF, San Francisco, CA, USA) [59,60], which groups sequences together if their sequence identity is greater than a specified cutoff value. The set of cluster representatives became a library of structures in which between any pair the sequence identity was less than the specified cutoff value.



For computation of the homology modeled structures based on the library templates that were used to assess and compare the quality of the two libraries, we used the “align2d” command followed by the “automodel” procedure from MODELLER 9.20 with default parameters. We computed five models for each sequence from each template (except for itself, in the case of library structures being modeled based on other library structures). The best homology model was chosen as the one with the lowest backbone RMSD to the known or experimentally-resolved structure, using the “align” command in PyMOL [61] that superimposes two structures via a structure superposition that is constrained by a prior sequence alignment.




4.3. Homology Modeling Criteria


After assessing the quality of the template libraries, we used them to construct via homology modeling a database of structures for those conotoxin sequences (set   { C   L ex   }   shown in blue in Figure 2 and Figure A2) that are covered by those libraries (set   {  L ex  }   given in orange in Figure 2 and Figure A2). The pipeline employed for building these homology-modeled structures is detailed here. A schematic of this pipeline is given in Figure 4. The four cysteine (4C) subset included 143 such sequences for which structures were computed by homology modeling from 49 library structure templates, while the six cysteine (6C) subset included 148 sequences for which structures were computed by homology modeling from 30 library structure templates. There was only one existing non-isolated library structure template having eight cysteine (8C) architecture, and 17 sequences were modeled from it, while no ten cysteine (10C) structures could be modeled, since to date there are no structures of conotoxins containing 10 cysteines deposited in the PDB.



Alignment of each of the subject sequences was performed with those sequences that have a structure present in the template library using BLAST [42]. BLOSUM62 substitution matrix [62] was used with a gap-open penalty of −10 and a gap-extend penalty of −0.5. For each sequence, structures were considered possible templates if they fulfilled the following criteria: (i) sequence identity of ≥70%; (ii)   ≥ 70  % of sequence length covered; (iii) E-value   ≤ 1 ×  10  − 5    . Additionally, we constrained the cysteines in the sequence to be aligned in the following manner. If there was a one-position shift in the sequence alignment that would allow the cysteines to align, the gap penalties at that position were removed to enforce cysteine alignment. If a greater than one-position shift would be required to allow the cysteines to align, such a template was not considered.



Structural homology modeling was performed using the MODELLER version 9.20 package [59,60]. Multiple templates were used to aid in the modeling process for those subjects where more than one sequence satisfied the above-mentioned criteria. The models were further relaxed by several steps of conjugate gradients and molecular dynamics with simulated annealing as recommended in the thorough Variable Target Function Method (VTFM) optimization of MODELLER [63]. Due to the alignment of cysteines from the template structures, the disulfide bonds could be constrained by patches. Ten such models were generated for each subject sequence. Subjects 107 and 110 from 4C architecture and subject 2 from 6C architecture did not correspond to any templates that satisfied all of our above criteria. Nevertheless, we modeled these sequences based on the best sequence match.



We selected three top models for each subject based on the Discrete Optimized Protein Energy (DOPE) score [64] and the PROCHECK G-factor [65]. DOPE, a typical criterion for assessing the quality of a modeled structure, is an atomistic distance-dependent statistical potential calculated from a large set of refined high resolution PDB structures. The PROCHECK G-factor is a log-odds score based on observed distributions of the  ϕ - ψ , and   χ 1  -  χ 2   values measuring whether the model is physically reasonable or if it contains unusual stereochemical configurations. In this study, we normalized the DOPE and G-factor scores and used a combined product of probabilities to rank and sort the structures. The top three models selected for each subject are reported in Supplementary File “finalmodels.zip”, along with their DOPE, G-factor, MODELLER optimization function value (molpdf), GA341 scores [66], and the Ramachandran plots for each of these models. All RMSD calculations were performed with Pymol [61]. There is only one available non-isolated structure in the 8C extant library. This was used to model all 17 subject sequences. The best three models for each sequence along with their assessment scores are reported in the database.




4.4. Quantification and Statistical Analysis


We use the Kolmogorov–Smirnov two-tailed test as implemented in the SciPy package [67] and referred to by the “ks2samp” command to assess whether we may reject the null hypothesis of the RMSDs of experimental structures from homology models based on different template libraries being drawn from the same distribution. We employ a significance level of   p = 0 . 05  , meaning that we reject the null hypothesis if the KS statistic D returned by the test is such that   D > α    n + m   n m     , where   α = 1 . 224   for a significance level of   p = 0 . 05  , and n and m are the number of samples in each set, respectively. The analysis is referred to in Section 2.





5. Conclusions


Overall, the work in this article presents a rational graph-based algorithm that we employ to expand the repertoire of known conotoxin structures for application in a high-throughput manner as part of the early stages of drug design. We expect that the libraries, the expanded set of structures, and the ranking of sequences in terms of the degree of connectedness to other sequences will be valuable resources improving the prospects of conotoxins as novel therapeutic leads and that our approach may be employed for initial characterization of other sets of evolutionarily-related toxins.
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Appendix A


We provide tables of the template libraries for homology modeling and three supplementary figures. Structures used as template libraries are provided in the supplementary data folder “libraries.zip”. Homology modeled structures of conotoxins are provided in the supplementary data folder “finalmodels.zip”, along with their scores and the associated Ramachandran plots. Python, MODELLER, and Bash analysis scripts for preparation, graph construction, and further analysis will be provided upon request.
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Figure A1. Rost’s phenomenological curve (Equation (1)) of minimum percentage identity for homology modeling as a function of pairwise alignment length with   n = 5 %   padding as employed in this work. As the length of the alignment decreases, the minimum percent identity for homology modeling increases, and there is a particularly rapid increase below alignments of about 25 amino acids, where a fairly large proportion of toxins reside. 
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Figure A2. Graph of conotoxins containing (A) four cysteines, (B) six cysteines, (C) eight cysteines, and (D) ten cysteines where nodes are sequences and edges exist between sequences with pairwise alignments that have a high enough length and percent identity to fall above the Rost curve with   n = 5 %   (Equation (1)). Colors show the relative sequence lengths of each node, but the color scale of each graph is independent of the others. The sizes of the nodes correspond to their degree; that is, the number of other sequences that they can be modeled based on or used to model. Node locations and edge lengths were chosen for ease of visualization of separate connected components. Visualization of the graphs was produced with Gephi 0.9.2 [39]. 
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Table A1. List of conotoxins with corresponding PDB structure IDs [55] comprising the 4C library. Name or names of sequences are taken from the Conoserver database [40]. Multiple names for the same sequence indicate the same sequence is produced by different species or has different post-translational modifications.






Table A1. List of conotoxins with corresponding PDB structure IDs [55] comprising the 4C library. Name or names of sequences are taken from the Conoserver database [40]. Multiple names for the same sequence indicate the same sequence is produced by different species or has different post-translational modifications.





	Name(s)
	PDB ID
	Sequence





	EpI [sTy15>Y], EpI
	1a0m
	GCCSDPRCNMNNPDYC



	PnIB, PnIB [sTy15Y]
	1akg
	GCCSLPPCALSNPDYC



	CnIA
	1b45
	GRCCHPACGKYYSC



	AuIB, Ac-AuIB, AuIB [ribbon isoform]
	1mxp
	GCCSYPPCFATNPDC



	ImI [R11E]
	1e74
	GCCSDPRCAWEC



	ImI [R7L]
	1e75
	GCCSDPLCAWRC



	ImI [D5N]
	1e76
	GCCSNPRCAWRC



	TIA
	2lr9
	FNWRCCLIPACRRNHKKFC



	MrIB, MrIB C-term amidated
	1ieo
	VGVCCGYKLCHPC



	EI
	1k64
	RDPCCYHPTCNMSNPQIC



	GID, GID*, GID*-NH2, GID*[O16P]
	1mtq
	IRDECCSNPACRVNNPHVC



	SI
	1hje
	ICCNPACGPKYSC



	TXIX
	1wct
	ECCEDGWCCXAAP



	GI
	1xga
	ECCNPACGRHYSC



	Conkunitzin-S1
	1y62
	RPSLCDLPADSGSGTKAEKRIYYNSARKQ-CLRFDYTGQGGNENNFRRTYDCQRTCL



	PIA, PIA [R1ADMA]
	1zlc
	RDPCCSNPVCTVHNPQIC



	cMII-6
	2ajw
	GCCSNPVCHLEHSNLCGGAAGG



	PlXIVA
	2fqc
	FPRPRICNLACRAGIGHKYPFCHCR



	GI (SER12)-benzoylphenylalanine
	2fr9
	ECCNPACGRHYYC



	GI (ASN4)-benzoylphenylalanine
	2frb
	ECCYPACGRHYSC



	OmIA
	2gcz
	GCCSHPACNVNNPHICG



	BuIA, BuIA[P6O], BuIA[P7O]
	2ns3
	GCCSTPPCAVLYC



	ImI [P6A]
	2ifi
	GCCSDARCAWRC



	ImI [P6K], ImI [P6K] deamidated
	2ifj
	GCCSDKRCAWRC



	ImI, ImI [C2U,C8U], ImI [C2U,C3U,C8U,C12U], ImI deamidated, A c-ImI, ImI [A9S], ImI [C3U,C12U], ImI [P60], ImI [P6APro], ImI [P6A(S)Pro], ImI [P6guaPro], ImI [P6betPro], ImI [P6fluoPro], ImI [P6fluo(S)Pro], ImI [P6phiPro], ImI [P6phi(S)Pro], ImI [P6benzPro], ImI [P6naphPro], ImI [P6phi(3S)Pro], ImI [P6phi(5R)Pro]
	2bypF
	GCCSDPRCAWRC



	CMrVIA [K6P], CMrVIA [K6P] amidated
	2ih7
	VCCGYPLCHPC



	CMrVIA, CMrVIA amidated
	2b5p
	VCCGYKLCHPC



	Cyclic MrIA
	2j15
	NGVCCGYKLCHPCAG



	RgIA [P6V]
	2juq
	GCCSDVRCRYRCR



	RgIA [D5E]
	2jur
	GCCSEPRCRYRCR



	RgIA [Y10W]
	2jus
	GCCSDPRCRWRCR



	RgIA
	2jut
	GCCSDPRCRYRCR



	Pc16a
	2ler
	SCSCKRNFLCC



	Midi
	2lu6
	CNCSRWARDHSRCC



	TxIB
	2lz5
	GCCSDPPCRNKHPDLC



	Li1.12, TxID
	2m3i
	GCCSHPVCSAMSPIC



	Ar1248
	2m62
	GVCCGVSFCYPC



	Lo1a
	2md6
	EGCCSNPACRTNHPEVCD



	LvIA
	5xgl
	GCCSHPACNVDHPEIC



	Exendin-4/conotoxin chimera (Ex-4[1-27]/pl14a)
	2naw
	HGEGTFTSDLSKQMEEEAVRC-FIECLKGIGHKYPFCHCR



	Bt1.8
	2nay
	GCCSNPACILNNPNQC



	TXIA(A10L)
	2uz6
	GCCSRPPCILNNPDLC



	CnVA
	3zkt
	ECCHRQLLCCLRFV



	Cyclic Vc1.1
	4ttl
	GCCSDPRCNYDHPEICGGAAGG



	GIC
	1ul2
	GCCSHPACAGNNQHIC



	PeIA, Bt1.4, PeIA[P6O], PeIA[P13O]
	5jmeF
	GCCSHPACSVNHPELC



	Pn10.1
	5t6v
	STCCGYRMCVPC



	LsIA, LsIA#
	5t90F
	SGCCSNPACRVNNPNIC



	VilXIVA
	6efe
	GGLGRCIYNCMNSGGGLSFIQCKTMCY
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Table A2. List of conotoxins with corresponding PDB structure IDS [55] comprising the 6C library. Name or names of sequences are taken from the Conoserver database [40]. Multiple names for the same sequence indicate the same sequence is produced by different species or has different post-translational modifications.
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	Name(s)
	PDB ID
	Sequence





	conotoxin-GS
	1ag7
	ACSGRGSRCPPQCCMGLRCGRGNPQKCIGAHEDV



	PIIIE, PIIIE [K9S], PIIIE [S17Y,S18N,S20L]
	1jlo
	HPPCCLYGKCRRYPGCSSASCCQR



	MVIIC, S6.6
	1omn
	CKGKGAPCRKTMYDCCSGSCGRRGKC



	TVIIA
	1eyo
	SCSGRDSRCPPVCCMGLMCSRGKCVSIYGE



	TxVII
	1f3k
	CKQADEPCDVFSLDCCTGICLGVCMW



	TxVIA
	1fu3
	WCKQSGEMCNLLDQNCCDGYCIVLVCT



	EVIA
	1g1z
	DDCIKPYGFCSLPILKNGLCCSGACVGVCADL



	GIIIB
	1gib
	RDCCTPPRKCKDRRCKPMKCCA



	GVIA
	1ttl
	CKSPGSSCSPTSYNCCRSCNPYTKRCY



	PIVA
	1p1p
	GCCGSYPNAACHPCSCKDRPSYCGQ



	EIVA
	1pqr
	GCCGPYPNAACHPCGCKVGRPPYCDRPSGG



	PIIIA
	1r9i
	QRLCCGFPKSCRSRQCKPHRCC



	MVIIA[R10K]
	1tt3
	CKGKGAKCSKLMYDCCTGSCRSGKC



	Am2766
	1yz2
	CKQAGESCDIFSQNCCVGTCAFICIE



	MrIIIE
	2efz
	VCCPFGGCHELCYCCD



	FVIA
	2km9
	CKGTGKSCSRIAYNCCTGSCRSGKC



	Im23a, Mr23a
	2lmz
	IPYCGQTGAECYSWCIKQDLSKDWCCDFVKDIRMNPPADKCP



	BuIIIB
	2lo9
	VGERCCKNGKRGCGRWCRDHSRCC



	KIIIA, KIIA [W8dTrp]
	2lxg
	CCNCSSKWCRDHSRCC



	Ar1446
	2m61
	CCRLACGLGCHPCC



	cGm9a
	2mso
	SCNNSCQSHSDCASHCICTFRGCGAVNGLP



	cBru9a
	2msq
	SCGGSCFGGCWPGCSCYARTCFRDGLP



	Mo3964
	2mw7
	DGECGDKDEPCCGRPDGAKVCNDPWVCILTSSRCENP



	MfVIA
	2n7f
	RDCQEKWEYCIVPILGFVYCCPGLICGPFVCV



	cyclic PVIIA
	2n8e
	CRIPNQKCFQHLDDCCSRKCNRFNKCVLPETGGG



	conotoxin-muOxi-GVIIJ
	2n8h
	GWCGDPGATCGKLRLYCCSGFCDSYTKTCKDKSSA



	CnIIIC
	2yen
	QGCCNGPKGCSSKWCRDHARCC



	CcTx
	4b1qP
	APWLVPSQITTCCGYNPGTMCPSCMCTNTC



	Reg12i
	6bx9
	CCTALCSRYHCLPCC



	MoVIB
	6ceg
	CKPPGSKCSPSMRDCCTTCISYTKRCRKYY
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Table A3. List of conotoxins with corresponding PDB structure IDS [55] comprising the 8C library. Name or names of sequences are taken from the Conoserver database [40]. Multiple names for the same sequence indicate the same sequence is produced by different species or has different post-translational modifications.






Table A3. List of conotoxins with corresponding PDB structure IDS [55] comprising the 8C library. Name or names of sequences are taken from the Conoserver database [40]. Multiple names for the same sequence indicate the same sequence is produced by different species or has different post-translational modifications.





	Name(s)
	PDB ID
	Sequence





	G11.1
	6cei
	CAVTHEKCSDDYDCCGSLCCVGICAKTIAPCK



	RXIA, RXIA[Btr33>W]
	2p4l
	GPSFCKADEKPCEYHADCCNCCLSGICAPSTNWILPGCSTSSFFKI
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Figure A3. Distribution of root-mean-square deviation (RMSD) for homology models compared with their corresponding experimental structures, after refinement involving the rejection of structural alignment outliers. Each experimental structure present in the library was modeled by selecting from all other templates in the library. The top three models for each structure based on combined MODELLER DOPE and PROCHECK G-FACTOR scores are considered here. (A) Distribution mean = 1.55 Å, standard deviation = 0.92 Å. (B) Distribution mean = 1.17 Å, standard deviation = 0.67 Å. 
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Figure 1. Schematic of a simple graph-based algorithm for constructing a library of structural templates for homology modeling. For each connected component in the graph of sequences, where an edge represents the ability to homology model one sequence based on another, we employ a greedy approach to find a good library of template structures that cover as much of the sequence space as possible. For computation of the sequence set   {  L proj  }   of interest for experimental characterization, we skip consideration of the structures and run the algorithm on the subset with structure-associated sequences removed. 
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Figure 2. Graph of conotoxins containing (A) four cysteines, (B) six cysteines, (C) eight cysteines, and (D) ten cysteines where nodes are sequences and edges exist between sequences with pairwise alignments that have high enough length and percent identity to fall above the Rost curve with   n = 5 %   (Equation (1)). We show the set   {  L ex  }   of sequences added to the template libraries in orange, the set of sequences corresponding to unselected structures in black, the set of covered sequences   { C  (  L ex  )  }   that we homology model based on the templates included in the library in blue, and the set of projected sequences   {  L proj  }   in green in which structures are in need of characterization in order that the rest of the sequences   { C  (  L proj  )  }   in magenta may be homology modeled based on some template. Nodes belonging to both   { C  (  L ex  )  }   and   {  L proj  }   are displayed as half green, half blue. The sizes of the nodes correspond to their degree; that is, the number of other sequences that they can be modeled based on or used to model. Node locations and edge lengths were chosen for ease of visualization of separate connected components. Visualization of the graphs was produced with Gephi 0.9.2 [39]. 
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Figure 3. Quality of graph-based template library selection criteria. Comparison of root-mean-square deviation (RMSD) distributions from experimental structures for (A,B) structures within the libraries, with each structure modeled by selecting from all other templates within the given library (“in-library” assessment), and (C,D) structures outside the libraries modeled by selecting from all templates within the given library (“out-of-library” assessment). For each homology modeled structure, we choose the best fit to the experiment. The distributions produced by the simple 25% cutoff libraries are shown in blue; the distributions produced by using the graph-based algorithm are shown in orange. Distributionis are transparent for ease of viewing. 
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Figure 4. Schematic of procedure for producing homology modeled structures from library templates for conotoxin sequences with unknown structure lying in the set   { C   L ex   }  . We employ a BLAST alignment procedure and specifically force the cysteines to align to further refine the templates that were originally chosen for inclusion using the graph-based Rost criterion. Graph inset of the eight cysteine graph is an example. The inset consisting of an example alignment input figure was created using the alignment obtained from BLAST [42] and visualized with Aliview [43]. 
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Figure 5. Quality of modeling criteria. (A,B) Distribution of root-mean-square deviation (RMSD) for homology models compared with their corresponding experimental structures, without prior removal of any structural alignment outliers. Each experimental structure present in the library was modeled by selecting from all other templates in the library. The top three models for each structure based on combined MODELLER DOPE and PROCHECK G-FACTOR scores are considered here. (A) Distribution mean = 2.00 Å, standard deviation = 0.97 Å. (B) Distribution mean = 2.25 Å, standard deviation = 1.20 Å. (C,D) Distribution of fraction of native contacts present in each of the homology modeled structures, with respect to the experimental structure. Each experimental structure present in the library was modeled by selecting from all other templates in the library. The top three models for each structure based on combined MODELLER DOPE and PROCHECK G-FACTOR scores are considered here. (C) Distribution mean = 0.797, standard deviation = 0.108. (D) Distribution mean = 0.805, standard deviation = 0.097. 
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Table 1. List of sequences containing four cysteines in order of interest for experimental characterization, based on the degree (sequence coverage) in alignment graphs (cf. Figure 2). Name or names of sequences are taken from the Conoserver database [40]. Multiple names for the same sequence indicate the same sequence is produced by different species or has different post-translational modifications. Node degree corresponds to the number of sequences with pairwise alignments that are long enough and have high enough percent identity to be homology modeled with the given sequence as a template. Cysteines are highlighted in red to guide the eye. We note in the fourth column the pharmacological family, although it is unknown for the majority of sequences, as it requires a separate experimental determination in most cases.
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Sequence

	
Name(s)

	
Degree

	
Pharm. Fam.






	
AAKVKYSNTPEECCSNPPCFATHSEICG

	
Li1.28

	
10

	
Unknown




	
GCCSDPRCAYDHPEIC

	
Vc1.1[N9A]

	
10

	
alpha




	
GCCSNPVCHLEHSNAC

	
MII [L15A]

	
8

	
Unknown




	
AALEDADMKTEKGFLSSIVGNLGTVGNLV–




	
GSVCCQITNSCCPED

	
Pu5.7

	
7

	
Unknown




	
RAALEDADMKTEKGVLNAIFSNLGDLGNL–




	
VSSVCCKATTSCCPED

	
Pu5.9

	
6

	
Unknown




	
AGLTDADLKTEKGFLSGLLNVAGSVCCKVDTSCCSNQ

	
Lt5g

	
6

	
Unknown




	
GCCSNPVCALEHSNLC

	
MII [H9A]

	
6

	
Unknown




	
VPAEQMMEELCPDMCNRGEGEIICTCVLRRHVVSPSIR

	
Lt14.4

	
5

	
Unknown




	
TNEGPGRDPAPCCQHPIETCC

	
Cal5b

	
5

	
Unknown




	
RPECCTHPACHVSNPELCS

	
Mr1.8

	
4

	
Unknown




	
GCCSRPPCIANNPDLC

	
TxIA

	
4

	
alpha




	
SPGSTICKMACRTGNGHKYPFCNCR

	
Fe14.1

	
4

	
Unknown




	
GCCSLPPCALNNPDYC

	
PnIA [A10L,sTy15Y]

	
4

	
Unknown




	
YAAVVNRASALMAQAVLRDCCSNPPCAHNIHCA

	
Ec1.7

	
4

	
Unknown




	
NGRCCHPACGKHFSC

	
Ac1.1b, CnIH, R1.1, Bt1.6, Mn1.2, C4.3

	
4

	
Unknown




	
NGRCCHPACGKYFSC

	
Mn1.5

	
3

	
Unknown




	
GCCSRAACAGIHQELC

	
LtIA [A4S]

	
3

	
Unknown




	
GCCSNPVCHLAHSNAC

	
MII [E11A,L15A]

	
3

	
Unknown




	
GCCSHPACSGNNREYCRES

	
O1.3

	
3

	
Unknown




	
GGCCSHPVCYFNNPQMCR

	
Cr1.6

	
3

	
Unknown




	
GGGCCSHPACAANNQDYC

	
Gly-AnIB

	
3

	
Unknown




	
DGCCSSPSCSVNNPDICGG

	
Eb1.1, Qc1.18

	
3

	
Unknown




	
LDPCCREPPCASTHTDICT

	
Li1.4, Sa1.12

	
3

	
Unknown




	
NECCDNPPCKSSNPDLCDWRS

	
Qc1.1b, LiC22

	
3

	
Unknown




	
DECCSNPSCAQTHPEVC

	
Li1.24, Sa1.6

	
3

	
Unknown




	
GCCSHPACAGNNPHICS

	
Li1.11

	
3

	
Unknown




	
SFRFIPGGIKEIACHRYCAKGIASAFCNCPDKRDVVSPRI

	
G14.1

	
3

	
Unknown




	
VPPEPILEIICPGMCDEGVGKEPFCHCTKKRDAVSSRI

	
Vc14.4

	
3

	
Unknown




	
GCCSYPPCNVSYPEICG

	
Su1.6

	
2

	
Unknown




	
AANDKASVQIALTVQECCADSACSLTNPLIC

	
Dd1.7, Li1.21

	
2

	
Unknown




	
TAFGLRLCCKRHHGCHPCGRT

	
Cal1b

	
2

	
Unknown




	
AANAKLFDVGQSCCSAPLCALLYMVIC

	
Sa1.7

	
2

	
Unknown




	
TVRDACCSDPRCSGKHQDLC

	
Li1.16, Sa1.3

	
2

	
Unknown




	
NLQILCCKHTPACCT

	
S5.3, Eb5.5

	
2

	
Unknown




	
ECPPWCPTSHCNAGTC

	
Cl14c

	
2

	
Unknown




	
GIWCDPPCPKGETCRGGECSDEFNSDV

	
Cal14.1a

	
2

	
Unknown




	
GMWDECCDDPPCRQNNMEHCPAS

	
Lp1.7

	
2

	
Unknown




	
GRCCHPACGGKYFKC

	
CnIJ

	
2

	
Unknown




	
IALIATRECCANPQCWSKNC

	
Co1.3

	
2

	
Unknown




	
GCCSHPVCHARHPELC

	
PeIA[A7V, S9H,V10A,N11R]

	
2

	
Unknown




	
DGCCSDPACSVNHPDICGG

	
Qc1.7

	
2

	
Unknown




	
PPGCCNNPACVKHRCG

	
Bu1.2

	
2

	
Unknown




	
LINTRCCPGQPCCRM

	
Vc5.11

	
2

	
Unknown




	
NAAANDKASDVIPLALQGCCSNPVCHVDHPELCL

	
Cn1.6

	
2

	
Unknown




	
GCCSHPVCHARHPALC

	
PeIA[A7V, S9H,V10A,N11R,E14A]

	
2

	
Unknown




	
WDVNDCIHFCLIGVVGRSYTECHTMCT

	
FlfXIVB

	
2

	
Unknown




	
NGRCCHPACAKYFSC

	
Mn1.4b

	
2

	
Unknown




	
NGRCCHPACGGKYVKC

	
Ac1.2

	
2

	
Unknown




	
GCCSYPPCFATNSDYC

	
AuIA

	
2

	
alpha




	
DECCAIPLCAKIFPGRCP

	
Pc1b

	
1

	
Unknown




	
AANLMALLQESLCPPGCYPSCTNCRYMFP

	
Pu14.6

	
1

	
Unknown




	
GCCAIRECRLQNAAYCGGIY

	
Ca1.2

	
1

	
Unknown




	
FLTQQSPRDFAKSVMQLLHYNWIDCCNYGVSDCCI

	
Lv5.7

	
1

	
Unknown




	
APAELILETICPHMCGTGIGEPFCNCRNKRDVVSSRII

	
Bt14.3

	
1

	
Unknown




	
EIVNIIDSISDVAKQICCEITVQCCVLDEE

	
Vn5.5

	
1

	
Unknown




	
ECCEDGWCCTAAPLTAP

	
Vc5.7

	
1

	
Unknown




	
CCPGWELCCEWDDWW

	
Mr5.7

	
1

	
Unknown




	
GCCSFPACRKYRPEMCG

	
Su1.2

	
1

	
Unknown




	
DDCCPDPACRQNHPELCST

	
PuSG1.1

	
1

	
Unknown




	
APNVKDSKASGSCCDNPSCAVNNSHC

	
Li1.32

	
1

	
Unknown




	
YHECCKNPPCRNKHPDLC

	
Sa1.16

	
1

	
Unknown




	
GCCSNPACAGSNAHIC

	
Li1.14

	
1

	
Unknown




	
GCCVYPPCAVNHPDICRG

	
Qc1.9

	
1

	
Unknown




	
VMQLRYYNWIDCCFDGDCCN

	
Qc5.3

	
1

	
Unknown




	
TGCCEYPYCAENNPELCG

	
Co1.4

	
1

	
Unknown




	
SVEGVISTIKDFAVKVCCSVSLKFCCPTA

	
Ts5.5

	
1

	
Unknown




	
SCCSDSDCNANHPDMCS

	
Leo-A1

	
1

	
Unknown




	
SCCPQEFLCCLYLVK

	
Lp5.1

	
1

	
Unknown




	
RCCHPACGKNYSC

	
MI[del1G]

	
1

	
Unknown




	
QTPGCCWNPACVKNRC

	
EIIA

	
1

	
Unknown




	
QGCCSYPACAVSNPDICGG

	
Qc1.12

	
1

	
Unknown




	
PECCSDPRCNSTHPELCG

	
Ai1.2

	
1

	
Unknown




	
NIQIICCKHTPKCCT

	
Tx5.5

	
1

	
Unknown




	
NAWLTPEECCAAPACREMILEFCLAGEAFAAAL–




	
DGFRRLPYR

	
Pu1.5

	
1

	
Unknown




	
KVYCCLGVRDDWCCAGQIQI

	
Lt5i

	
1

	
Unknown




	
IINWCCLIFYQCCL

	
Sr5.7

	
1

	
Unknown




	
YCCHPACGKNFDC

	
SIA

	
1

	
alpha




	
GILELAKTVCCSATGISICC

	
Tx5.13, Tr5.3, Vr5.1

	
1

	
Unknown




	
GGCCSRPPCILKHPEIC

	
Qc1.13

	
1

	
Unknown




	
GCPADCPNTCDSSNKCSPGFP

	
Cal14a

	
1

	
Unknown




	
GIRGNCCMFHTCPIDYSRFYCP

	
Vt1.24

	
1

	
Unknown
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Table 2. List of sequences containing six cysteines in order of interest for experimental characterization, based on the degree (sequence coverage) in alignment graphs (cf. Figure 2). Name or names of sequences are taken from the Conoserver database [40]. Multiple names for the same sequence indicate the same sequence is produced by different species or has different post-translational modifications. Node degree corresponds to the number of sequences with pairwise alignments that are long enough and have a high enough percent identity to be homology modeled with the given sequence as a template. Cysteines are highlighted in red to guide the eye. We note in the fourth column the pharmacological family, although it is unknown for the majority of sequences, as it requires a separate experimental determination in most cases.






Table 2. List of sequences containing six cysteines in order of interest for experimental characterization, based on the degree (sequence coverage) in alignment graphs (cf. Figure 2). Name or names of sequences are taken from the Conoserver database [40]. Multiple names for the same sequence indicate the same sequence is produced by different species or has different post-translational modifications. Node degree corresponds to the number of sequences with pairwise alignments that are long enough and have a high enough percent identity to be homology modeled with the given sequence as a template. Cysteines are highlighted in red to guide the eye. We note in the fourth column the pharmacological family, although it is unknown for the majority of sequences, as it requires a separate experimental determination in most cases.





	
Sequence

	
Name(s)

	
Degree

	
Pharm. Fam.






	
LPPCCSLNLRLCPAPACKYKPCCKS

	
RIIIJ  Δ 6-11

	
29

	
Unknown




	
QKGLVPSVITTCCGYDPGTMCPPCRCTNSCPKKPKKP

	
S4.4

	
28

	
Unknown




	
QPWLVPSKITNCCGYNTMEMCPTCMCTYSCRPKKKKP

	
Mn4.2

	
27

	
Unknown




	
DDECEPPGDFCGFFKIGPPCCSGWCFLWCA

	
MaIr137, G6.2

	
20

	
Unknown




	
DCVAGGHFCGFPKIGGPCCSGWCFFVCA

	
Vn6.8

	
20

	
Unknown




	
VCREKGQGCTNTALCCPGLECEGQSQGGLCVDN

	
Mi010

	
20

	
Unknown




	
ECREQSQGCTNTSPPCCSGLRCSGQSQGGVCISN

	
CaHr91

	
17

	
Unknown




	
TVDEACNEYCEERNKNCCGRTDGEPVCAQACL

	
Vi6.7

	
15

	
Unknown




	
ECTRSGGACYSHNQCCDDFCSTATSTCV

	
Eb6.22

	
15

	
Unknown




	
GCTPPGGACGGHAHCCSQSCNILASTCNA

	
ABVIC

	
15

	
Unknown




	
TVGEECNEYCEQRNKNCCGKTNGEPVCAQACL

	
Tr7.4

	
15

	
Unknown




	
TATEECEEYCEDEEKTCCGEEDGEPVCARFCL

	
Ar6.24

	
14

	
Unknown




	
EACYNAGTFCGIKPGLCCSAICLSFVCISFDLIDVFSSP

	
M6.2

	
13

	
Unknown




	
TTEECHEYCEDQNKNCCGLTDGEPRCAGMCL

	
Tr7.3

	
13

	
Unknown




	
MTMGCTHPGGACGGHYHCCSQSCNTAANSCN

	
MIL3-b (partial)

	
12

	
Unknown




	
VPEECEESCEEEEKTCCGLENGQPFCSRICW

	
Ar6.28

	
12

	
Unknown




	
DECYPPGTFCGIKPGLCCSERCFPFVCLSLEF

	
Ac6.2

	
12

	
Unknown




	
CLDAGEVCDIFFPTCCGYCILLFCA

	
TxO1

	
11

	
omega




	
DCTPPDGACGFHYHCCSKFCITISSTCN

	
MIL2-a

	
11

	
Unknown




	
CIDGGEICDIFFPNCCSGWCIILVCA

	
Mr6.8

	
11

	
Unknown




	
TTAESWWEGECLGWSNGCTHPSDCCSNYCKGIYCDL

	
Mr6.16

	
11

	
Unknown




	
GCTHPGGACGGHHHCCSLFCNTAANACN

	
MIL3-f

	
11

	
Unknown




	
CLGSGETCWLDSSCCSFSCTNNVCF

	
Vn6.15

	
11

	
Unknown




	
CLDAGEMCDLFNSKCCSGWCIILFCA

	
Mr6.1

	
10

	
Unknown




	
SCGEEGEGCYTRPCCPGLKCIGTAHGGLCREE

	
Pu6.7

	
10

	
Unknown




	
GCLEVDYFCGIPFVNNGLCCSGNCVFVCTPQ

	
Pn6.7

	
10

	
Unknown




	
SIAGRTTTEECDEYCEDLNKNCCGLSNGEPVCATACL

	
Ts6.7

	
10

	
Unknown




	
DGCYNAGTFCGIRPGLCCSEFCFLWCITFVDS

	
MVIA, Cn6.1

	
10

	
delta




	
NCCNGGCSSKWCRDHARCC

	
SIIIA[del1]

	
9

	
Unknown




	
KTTAESWWEGECYGWWTSCSSPEQC–




	
CSLNCENIYCRAW

	
TsMEKL-03

	
8

	
Unknown




	
RHGCCKGPKGCSSRECRPQHCC

	
TIIIA

	
8

	
mu




	
DCGEQGQGCYTRPCCPGLHCAAGATGGGSCQP

	
Conotoxin-1

	
8

	
Unknown




	
CLAGSAPCEFHRGYTCCSGHCLIWVCA

	
Cal6.1d

	
8

	
Unknown




	
KTTAESWWEGECRTWYAPCNFPSQC–




	
CSEVCSSKTGRCLTW

	
Vn6.5

	
7

	
Unknown




	
CRPPGMVCGFPKPGPYCCSGWCFAVCLPV

	
MaIr193

	
7

	
Unknown




	
CTPGGEACDATTNCCFLTCNLATNKCRSPNFP

	
ABVIL

	
7

	
Unknown




	
WWEGECRGWSNGCTTNSDCCSNNCDGTFCKLW

	
Vn6.3

	
7

	
Unknown




	
WWWGGCTWWFGRCSTDSECCSNSCDQTYC–




	
ELYRFPSRY

	
Vc6.26

	
7

	
Unknown




	
YECYSTGTFCGINGGLCCSNLCLFFVCLTFS

	
CnVIA, St6.2

	
7

	
delta




	
CCSRDCWVCIPCCPNGSA

	
Lv3-IP01

	
7

	
Unknown




	
VCVDGGTFCGFPKIGGPCCSGWCIFVCL

	
Ar6.2

	
6

	
Unknown




	
ECIEGSEPCEVFRPYTCCSGHCIIFVCA

	
Cal6.1h

	
6

	
Unknown




	
CCSQDCWVCIPCCPN

	
Eu3.2

	
6

	
Unknown




	
CCSQDCSVCIPCCPN

	
Co3-IP02, Ts3-IP07, Vr3-IP08, Rt3-IP03, Ca3-IP02, Ec3-IP03

	
6

	
Unknown




	
CYDSGTSCNTGNQCCSGWCIFVSCL

	
Tx6.3

	
6

	
Unknown




	
CTVDSDFCDPDNHDCCSGRCIDEGGSGVCAIVPVLN

	
Ar6.19

	
6

	
Unknown




	
FPCNPGGCACRPLDSYSYTCQSPSSSTANCEGNECVS–




	
EADW

	
Cl9.4

	
6

	
Unknown




	
GPPCCLYGSCRPFPGCSSASCCRK

	
PIIIF [Y17S,N18S,L20S]

	
5

	
Unknown




	
DCQEKWDYCPVPFLGSRYCCDGFICPSFFCA

	
Da6.6, Tx6.6

	
5

	
Unknown




	
CCGVPNAACHPCVCNNTC

	
OIVA [K15N]

	
5

	
Unknown




	
CTPRNGYCYYRYFCCSRACNLTIKRCL

	
Ml6.2

	
5

	
Unknown




	
CCSQDCRVCIPCCPN

	
Ts3.1

	
5

	
Unknown




	
QCTPVGGSCSRHYHCCSLYCNKNIGQCLATSYP

	
Ar6.17

	
5

	
Unknown




	
CLNDGDDCDTGDDCCSGLCIFDEYFSYCDDSDP–




	
YYDDYDEYYY

	
Mi029

	
5

	
Unknown




	
SCGNLHESCSAHRCCPGLKCIGTAHGGLCRE

	
Pu6.15 (partial)

	
5

	
Unknown




	
VKPCSEEGQLCDPLSQNCCRGWHCVLVSCV

	
Da6.2

	
5

	
Unknown




	
FAVIFTCTPPGSHCTGHSDCCSDFCSTMSDVCQ

	
Co6.1

	
4

	
Unknown




	
WWDGECRLWSNGCRKHKECCSNHCKGIYCDIW

	
VeG52

	
4

	
Unknown




	
CTPCGPDLCCEPGTTCDTVLHHTRFGEPSCSY

	
Fla6.16

	
4

	
Unknown




	
CCGKPNAACHPCVCNGSCS

	
G4.1

	
4

	
Unknown




	
MGYILPALSQQTCCVRPWCDGACDCCVDS

	
Co3-D01

	
4

	
Unknown




	
MKLMLSALRQQECCKPSTCDGGCYHCC

	
Lv3-YH04

	
4

	
Unknown




	
SCGNLHESCSAHRCCPGLMCFTLPTPICIW

	
Pu6.17

	
4

	
Unknown




	
CIPQFDPCDMVRHTCCKGLCVLIACSKTA

	
Pn6.3

	
4

	
Unknown




	
STSCMEAGSYCGSTTRICCGYCAYFGKKCIDYPSN

	
SO5

	
4

	
omega




	
GGCTPCGPNLCCSEEFRCGTSTHHQTYGEPACLSY

	
Ca6.2

	
4

	
Unknown




	
CLGFGEACLMLYSDCCSYCVALVCL

	
Ep6.1

	
4

	
Unknown




	
CIEQFDPCEMIRHTCCVGVCFLMACI

	
King-Kong 1

	
4

	
Unknown




	
TCSPAGEVCTSKSPCCTGFLCTHIGGMCHH

	
LvVIA 2

	
4

	
Unknown




	
CTPSGGACYVASTCCSNACNLNSNKCV

	
M1

	
4

	
Unknown




	
CCGVPNAACHPCVCTGKC

	
PeIVA

	
4

	
alpha




	
ATDCIEAGNYCGPTVMKICCGFCSPFSKICMNYPQN

	
Ac6.5

	
4

	
Unknown




	
GCTPRNGACGYHSHCCSNFCHTWANVCL

	
LvVID

	
3

	
Unknown




	
DVCELPFEEGPCFAAIRVYAYNAKTGDCEQLTY–




	
GGCEGNGNRFATLEDCDNACARY

	
Cal9.1d

	
3

	
Unknown




	
KFCCDSNWCHISDCECCY

	
Tx3h

	
3

	
Unknown




	
GCGYLGEPCCVAPKRAYCHGDLECNSVAMCVN

	
Mr2

	
3

	
Unknown




	
ECTPPEGACNHPSHCCEDFCDRGRNRCM

	
At6.7

	
3

	
Unknown




	
WWEGDCTDWLGSCSSPSECCYDNCETYCTLW

	
Lt7b

	
3

	
Unknown




	
CRSSGSPCGVTSICCGRCYRGKCT

	
SVIA

	
3

	
omega




	
CKAESEACNIITQNCCDGKCLFFCIQIPE

	
Pn6.5

	
3

	
Unknown




	
CKSPGTPCSRTMRDCCTSCLSYSKKCR

	
G6.12

	
3

	
Unknown




	
CTPPSGYCYHPYYCCSRACNLTRKRCL

	
At6.2

	
3

	
Unknown




	
PCKTPGRKCFPHQKDCCGRACIITICP

	
P2a

	
3

	
Unknown




	
CVPYEGPCNWLTQNCCDELCVFFCL

	
Gm6.3

	
3

	
Unknown




	
SKQCCHLPACRFGCTPCCW

	
Mr3.4

	
3

	
Unknown




	
CCKYGWTCWLGCSPCGC

	
PnIVB

	
2

	
mu




	
EIILHALGTRCCSWDVCDHPSCTCC

	
Vr3-T05

	
2

	
Unknown




	
CNNRGGGCSQHPHCCSGTCNKTFGVCL

	
VxVIA, MgJ42

	
2

	
Unknown




	
CAGIGSFCGLPGLVDCCSGRCFIVCLP

	
Bt6.4, ErVIA

	
2

	
Unknown




	
CCHWNWCDHLCSCCGS

	
Mr3.8

	
2

	
Unknown




	
CCQAACSPWLCLPCC

	
Eu3.3, Bt3.3

	
2

	
Unknown




	
CIPFLHPCTFFFPDCCNSICAQFICL

	
VcVIC

	
2

	
Unknown




	
CTQSSEFCDVIDPDCCSGVCMAFFCI

	
Vc6.40

	
2

	
Unknown




	
CTVNGVVCDPGNHNCCSGSCLDDEDTPVCGIHV–




	
EIQHVHMLS

	
Pu6.23

	
2

	
Unknown




	
CCDDSECDYSCWPCCMF

	
Gm3-WP04

	
2

	
Unknown




	
DAINVAPGTSITRTETDQECIDTCKQEDKKCCG–




	
RSNGVPTCAKICL

	
Di6.11

	
2

	
Unknown




	
CLAPQRWCSMHDDSLHDDNCCKTCIILWCS

	
Pu6.20

	
2

	
Unknown




	
CIVGTPCHVCRSQSKSCNGWLGKQRYCGYC

	
Im9.11

	
2

	
Unknown




	
CCDRPCSIGCVPCCLP

	
Ca3-VP01, Cp3-VP05

	
2

	
Unknown




	
YWTECCGRIGPHCSRCICPGVVCPKR

	
Bu25

	
2

	
Unknown




	
WFGHEECTYWLGPCEVDDTCCSASCESKFCGLW

	
RVIIA

	
2

	
Unknown




	
QCEDVWMPCTSSHWECCSLDCEMYCTQI

	
Mr6.29

	
2

	
Unknown




	
QCPYCVVHCCPPSYCQASGCRPP

	
Vc7.4

	
2

	
Unknown




	
QGCCNVPNGCSGRWCRDHAQCC

	
MIIIA

	
2

	
mu




	
TCSSSSDCPTGQECCPDKLDEPEGSCANECIIT

	
Pu6.37

	
2

	
Unknown




	
SCSDDWQYCEYPHDCCSWSCDVVCS

	
Vc6.12

	
2

	
Unknown




	
TCNTPTRYCTLHRHCCSLHCHKTIHACA

	
Pu6.30

	
2

	
Unknown




	
TTSTRKCKGPLVFCPENHECCSKFCDFIDIPLRYCSTP

	
Br7.9

	
2

	
Unknown




	
MTKHCTPPEVGCLFAYECCSKICWRPRCYPS

	
ABVIE

	
2

	
Unknown




	
VCCPFGGCHELCLCCD

	
MrIIIF

	
2

	
Unknown




	
RCCISPACHDDCICCIT

	
S3-I05

	
2

	
Unknown




	
RCCISPACHEECYCCQ

	
S3-Y01

	
2

	
Unknown




	
VSIWFCASRTCSTPADCNPCTCESGVCVDWL

	
Lt9a variant 2

	
2

	
Unknown




	
QCLPPLSLCTMDDDECCDDCILFLCLVTS

	
Ar6.5

	
2

	
Unknown




	
STDDCSTAGCKNVPCCEGLVCTGPSQGPVCQPLA

	
Vn6.18

	
2

	
Unknown




	
GCCDPQWCDAGCYDGCC

	
Qc3-YDG01

	
2

	
Unknown




	
GCWLCLGPNACCRGSVCHDYCPS

	
Cal6.4c

	
2

	
Unknown




	
GCSDFGSDCVPATHNCCSGECFGFEDFGLCT

	
Pu6.25

	
2

	
Unknown




	
STDCNGVPCQFGCCVTINGNDECRELDC

	
Mr6.23

	
2

	
Unknown




	
RCCTWQECDGNCHCCQ

	
Cp3-H02

	
2

	
Unknown




	
RCCVHPACHDDCICCIT

	
Bt3-I03, Vx3-I03

	
2

	
Unknown




	
WWGENDCSWTGPCTVNAECCLGVCDETC

	
Tx7.31

	
2

	
Unknown




	
GCCHPSTCHVRKGCSRCCS

	
Tx3g, Vt3-SR01

	
2

	
Unknown




	
SSDEECVGLSGYCGPWNNPPCCSWWECEVYCAVPGPSF

	
Mi034

	
2

	
Unknown




	
SCCNAGFCRFGCTPCCY

	
Tx3e, Vt3-TP01, Ec3-TP01-2

	
2

	
Unknown




	
TCDPYYCNDGKVCCPEYPTCGDSTGKLICVRVTD

	
Im6.7

	
1

	
Unknown




	
TCLEIGEFCGKPMMVGSLCCSPGWCFFICVG

	
Pc6b

	
1

	
Unknown




	
CGGYSTYCEVDSECCSDNCVRSYCTLF

	
TxVIIA

	
1

	
gamma




	
GCCCNPACGPNYGCGTSCSRPSEP

	
S1.7

	
1

	
Unknown




	
TRGCKSKGSFCWNGIECCGGNCFFACVY

	
Cl6.6b

	
1

	
Unknown




	
CFESWVACESPKRCCSHVCLFVCT

	
Pn6.6

	
1

	
Unknown




	
WREGSCTSWLATCTDASQCCTGVCYKRAYCALWE

	
TxMEKL-022/TxMEKL-021

	
1

	
Unknown




	
YCSDSGGWCGLDPELCCNSSCFVLC

	
Cl6.8

	
1

	
Unknown




	
YCSDDWQPCSHFYDCCKWSCNNGYCP

	
Vc6.25

	
1

	
Unknown




	
CCDDSECSYSCWPCCY

	
TxMMSK-02, Cp3-WP03, Vr3-WP04, S3-WP01, Rt3-WP01

	
1

	
Unknown




	
WRVDSECISFWGSCTVDADCCFNSCDETYGYC

	
Tx7.30

	
1

	
Unknown




	
CCDWPCTIGCVPCCLP

	
TsMMSK-021

	
1

	
Unknown




	
CCFWPMCRGCDCCYL

	
Lv3-D02

	
1

	
Unknown




	
CCGPTACLAGCKPCCY

	
Tx3-KP03

	
1

	
Unknown




	
CESYGKPCGIYNDCCNACDPAKKTCT

	
Conotoxin-3

	
1

	
Unknown




	
VQPSECKLPAAKGPCKGKYRKVYFNNFKKQCRM–




	
FTYGGCGGNGNKFRNAKECYHKCAYGV

	
conkunitzin-G1

	
1

	
Unknown




	
VCCSFGSCDSLCQCCD

	
Mr3.16

	
1

	
Unknown




	
CCLWPECGGCVCCYL

	
Lv3-V02

	
1

	
Unknown




	
TRGCKTKGTWCWASRECCLKDCLFVCVY

	
Cl6.10

	
1

	
Unknown




	
CCSVSICQSPPVCECCA

	
S3-E03

	
1

	
Unknown




	
CCVVCNAGCSGNCCS

	
Ts3-SGN01

	
1

	
Unknown




	
SCSGSGYGCKNTPCCAGLTCRGPRQGPICL

	
Vn6.16

	
1

	
Unknown




	
RCCIWPECGSCVCCL

	
Cp3-V08

	
1

	
Unknown




	
SCGNLHEMCNYHLPCCRPWRCRASRTGTR–




	
CLNKPRYRPV

	
Pu6.13

	
1

	
Unknown




	
RDCRPVGQYCGIPYEHNWRCCSQLCAIICVS

	
PuIA

	
1

	
omega




	
GCCGSFACRFGCVPCCV

	
MrIIIA

	
1

	
Unknown




	
GCCHLLACRMGCTPCCW

	
Tx3-TP01

	
1

	
Unknown




	
GCCIEPLCYQYDCDCCRYL

	
Cp3-D03

	
1

	
Unknown




	
ECSSPDESCTYHYNCCQLYCNKEENVCLENSPEV

	
LtVIB

	
1

	
Unknown




	
ECRGYNAPCSAGAPCCSWWTCSTQTSRCF

	
Vc6.10

	
1

	
Unknown




	
GCCPIGPCMQSVCSPCCP

	
Vr3-SP01

	
1

	
Unknown




	
GMWGKCKDGLTTCLAPSECCSGNCEQNCKMW

	
TxMEKL-011, LeD51

	
1

	
Unknown




	
GVWSECSDWLAGCSSPSECCSEKCDTFCRLW

	
G6.8

	
1

	
Unknown




	
GWDTPAPCRYCQWNGPQCCVYYCSSCNYEEARE–




	
EGHYVSSHLLERQ

	
Cal6.3a

	
1

	
Unknown




	
DECCEPQWCDGACDCCS

	
LtIIIA

	
1

	
iota




	
KFILHALGQWQCCTMQWCDKACYCCE

	
Vc3.4

	
1

	
Unknown




	
DDCTTYCYGVHCCPPAFKCAASPSCKQT

	
Cal6.5a

	
1

	
Unknown




	
KTCQRRWDFCPGSLVGVITCCGGLICFLFFCV

	
Om6.6

	
1

	
Unknown




	
LCPDYTEPCSHAHECCSWNCYNGHCTG

	
Gla(3)-TxVI

	
1

	
Unknown




	
MQGKISSEQHPMFDPIEGCCTQSCTTCFPCCLI

	
Lt3.6

	
1

	
Unknown




	
DCCSMSACVPPPACECC

	
Mi3-E04

	
1

	
Unknown




	
DCCPLPACPFGCNPCCGWPALLSGPHQVMNNE

	
Mr020

	
1

	
Unknown




	
DCCGVKLEMCHPCLCDNSCKNYGK

	
PIVE

	
1

	
kappa




	
DAMQKSKGSGSCAYISEPCDILPCCPGLKCNEDFVPICL

	
LtVIA

	
1

	
Unknown




	
NPKLSKLTKTCDPPGDSCSRWYNHCCSKLCTSR–




	
NSGPTCSRP

	
LiCr95

	
1

	
Unknown




	
QCADLGEECYTRFCCPGLRCKDLQVPTCLLA

	
Ar6.10

	
1

	
Unknown




	
QCCDSNSCEYPKCLCCN

	
Tx3-L02, Vr3-L01, Vt3-L01, S3-L02

	
1

	
Unknown




	
CVEDGDFCGPGYEECCSGFCLYVCI

	
Pu6.2

	
1

	
Unknown




	
QKCCGKGMTCPRYFRDNFICGCC

	
CnIIIG

	
1

	
Unknown




	
QQCCPPVACNMGCEPCC

	
TxMMSK-04, Vt3-EP01

	
1

	
Unknown




	
RCCGEGASCPVYSRDRLICSCC

	
CnIIIE

	
1

	
Unknown




	
RCCISPACNDTCYCCQD

	
Vr3-Y02, Vt3-Y01, Ts3-Y01

	
1

	
Unknown




	
CPNTGELCDVVEQNCCYTYCFIVVCPI

	
Mr6.2

	
1

	
Unknown




	
RCCTGKKGSCSGRACKNLKCCA

	
SxIIIA

	
1

	
mu




	
APWTVVTATTNCCGITGPGCLPCRCTQTC

	
A4.4

	
1

	
Unknown
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Table 3. List of sequences containing eight cysteines in order of interest for experimental characterization, based on the degree (sequence coverage) in alignment graphs (cf. Figure 2). Name or names of sequences are taken from the Conoserver database [40]. Multiple names for the same sequence indicate the same sequence is produced by different species or has different post-translational modifications. Node degree corresponds to the number of sequences with pairwise alignments that are long enough and have a high enough percent identity to be homology modeled with the given sequence as a template. Cysteines are highlighted in red to guide the eye. We note in the fourth column the pharmacological family, although it is unknown for the majority of sequences, as it requires a separate experimental determination in most cases.
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Sequence

	
Name(s)

	
Degree

	
Pharm. Fam.






	
TDVCKKSPGKCIHNGCFCEQDKPQGNCCDSGGC–




	
TVKWWCPGTKGD

	
Cal12.1p2

	
28

	
Unknown




	
GHVPCGKDGRKCGYHADCCNCCLSGICKPSTSW–




	
TGCSTSTVQLTR

	
R11.10

	
18

	
Unknown




	
QCTPKNQICEEDGECCPNLECKCFTRPDCQSGYKCRP

	
Vr15b

	
14

	
Unknown




	
CFPPGVYCTRHLPCCRGRCCSGWCRPRCFPRY

	
Cp1.1

	
10

	
Unknown




	
QCTQQGYGCDETEECCSNLSCKCSGSPLCTSSYCRP

	
Cap15a

	
9

	
Unknown




	
SCDSEFSSEFCEQPEERICSCSTHVCCHLSSSK–




	
RDQCMTWNRCLSAQTGN

	
Gla-MrII, Eu12.4

	
9

	
Unknown




	
SRCFPPGIYCTPYLPCCWGICCGTCRNVCHLRF

	
Em11.8

	
8

	
Unknown




	
DKWGTCSLLGKGCRHHSDCCWDLCCTGKTCVMT–




	
VLPCLFLSLIVRWT

	
Mr11.1

	
6

	
Unknown




	
TCSLPGDGCIRDFHCCGHMCCQGNKCVVTVRRCFNFPY

	
Pu11.5

	
6

	
Unknown




	
YDAPYCSQEEVRECQDDCSGNAVRDSCLCAYDPAGSP–




	
ACECRCVEPW

	
Cal22d

	
5

	
Unknown




	
GTCSGRGQECKHDSDCCGHLCCAGITCQFTYIPCK

	
Tx11.3

	
5

	
Unknown




	
GTCSYLGEGCKRDSDCCGHFCCGGKTCVITARPCKV

	
Vc11.4

	
5

	
Unknown




	
RGVCSTPEGSCVHNGCICQNAPCCHPSGCNWANVCPG–




	
YLWDKN

	
Cal12.2c

	
4

	
Unknown




	
TCSDLGQACVHESDCCAQMCCLNKKCAMTMPPCNFY

	
Vc11.1

	
3

	
Unknown




	
CLSEGSPCSMSGSCCHKSCCRSTCTFPCLIP

	
Ep11.12

	
2

	
Unknown




	
TCSNKGQQCGDDSDCCWHLCCVNNKCAHLILLCNL

	
M11.2

	
2

	
Unknown




	
RCSDDTGATCSNRFDCCESMCCIGGHCVISTVGCP

	
Im11.14

	
1

	
Unknown




	
CRLEGSSCRRSYQCCHKSCCIRECKFPCRWV

	
Vi11.5

	
1

	
Unknown




	
TRSFADLPDDWGMCSDIGEGCGQDYDCCGDMCCDGQI–




	
CAMTFMACMF

	
Vc11.6

	
1

	
Unknown




	
CLRDGQSCGYDSDCCRYSCCWGYCDLTCLIN

	
Im11.1

	
1

	
Unknown




	
CNGRGEWCSTHRSCCDSGDVCCITTPVGPICTRGCSG–




	
RIIPQRRGAQLRHFF

	
Pu11.9

	
1

	
Unknown




	
CRAEGTYCENDSQCCLNECCWGGCGHPCRHP

	
BtX, Sx11.2

	
1

	
kappa




	
CTSEGYSCSSDSNCCKNVCCWNVCESHCRHPGKR

	
Lt11.3

	
1

	
Unknown




	
CRSGKTCPRVGPDVCCERSDCFCKLVPARPFWRYRCICL

	
Mr15.2

	
1

	
Unknown




	
DCPTSCPTTCANGWECCKGYPCVRQHCSGCNH

	
De13b

	
1

	
Unknown




	
EGGYVREDCGSDCMPCGGECCCEPNSCIDGTCHHESSPN

	
Mi045

	
1

	
Unknown




	
SCRNEGAMCSFGFQCCKKKCCMSHCTDFCRNP

	
Vt11.3

	
1

	
Unknown




	
WPRLYDSDCVRGRNMHITCFKDQTCGLTVKRNGRLNC–




	
SLTCSCRRGESCLHGEYIDWDSRGLKVHICPKPWF

	
Mr22.1

	
1

	
Unknown




	
MCLSLGQRCGRHSNCCGYLCCFYDKCVVTAIGCGHY

	
Bt11.4

	
1

	
Unknown




	
ASICYGTGGRCTKDKHCCGWLCCGGPSVGCVVSVAPC

	
Ca11.3

	
1

	
Unknown
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Table 4. List of sequences containing ten cysteines in order of interest for experimental characterization, based on the degree (sequence coverage) in alignment graphs (cf. Figure 2). Name or names of sequences are taken from the Conoserver database [40]. Multiple names for the same sequence indicate the same sequence is produced by different species or has different post-translational modifications. Node degree corresponds to the number of sequences with pairwise alignments that are long enough and have a high enough percent identity to be homology modeled with the given sequence as a template. Cysteines are highlighted in red to guide the eye. We note in the fourth column the pharmacological family, although it is unknown for the majority of sequences, as it requires a separate experimental determination in most cases.
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Sequence

	
Name(s)

	
Degree

	
Pharm. Fam.






	
DRDVQDCQVSTPGSKWGRCCLNRVCGPMCCPAS–




	
HCYCVYHRGRGHGCSC

	
Cp20.1

	
19

	
Unknown




	
LHCYEISDLTPWILCSPEPLCGGKGCCAQEVCD–




	
CSGPACTCPPCL

	
Lt15.6

	
5

	
Unknown




	
YNRQCCIDKTYDCLKKYRGRENTFASVCQQEAA–




	
VYCGAWDEAEGCCYGYSHCMSMYAQQSGLDVA–




	
HNGCKDRKCDNP

	
Vc21.1

	
2

	
Unknown




	
QCTLVNNCDRNGERACNGDCSCEGQICKCGYRV–




	
SPGKSGCACTCRNA

	
Ac8.1

	
2

	
Unknown




	
GCSGTCRRHRDGKCRGTCECSGYSYCRCGDAHH–




	
FYRGCTCTC

	
Ca8c

	
2

	
Unknown




	
TCDPTPDCRTTVCETDTGPCCCPHGYNCQTTNS–




	
GRRACVLVCPHNCPP

	
Pu19.1

	
1

	
Unknown




	
SGSTCTCFTSTNCQGSCECLSPPGCYCSNNGIR–




	
QRGCSCTCPGT

	
G8.3

	
1

	
Unknown




	
GCTRTCGGPKCTGTCTCTNSSKCGCRYNVHPSG–




	
WGCGCACS

	
GVIIIA

	
1

	
sigma




	
GCTISCGYEDNRCQGECHCPGKTNCYCTSGHHN–




	
KGCGCAC

	
Tx8.1

	
1

	
Unknown
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