Multiple Roles of Diatom-Derived Oxylipins within Marine Environments and Their Potential Biotechnological Applications
Abstract
:1. Introduction
2. Detrimental Impact of Oxylipins on Marine Invertebrates
2.1. Sea Urchins
2.2. Marine Copepods
2.3. Miscellaneous
3. Oxylipins as Cell Signalling Molecules in Diatom Communities
4. Biotechnological Applications of Oxylipins
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Falkowski, P.G.; Barber, R.T.; Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 1998, 281, 200–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smetacek, V. A watery arms race. Nature 2001, 411, 745. [Google Scholar] [CrossRef]
- Hasle, G.R.; Syvertsen, E.E. Identifying marine phytoplankton. In Marine Diatoms; Tomas, C.R., Ed.; Academic Press: San Diego, CA, USA, 1997; pp. 5–385. [Google Scholar]
- Mann, D.G. The species concept in diatoms: Evidence for morphologically distinct, sympatric gamodemes in four epipelic species. Plant Syst. Evol. 2005, 164, 215–237. [Google Scholar] [CrossRef]
- Jain, S. Marine diatoms. In Fundamentals of Invertebrate Palaeontology; Springer: New Delhi, India, 2020; pp. 131–142. [Google Scholar]
- Ban, S.; Burns, C.; Castel, J.; Chaudron, Y.; Christou, E.; Escribano, R.; Umani, S.F.; Gasparini, S.; Ruiz, F.G.; Hoffmeyer, M.; et al. The paradox of diatom-copepod interactions. Mar. Ecol. Prog. Ser. 1997, 157, 287–293. [Google Scholar] [CrossRef]
- Miralto, A.; Barone, G.; Romano, G.; Poulet, S.A.; Ianora, A.; Russo, G.L.; Buttino, I.; Mazzarella, G.; Laabir, M.; Cabrini, M.; et al. The insidious effect of diatoms on copepod reproduction. Nature 1999, 402, 173–176. [Google Scholar] [CrossRef]
- Ianora, A.; Poulet, S.A.; Miralto, A. The effects of diatoms on copepod reproduction: A review. Phycologia 2003, 42, 351–363. [Google Scholar] [CrossRef]
- Ianora, A.; Miralto, A. Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: A review. Ecotoxicology 2010, 19, 493–511. [Google Scholar] [CrossRef] [PubMed]
- Landsberg, J.H. The effects of harmful algal blooms on aquatic organisms. Rev. Fish. Sci. 2002, 10, 113–390. [Google Scholar] [CrossRef]
- Galland, G.R.; Pennebaker, S.L. A benthic diatom bloom in the Gulf of California, Mexico. BioInvasions Rec. 2012, 1, 65–69. [Google Scholar] [CrossRef]
- Ahn, I.Y.; Moon, H.W.; Jeon, M.; Kang, S.H. First record of massive blooming of benthic diatoms and their association with megabenthic filter feeders on the shallow seafloor of an Antarctic Fjord: Does glacier melting fuel the bloom? Ocean Sci. J. 2016, 51, 273–279. [Google Scholar] [CrossRef]
- Bothwell, M.L.; Taylor, B.W. Blooms of benthic diatoms in phosphorus-poor streams. Front. Ecol. Environ. 2017, 15, 110–111. [Google Scholar] [CrossRef] [Green Version]
- Zohdi, E.; Abbaspour, M. Harmful algal blooms (red tide): A review of causes, impacts and approaches to monitoring and prediction. Int. J. Environ. Sci. Technol. 2019, 16, 1789–1806. [Google Scholar] [CrossRef]
- Cutignano, A.; D’Ippolito, G.; Romano, G.; Lamari, N.; Cimino, G.; Febbraio, F.; Nucci, R.; Fontana, A. Chloroplastic glycolipids fuel aldehyde biosynthesis in the marine diatom Thalassiosira rotula. ChemBioChem 2006, 7, 450–456. [Google Scholar] [CrossRef] [PubMed]
- D’Ippolito, G.; Romano, G.; Caruso, T.; Spinella, A.; Cimino, G.; Fontana, A. Production of octadienal in the marine diatom Skeletonema costatum. Org. Lett. 2003, 5, 885–887. [Google Scholar] [CrossRef] [PubMed]
- D’Ippolito, G.; Tucci, S.; Cutignano, A.; Romano, G.; Cimino, G.; Miralto, A.; Fontana, A. The role of complex lipids in the synthesis of bioactive aldehydes of the marine diatom Skeletonema costatum. Biochim. Biophys. Acta 2004, 1686, 100–107. [Google Scholar] [CrossRef] [PubMed]
- D’Ippolito, G.; Cutignano, A.; Tucci, S.; Romano, G.; Cimino, G.; Fontana, A. Biosynthetic intermediates and stereochemical aspects of aldehyde biosynthesis in the marine diatom Thalassiosira rotula. Phytochemistry 2006, 67, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Fontana, A.; Cutignano, A.; Romano, G.; Lamari, N.; Gallucci, M.; Cimino, G.; Miralto, A.; Ianora, A. LOX-induced lipid peroxidation mechanism responsible for the detrimental effect of marine diatoms on zooplankton grazers. ChemBioChem 2007, 8, 1810–1818. [Google Scholar] [CrossRef] [PubMed]
- Fontana, A.; D’Ippolito, G.; Cutignano, A.; Miralto, A.; Ianora, A.; Romano, G.; Cimino, G. Chemistry of oxylipin pathways in marine diatoms. Pure Appl. Chem. 2007, 79, 481–490. [Google Scholar] [CrossRef]
- D’Ippolito, G.; Nuzzo, G.; Sardo, A.; Manzo, E.; Gallo, C.; Fontana, A. Lipoxygenases and lipoxygenase products in marine diatoms. Methods Enzymol. 2018, 605, 69–100. [Google Scholar] [CrossRef]
- Ruocco, N.; Nuzzo, G.; D’Ippolito, G.; Manzo, E.; Sardo, A.; Ianora, A.; Romano, G.; Iuliano, A.; Zupo, V.; Costantini, M.; et al. Lipoxygenase pathways in diatoms: Occurrence and correlation with grazer toxicity in four benthic diatoms. Mar. Drugs 2020, 18, 66. [Google Scholar] [CrossRef] [Green Version]
- Fink, P.; Von Elert, E.; Jüttner, F. Oxylipins from freshwater diatoms act as attractants for a benthic herbivore. Arch. Hydrobiol. 2006, 167, 561–574. [Google Scholar] [CrossRef]
- Kâ, S.; Carotenuto, Y.; Romano, G.; Hwang, J.S.; Buttino, I.; Ianora, A. Impact of the diatom-derived polyunsaturated aldehyde 2-trans,4-trans decadienal on the feeding, survivorship and reproductive success of the calanoid copepod Temora stylifera. Mar. Environ. Res. 2014, 93, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Kühn, H.; Thiele, B.J. The diversity of the lipoxygenase family. Many sequence data but little information on biological significance. FEBS Lett. 1999, 449, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Veldink, G.; Hilbers, M.; Nieuwenhuizen, W.; Vliegenthart, J. Plant lipoxygenase: Stucture and mechanism. In Eicosanoids and Related Compounds in Plants and Animals; Rowley, A., Kühn, H., Schewe, T., Eds.; Portland Press: London, UK, 1998; pp. 69–96. [Google Scholar]
- Ueda, N.; Suzuki, H.; Yamamoto, S. Mammalian lipoxygenases: Structure, function and evolutionary aspects. In Eicosanoids and Related Compounds in Plants and Animals; Rowley, A., Kühn, H., Schewe, T., Eds.; Portland Press: London, UK, 1998; pp. 47–68. [Google Scholar]
- Kühn, H.; Banthiyaa, S.; Van Leyen, K. Mammalian lipoxygenases and their biological relevance. Biochim. Biophys. Acta 2015, 1851, 308–330. [Google Scholar] [CrossRef]
- Kühn, H. Structural basis for the positional specificity of lipoxygenases. Prostaglandins Other Lipid Mediat. 2000, 62, 255–270. [Google Scholar] [CrossRef]
- Lamari, N.; Ruggiero, M.V.; D’Ippolito, G.; Kooistra, W.H.C.F.; Fontana, A.; Montresor, M. Specificity of lipoxygenase pathways supports species delineation in the marine diatom genus Pseudo-nitzschia. PLoS ONE 2013, 8, e73281. [Google Scholar] [CrossRef]
- D’Ippolito, G.; Cutignano, A.; Briante, R.; Febbraio, F.; Cimino, G.; Fontana, A. New C16 fatty-acid-based oxylipin pathway in the marine diatom Thalassiosira rotula. Org. Biomol. Chem. 2005, 3, 4065–4070. [Google Scholar] [CrossRef]
- D’Ippolito, G.; Lamari, N.; Montresor, M.; Romano, G.; Cutignano, A.; Gerecht, A.; Cimino, G.; Fontana, A. 15S-Lipoxygenase metabolism in the marine diatom Pseudo-nitzschia delicatissima. New Phytol. 2009, 183, 1064–1071. [Google Scholar] [CrossRef]
- Nanjappa, D.; D’Ippolito, G.; Gallo, C.; Zingone, A.; Fontana, A. Oxylipin diversity in the diatom family leptocylindraceae reveals DHA derivatives in marine diatoms. Mar. Drugs 2014, 12, 368–384. [Google Scholar] [CrossRef] [Green Version]
- Rettner, J.; Werner, M.; Meyer, N.; Werz, O.; Pohnert, G. Survey of the C20 and C22 oxylipin family in marine diatoms. Tetrahedron Lett. 2018, 59, 828–831. [Google Scholar] [CrossRef]
- Wichard, T.; Poulet, S.A.; Boulesteix, A.L.; Ledoux, J.B.; Lebreton, B.; Marchetti, J.; Pohnert, G. Influence of diatoms on copepod reproduction. II. Uncorrelated effects of diatom-derived α,β,γ,δ-unsaturated aldehydes and polyunsaturated fatty acids on Calanus helgolandicus in the field. Prog. Oceanogr. 2008, 77, 30–44. [Google Scholar] [CrossRef]
- Vidoudez, C.; Casotti, R.; Bastianini, M.; Pohnert, G. Quantification of dissolved and particulate polyunsaturated aldehydes in the Adriatic Sea. Mar. Drugs 2011, 9, 500–513. [Google Scholar] [CrossRef]
- Bartual, A.; Arandia-Gorostidi, N.; Cózar, A.; Morillo-Garciá, S.; Ortega, M.J.; Vidal, M.; Cabello, A.M.; Gonzaĺez-Gordillo, J.I.; Echevarría, F. Polyunsaturated aldehydes from large phytoplankton of the Atlantic Ocean surface (42°N to 33°S). Mar. Drugs 2014, 12, 682–699. [Google Scholar] [CrossRef] [Green Version]
- Morillo-García, S.; Valcaŕcel-Pérez, N.; Cózar, A.; Ortega, M.J.; Maciás, D.; Ramiŕez-Romero, E.; García, C.M.; Echevarría, F.; Bartual, A. Potential polyunsaturated aldehydes in the Strait of Gibraltar under two tidal regimes. Mar. Drugs 2014, 12, 1438–1459. [Google Scholar] [CrossRef] [Green Version]
- Ribalet, F.; Bastianini, M.; Vidoudez, C.; Acri, F.; Berges, J.; Ianora, A.; Miralto, A.; Pohnert, G.; Romano, G.; Wichard, T.; et al. Phytoplankton cell lysis associated with polyunsaturated aldehyde release in the northern Adriatic Sea. PLoS ONE 2014, 9, e85947. [Google Scholar] [CrossRef] [Green Version]
- Ianora, A.; Bastianini, M.; Carotenuto, Y.; Casotti, R.; Roncalli, V.; Miralto, A.; Romano, G.; Gerecht, A.; Fontana, A.; Turner, J.T. Non-volatile oxylipins can render some diatom blooms more toxic for copepod reproduction. Harmful Algae 2015, 44, 1–7. [Google Scholar] [CrossRef]
- Lauritano, C.; Romano, G.; Roncalli, V.; Amoresano, A.; Fontanarosa, C.; Bastianini, M.; Braga, F.; Carotenuto, Y.; Ianora, A. New oxylipins produced at the end of a diatom bloom and their effects on copepod reproductive success and gene expression levels. Harmful Algae 2016, 55, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.; D’Ippolito, G.; Fontana, A.; Sarno, D.; D’Alelio, D.; Busseni, G.; Ianora, A.; von Elert, E.; Carotenuto, Y. Density-dependent oxylipin production in natural diatom communities: Possible implications for plankton dynamics. ISME J. 2020, 14, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Bartual, A.; Hernanz-Torrijos, M.; Sala, I.; Ortega, M.J.; González-García, C.; Bolado-Penagos, M.; López-Urrutia, A.; Romero-Martínez, L.; Lubián, L.M.; Bruno, M.; et al. Types and distribution of bioactive polyunsaturated aldehydes in a gradient from mesotrophic to oligotrophic waters in the Alborán Sea (Western Mediterranean). Mar. Drugs 2020, 18, 159. [Google Scholar] [CrossRef] [Green Version]
- Blée, E. Impact of phyto-oxylipins in plant defense. Trends Plant Sci. 2002, 7, 315–322. [Google Scholar] [CrossRef]
- Christensen, S.A.; Kolomiets, M.V. The lipid language of plant-fungal interactions. Fungal Genet. Biol. 2011, 48, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Wasternack, C.; Feussner, I. The oxylipin pathways: Biochemistry and function. Annu. Rev. Plant Biol. 2018, 69, 363–386. [Google Scholar] [CrossRef] [PubMed]
- Genva, M.; Obounou Akong, F.; Andersson, M.X.; Deleu, M.; Lins, L.; Fauconnier, M.L. New insights into the biosynthesis of esterified oxylipins and their involvement in plant defense and developmental mechanisms. Phytochem. Rev. 2019, 18, 343–358. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, G.S. The influence of bioactive oxylipins from marine diatoms on invertebrate reproduction and development. Mar. Drugs 2009, 7, 367–400. [Google Scholar] [CrossRef] [Green Version]
- Leflaive, J.; Ten-Hage, L. Chemical interactions in diatoms: Role of polyunsaturated aldehydes and precursors. New Phytol. 2009, 184, 794–805. [Google Scholar] [CrossRef]
- Stonik, V.S.; Stonik, I. Low-molecular-weight metabolites from diatoms: Structures, biological roles and biosynthesis. Mar. Drugs 2015, 13, 3672–3709. [Google Scholar] [CrossRef] [Green Version]
- Brown, E.R.; Cepeda, M.R.; Mascuch, S.J.; Poulson-Ellestad, K.L.; Kubanek, J. Chemical ecology of the marine plankton. Nat. Prod. Rep. 2019, 36, 1093–1116. [Google Scholar] [CrossRef]
- Russo, E.; Ianora, A.; Carotenuto, Y. Re-shaping marine plankton communities: Effects of diatom oxylipins on copepods and beyond. Mar. Biol. 2019, 166, 9. [Google Scholar] [CrossRef]
- Casotti, R.; Mazza, S.; Brunet, C.; Vantrepotte, V.; Ianora, A.; Miralto, A. Growth inhibition and toxicity of the diatom aldehyde 2-trans,4-trans-decadienal on Thalassiosira weissflogii (Bacillariophyceae). J. Phycol. 2005, 41, 7–20. [Google Scholar] [CrossRef]
- Ribalet, F.; Berges, J.A.; Ianora, A.; Casotti, R. Growth inhibition of cultured marine phytoplankton by toxic algal-derived polyunsaturated aldehydes. Aquat. Toxicol. 2007, 85, 219–227. [Google Scholar] [CrossRef]
- Ribalet, F.; Intertaglia, L.; Lebaron, P.; Casotti, R. Differential effect of three polyunsaturated aldehydes on marine bacterial isolates. Aquat. Toxicol. 2008, 86, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Balestra, C.; Alonso-Sáez, L.; Gasol, J.M.; Casotti, R. Group-specific effects on coastal bacterioplankton of polyunsaturated aldehydes produced by diatoms. Aquat. Microb. Ecol. 2011, 63, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Gallina, A.A.; Brunet, C.; Palumbo, A.; Casotti, R. The effect of polyunsaturated aldehydes on Skeletonema marinoi (Bacillariophyceae): The involvement of reactive oxygen species and nitric oxide. Mar. Drugs 2014, 12, 4165–4187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, B.R.; Bidle, K.D.; Van Mooy, B.A.S. Dose-dependent regulation of microbial activity on sinking particles by polyunsaturated aldehydes: Implications for the carbon cycle. Proc. Natl. Acad. Sci. USA 2015, 112, 5909–5914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vardi, A.; Formiggini, F.; Casotti, R.; De Martino, A.; Ribalet, F.; Miralto, A.; Bowler, C. A stress surveillance system based on calcium and nitric oxide in marine diatoms. PLoS Biol. 2006, 4, e60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vardi, A. Cell signaling in marine diatoms. Commun. Integr. Biol. 2008, 1, 134–136. [Google Scholar] [CrossRef] [Green Version]
- Bidle, K.D. The molecular ecophysiology of programmed cell death in marine phytoplankton. Ann. Rev. Mar. Sci. 2015, 7, 341–375. [Google Scholar] [CrossRef]
- Bidle, K.D. Programmed cell death in unicellular phytoplankton. Curr. Biol. 2016, 26, R594–R607. [Google Scholar] [CrossRef] [Green Version]
- Sansone, C.; Braca, A.; Ercolesi, E.; Romano, G.; Palumbo, A.; Casotti, R.; Francone, M.; Ianora, A. Diatom-derived polyunsaturated aldehydes activate cell death in human cancer cell lines but not normal cells. PLoS ONE 2014, 9, e101220. [Google Scholar] [CrossRef] [Green Version]
- Romano, G.; Miralto, A.; Ianora, A. Teratogenic effects of diatom metabolites on sea urchin Paracentrotus lividus embryos. Mar. Drugs 2010, 8, 950–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, G.; Costantini, M.; Buttino, I.; Ianora, A.; Palumbo, A. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus. PLoS ONE 2011, 6, e25980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrone, V.; Piscopo, M.; Romano, G.; Ianora, A.; Palumbo, A.; Costantini, M. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus. PLoS ONE 2012, 7, e31750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varrella, S.; Romano, G.; Ianora, A.; Bentley, M.G.; Ruocco, N.; Costantini, M. Molecular response to toxic diatom-derived aldehydes in the sea urchin Paracentrotus lividus. Mar. Drugs 2014, 12, 2089–2113. [Google Scholar] [CrossRef] [Green Version]
- Gudimova, E.; Eilertsen, H.C.; Jørgensen, T.; Hansen, E. In vivo exposure to northern diatoms arrests sea urchin embryonic development. Toxicon 2016, 109, 63–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sartori, D.; Gaion, A. Toxicity of polyunsaturated aldehydes of diatoms to Indo-Pacific bioindicator organism Echinometra mathaei. Drug Chem. Toxicol. 2016, 39, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Ruocco, N.; Varrella, S.; Romano, G.; Ianora, A.; Bentley, M.G.; Somma, D.; Leonardi, A.; Mellone, S.; Zuppa, A.; Costantini, M. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7. Aquat. Toxicol. 2016, 176, 128–140. [Google Scholar] [CrossRef]
- Varrella, S.; Romano, G.; Costantini, S.; Ruocco, N.; Ianora, A.; Bentley, M.G.; Costantini, M. Toxic diatom aldehydes affect defence gene networks in sea urchins. PLoS ONE 2016, 11, e0149734. [Google Scholar] [CrossRef] [Green Version]
- Varrella, S.; Romano, G.; Ruocco, N.; Ianora, A.; Bentley, M.G.; Costantini, M. First morphological and molecular evidence of the negative impact of diatom-derived hydroxyacids on the sea urchin Paracentrotus lividus. Toxicol. Sci. 2016, 151, 419–433. [Google Scholar] [CrossRef] [Green Version]
- Ruocco, N.; Maria Fedele, A.; Costantini, S.; Romano, G.; Ianora, A.; Costantini, M. New inter-correlated genes targeted by diatom-derived polyunsaturated aldehydes in the sea urchin Paracentrotus lividus. Ecotoxicol. Environ. Saf. 2017, 142, 355–362. [Google Scholar] [CrossRef]
- Albarano, L.; Ruocco, N.; Ianora, A.; Libralato, G.; Manfra, L.; Costantini, M. Molecular and morphological toxicity of diatom-derived hydroxyacid mixtures to sea urchin Paracentrotus lividus embryos. Mar. Drugs 2019, 17, 144. [Google Scholar] [CrossRef] [Green Version]
- Ruocco, N.; Costantini, S.; Zupo, V.; Lauritano, C.; Caramiello, D.; Ianora, A.; Budillon, A.; Romano, G.; Nuzzo, G.; D’Ippolito, G.; et al. Toxigenic effects of two benthic diatoms upon grazing activity of the sea urchin: Morphological, metabolomic and de novo transcriptomic analysis. Sci. Rep. 2018, 8, 5622. [Google Scholar] [CrossRef] [Green Version]
- Ruocco, N.; Annunziata, C.; Ianora, A.; Libralato, G.; Manfra, L.; Costantini, S.; Costantini, M. Toxicity of diatom-derived polyunsaturated aldehyde mixtures on sea urchin Paracentrotus lividus development. Sci. Rep. 2019, 9, 517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruocco, N.; Cavaccini, V.; Caramiello, D.; Ianora, A.; Fontana, A. Noxious effects of the benthic diatoms Cocconeis scutellum and Diploneis sp. on sea urchin development: Morphological and de novo transcriptomic analysis. Harmful Algae 2019, 86, 64–73. [Google Scholar] [CrossRef]
- Esposito, R.; Ruocco, N.; Albarano, L.; Ianora, A.; Manfra, L.; Libralato, G.; Costantini, M. Combined effects of diatom-derived oxylipins on the sea urchin Paracentrotus lividus. Int. J. Mol. Sci. 2020, 21, 719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidoudez, C.; Pohnert, G. Growth phase-specific release of polyunsaturated aldehydes by the diatom Skeletonema marinoi. J. Plankton Res. 2008, 30, 1305–1313. [Google Scholar] [CrossRef] [Green Version]
- Ianora, A.; Bentley, M.G.; Caldwell, G.S.; Casotti, R.; Cembella, A.D.; Engström-Öst, J.; Halsband, C.; Sonnenschein, E.; Legrand, C.; Llewellyn, C.A.; et al. The relevance of marine chemical ecology to plankton and ecosystem function: An emerging field. Mar. Drugs 2011, 9, 1625–1648. [Google Scholar] [CrossRef] [Green Version]
- Zupo, V.; Glaviano, F.; Caramiello, D.; Mutalipassi, M. Effect of five benthic diatoms on the survival and development of Paracentrotus lividus post-larvae in the laboratory. Aquaculture 2018, 495, 13–20. [Google Scholar] [CrossRef]
- Hawkins, D.J.; Brash, A.R. Eggs of the sea urchin Strongylocentrotus purpuratus contain a prominent (11R) and (12R) lipoxygenase activity. J. Biol. Chem. 1987, 262, 7629–7634. [Google Scholar]
- Hawkins, D.J.; Brash, A.R. Mechanism of biosynthesis of 11R- and 12R-hydroxyeicosatetraenoic acids by eggs of the sea urchin Strongylocentrotus purpuratus. FEBS Lett. 1989, 247, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Amin, R.M.; Koski, M.; Båmstedt, U.; Vidoudez, C. Strain-related physiological and behavioral effects of Skeletonema marinoi on three common planktonic copepods. Mar. Biol. 2011, 158, 1965–1980. [Google Scholar] [CrossRef] [Green Version]
- Barreiro, A.; Carotenuto, Y.; Lamari, N.; Esposito, F.; Ippolito, G.D.; Fontana, A.; Romano, G.; Ianora, A.; Miralto, A.; Guisande, C. Diatom induction of reproductive failure in copepods: The effect of PUAs versus non volatile oxylipins. J. Exp. Mar. Bio. Ecol. 2011, 401, 13–19. [Google Scholar] [CrossRef]
- Carotenuto, Y.; Ianora, A.; Miralto, A. Maternal and neonate diatom diets impair development and sex differentiation in the copepod Temora stylifera. J. Exp. Mar. Bio. Ecol. 2011, 396, 99–107. [Google Scholar] [CrossRef]
- Ianora, A.; Romano, G.; Carotenuto, Y.; Esposito, F.; Roncalli, V.; Buttino, I.; Miralto, A. Impact of the diatom oxylipin 15S-HEPE on the reproductive success of the copepod Temora stylifera. Hydrobiologia 2011, 666, 265–275. [Google Scholar] [CrossRef]
- Koski, M.; Yebra, L.; Dutz, J.; Jónasdóttir, S.H.; Vidoudez, C.; Jakobsen, H.H.; Pohnert, G.; Nejstgaard, J.C. The effect of egg versus seston quality on hatching success, naupliar metabolism and survival of Calanus finmarchicus in mesocosms dominated by Phaeocystis and diatoms. Mar. Biol. 2012, 159, 643–660. [Google Scholar] [CrossRef]
- Lauritano, C.; Borra, M.; Carotenuto, Y.; Biffali, E.; Miralto, A.; Procaccini, G.; Ianora, A. First molecular evidence of diatom effects in the copepod Calanus helgolandicus. J. Exp. Mar. Bio. Ecol. 2011, 404, 79–86. [Google Scholar] [CrossRef]
- Lauritano, C.; Borra, M.; Carotenuto, Y.; Biffali, E.; Miralto, A.; Procaccini, G.; Ianora, A. Molecular evidence of the toxic effects of diatom diets on gene expression patterns in copepods. PLoS ONE 2011, 6, e26850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vehmaa, A.; Larsson, P.; Vidoudez, C.; Pohnert, G.; Reinikainen, M.; Engström-Öst, J. How will increased dinoflagellate:diatom ratios affect copepod egg production?—A case study from the Baltic Sea. J. Exp. Mar. Bio. Ecol. 2011, 401, 134–140. [Google Scholar] [CrossRef]
- Lauritano, C.; Carotenuto, Y.; Miralto, A.; Procaccini, G.; Ianora, A. Copepod population-specific response to a toxic diatom diet. PLoS ONE 2012, 7, e47262. [Google Scholar] [CrossRef] [Green Version]
- Carotenuto, Y.; Dattolo, E.; Lauritano, C.; Pisano, F.; Sanges, R.; Miralto, A.; Procaccini, G.; Ianora, A. Insights into the transcriptome of the marine copepod Calanus helgolandicus feeding on the oxylipin-producing diatom Skeletonema marinoi. Harmful Algae 2014, 31, 153–162. [Google Scholar] [CrossRef]
- Dhanker, R.; Molinero, J.C.; Kumar, R.; Tseng, L.C.; Ianora, A.; Hwang, J.S. Responses of the estuarine copepod Pseudodiaptomus annandalei to diatom polyunsaturated aldehydes: Reproduction, survival and postembryonic development. Harmful Algae 2015, 43, 74–81. [Google Scholar] [CrossRef]
- Lauritano, C.; Carotenuto, Y.; Vitiello, V.; Buttino, I.; Romano, G.; Hwang, J.S.; Ianora, A. Effects of the oxylipin-producing diatom Skeletonema marinoi on gene expression levels of the calanoid copepod Calanus sinicus. Mar. Genomics 2015, 24, 89–94. [Google Scholar] [CrossRef]
- Brugnano, C.; Granata, A.; Guglielmo, L.; Minutoli, R.; Zagami, G.; Ianora, A. The deleterious effect of diatoms on the biomass and growth of early stages of their copepod grazers. J. Exp. Mar. Bio. Ecol. 2016, 476, 41–49. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, G.; Zeng, C.; Wu, L. Comparative study on the effects of two diatoms as diets on planktonic calanoid and benthic harpacticoid copepods. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2018, 329, 140–148. [Google Scholar] [CrossRef]
- Azizan, A.; Bustamam, M.S.A.; Maulidiani, M.; Shaari, K.; Ismail, I.S.; Nagao, N.; Abas, F. Metabolite profiling of the microalgal diatom Chaetoceros calcitrans and correlation with antioxidant and nitric oxide inhibitory activities via 1H NMR-based metabolomics. Mar. Drugs 2018, 16, 154. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, G.S.; Lewis, C.; Pickavance, G.; Taylor, R.L.; Bentley, M.G. Exposure to copper and a cytotoxic polyunsaturated aldehyde induces reproductive failure in the marine polychaete Nereis virens (Sars). Aquat. Toxicol. 2011, 104, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Castellano, I.; Ercolesi, E.; Romano, G.; Ianora, A.; Palumbo, A. The diatom-derived aldehyde decadienal affects life cycle transition in the ascidian Ciona intestinalis through nitric oxide/ERK signalling. Open Biol. 2015, 5, 140182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lettieri, A.; Esposito, R.; Ianora, A.; Spagnuolo, A. Ciona intestinalis as a marine model system to study some key developmental genes targeted by the diatom-derived aldehyde decadienal. Mar. Drugs 2015, 13, 1451–1465. [Google Scholar] [CrossRef] [Green Version]
- Lavrentyev, P.J.; Franzè, G.; Pierson, J.J.; Stoecker, D.K. The effect of dissolved polyunsaturated aldehydes on microzooplankton growth rates in the Chesapeake Bay and Atlantic coastal waters. Mar. Drugs 2015, 13, 2834–2856. [Google Scholar] [CrossRef] [Green Version]
- Torres-Águila, N.P.; Martí-Solans, J.; Ferrández-Roldán, A.; Almazán, A.; Roncalli, V.; D’Aniello, S.; Romano, G.; Palumbo, A.; Albalat, R.; Cañestro, C. Diatom bloom-derived biotoxins cause aberrant development and gene expression in the appendicularian chordate Oikopleura dioica. Commun. Biol. 2018, 1, 121. [Google Scholar] [CrossRef]
- Le, M.H.; Dinh, K.V.; Nguyen, M.V.; Rønnestad, I. Combined effects of a simulated marine heatwave and an algal toxin on a tropical marine aquaculture fish cobia (Rachycentron canadum). Aquac. Res. 2020, 51, 2535–2544. [Google Scholar] [CrossRef] [Green Version]
- Vardi, A.; Bidle, K.D.; Kwityn, C.; Hirsh, D.J.; Thompson, S.M.; Callow, J.A.; Falkowski, P.; Bowler, C. A diatom gene regulating nitric-oxide signaling and susceptibility to diatom-derived aldehydes. Curr. Biol. 2008, 18, 895–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llewellyn, C.A.; Tarran, G.A.; Galliene, C.P.; Cummings, D.G.; De Menezes, A.; Rees, A.P.; Dixon, J.L.; Widdicombe, C.E.; Fileman, E.S.; Wilson, W.H. Microbial dynamics during the decline of a spring diatom bloom in the Northeast Atlantic. J. Plankton Res. 2008, 30, 261–273. [Google Scholar] [CrossRef]
- Vardi, A.; Van Mooy, B.A.S.; Fredricks, H.F.; Popendorf, K.J.; Ossolinski, J.E.; Haramaty, L.; Bidle, K.D. Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton. Science 2009, 326, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Meyer, N.; Rettner, J.; Werner, M.; Werz, O.; Pohnert, G. Algal oxylipins mediate the resistance of diatoms against algicidal bacteria. Mar. Drugs 2018, 16, 486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribalet, F.; Vidoudez, C.; Cassin, D.; Pohnert, G.; Ianora, A.; Miralto, A.; Casotti, R. High plasticity in the production of diatom-derived polyunsaturated aldehydes under nutrient limitation: Physiological and ecological implications. Protist 2009, 160, 444–451. [Google Scholar] [CrossRef]
- Gallina, A.A.; Palumbo, A.; Casotti, R. Oxidative pathways in response to polyunsaturated aldehydes in the marine diatom Skeletonema marinoi (Bacillariophyceae). J. Phycol. 2016, 52, 590–598. [Google Scholar] [CrossRef]
- Pichierri, S.; Pezzolesi, L.; Vanucci, S.; Totti, C.; Pistocchi, R. Inhibitory effect of polyunsaturated aldehydes (PUAs) on the growth of the toxic benthic dinoflagellate Ostreopsis cf. ovata. Aquat. Toxicol. 2016, 179, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Ternon, E.; Pavaux, A.S.; Marro, S.; Thomas, O.P.; Lemée, R. Allelopathic interactions between the benthic toxic dinoflagellate Ostreopsis cf. ovata and a co-occurring diatom. Harmful Algae 2018, 75, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Y.; Li, H.; Cao, J. Competitive interaction between diatom Skeletonema costatum and dinoflagellate Prorocentrum donghaiense in laboratory culture. J. Plankton Res. 2013, 35, 367–378. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J.; Xue, Q.; Sha, X.; Tan, L.; Guo, X. Allelopathic interactions between Skeletonema costatum and Alexandrium minutum. Chem. Ecol. 2017, 33, 485–498. [Google Scholar] [CrossRef]
- Paul, C.; Reunamo, A.; Lindehoff, E.; Bergkvist, J.; Mausz, M.A.; Larsson, H.; Richter, H.; Wängberg, S.Å.; Leskinen, P.; Båmstedt, U.; et al. Diatom derived polyunsaturated aldehydes do not structure the planktonic microbial community in a mesocosm study. Mar. Drugs 2012, 10, 775–792. [Google Scholar] [CrossRef]
- Pepi, M.; Heipieper, H.J.; Balestra, C.; Borra, M.; Biffali, E.; Casotti, R. Toxicity of diatom polyunsaturated aldehydes to marine bacterial isolates reveals their mode of action. Chemosphere 2017, 177, 258–265. [Google Scholar] [CrossRef]
- Bartual, A.; Vicente-Cera, I.; Flecha, S.; Prieto, L. Effect of dissolved polyunsaturated aldehydes on the size distribution of transparent exopolymeric particles in an experimental diatom bloom. Mar. Biol. 2017, 164. [Google Scholar] [CrossRef]
- Eastabrook, C.L.; Whitworth, P.; Robinson, G.; Caldwell, G.S. Diatom-derived polyunsaturated aldehydes are unlikely to influence the microbiota composition of laboratory-cultured diatoms. Life 2020, 10, 29. [Google Scholar] [CrossRef] [Green Version]
- Simon, C.A.; Bentley, M.G.; Caldwell, G.S. 2,4-Decadienal: Exploring a novel approach for the control of polychaete pests on cultured abalone. Aquaculture 2010, 310, 52–60. [Google Scholar] [CrossRef]
- Troncoso, J.; González, J.; Pino, J.; Ruohonen, K.; El-Mowafi, A.; González, J.; Yany, G.; Saavedra, J.; Córdova, A. Effect of polyunsatured aldehyde (A3) as an antiparasitary ingredient of Caligus rogercresseyi in the feed of Atlantic salmon, Salmo salar José. Lat. Am. J. Aquat. Res. 2011, 39, 439–448. [Google Scholar] [CrossRef]
- Nappo, M.; Berkov, S.; Massucco, C.; Di Maria, V.; Bastida, J.; Codina, C.; Avila, C.; Messina, P.; Zupo, V.; Zupo, S. Apoptotic activity of the marine diatom Cocconeis scutellum and eicosapentaenoic acid in BT20 cells. Pharm. Biol. 2012, 50, 529–535. [Google Scholar] [CrossRef]
- Ávila-Román, J.; Talero, E.; De los Reyes, C.; Zubía, E.; Motilva, V.; García-Mauriño, S. Cytotoxic activity of microalgal-derived oxylipins against human cancer cell lines and their impact on ATP levels. Nat. Prod. Commun. 2016, 11, 1871–1875. [Google Scholar] [CrossRef] [Green Version]
- Lauritano, C.; Andersen, J.H.; Hansen, E.; Albrigtsen, M.; Romano, G.; Ianora, A. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front. Mar. Sci. 2016, 3, 68. [Google Scholar] [CrossRef] [Green Version]
- Lauritano, C.; Martín, J.; De La Cruz, M.; Reyes, F.; Romano, G.; Ianora, A. First identification of marine diatoms with anti-tuberculosis activity. Sci. Rep. 2018, 8, 2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jüttner, F.; Messina, P.; Patalano, C.; Zupo, V. Odour compounds of the diatom Cocconeis scutellum: Effects on benthic herbivores living on Posidonia oceanica. Mar. Ecol. Prog. Ser. 2010, 400, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Amin, S.A.; Parker, M.S.; Armbrust, E.V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 2012, 76, 667–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armbrust, E.V.; Berges, J.A.; Bowler, C.; Green, B.R.; Martinez, D.; Putnam, N.H.; Zhou, S.; Allen, A.E.; Apt, K.E.; Bechner, M.; et al. The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 2004, 306, 79–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowler, C.; Allen, A.E.; Badger, J.H.; Grimwood, J.; Jabbari, K.; Kuo, A.; Maheswari, U.; Martens, C.; Maumus, F.; Otillar, R.P.; et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 2008, 456, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.C.; Azam, F. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 1988, 332, 441–443. [Google Scholar] [CrossRef]
- Bates, S.S.; Gaudet, J.; Kaczmarska, I.; Ehrman, J.M. Interaction between bacteria and the domoic-acid-producing diatom Pseudo-nitzschia multiseries (Hasle) Hasle; Can bacteria produce domoic acid autonomously? Harmful Algae 2004, 3, 11–20. [Google Scholar] [CrossRef]
- Subashchandrabose, S.R.; Ramakrishnan, B.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Biotechnol. Adv. 2011, 29, 896–907. [Google Scholar] [CrossRef]
- Paul, C.; Mausz, M.A.; Pohnert, G. A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism. Metabolomics 2013, 9, 349–359. [Google Scholar] [CrossRef]
- Kouzuma, A.; Watanabe, K. Exploring the potential of algae/bacteria interactions. Curr. Opin. Biotechnol. 2015, 33, 125–129. [Google Scholar] [CrossRef]
- Lépinay, A.; Turpin, V.; Mondeguer, F.; Grandet-Marchant, Q.; Capiaux, H.; Baron, R.; Lebeau, T. First insight on interactions between bacteria and the marine diatom Haslea ostrearia: Algal growth and metabolomic fingerprinting. Algal Res. 2018, 31, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Moore, E.R.; Davie-Martin, C.L.; Giovannoni, S.J.; Halsey, K.H. Pelagibacter metabolism of diatom-derived volatile organic compounds imposes an energetic tax on photosynthetic carbon fixation. Environ. Microbiol. 2020, 22, 1720–1733. [Google Scholar] [CrossRef] [PubMed]
- Vuong, T.T.; Kwon, B.R.; Eom, J.I.; Shin, B.K.; Kim, S.M. Interaction between marine bacterium Stappia sp. K01 and diatom Phaeodactylum tricornutum through extracellular fatty acids. J. Appl. Phycol. 2020, 32, 71–82. [Google Scholar] [CrossRef]
Species | Oxylipins (μM)/Diatom | Morphological Effects | Molecular Effects | Reference |
---|---|---|---|---|
P. lividus | DD, HD, OD and OT (0.658–32) | Cleavage inhibition; Malformed plutei with decadienal | Not detected | [64] |
P. lividus | DD (0.002–0.03) | Increase of endogenous NO levels and consequently apoptosis induction | Upregulation of hsp70 and caspase-8; downregulation of NOS | [65] |
P. lividus | DD (0.001–0.0023) | Differentially expressed genes with dose dependent effect | Upregulation of hsp70, hsp56, hsp60, hat, BP10, 14-3-3ε, p38 MAPK, GS and MTase; downregulation of sox9, uni, SM30, Nec and SM50 | [66] |
P. lividus | DD (0.5–2.5), HD (1.0–6.0) and OD (2.0–9.0) | Dose-dependent malformations of sea urchin plutei | Upregulation of hsp70, hat; downregulation of SM50, Wnt6, MT4 and MT6 | [67] |
S. droebachiensis E. acutus | C. socialis, S. marinoi, C. furcellatus, A. longicornis, T. gravida and P. glacialis (20 and 50 μg/L) | Blocks of first mitotic division after 4 hpf with S. marinoi | Not detected | [68] |
E. mathaei | DD (0.4–1.2), HD (0.5–1.5) and OD (0.6–1.7) | Dose-dependent malformations of sea urchin plutei | Not detected | [69] |
P. lividus | 5-, 9-, 11-, 15-HEPE (100), DD (3.3), HD (9.0) and OD (11.0) | Impairment at blastula and pluteus stage with PUAs and HEPEs | Activation of caspase-8 and caspase-3/7 | [70] |
P. lividus | DD (1.0–2.3), HD (2.0–6.0) and OD (2.5–8.0) | Not detected | Upregulation of MTase and p38 MAPK; downregulation of MT6, CAT Alix and SM50 | [71] |
P. lividus | 5- and 15-HEPE (6–30) | Dose-dependent malformations of sea urchin plutei | Upregulation of hsp70, hsp56, 14-3-3ε, Blimp and MT5; downregulation of HIF1A and SM50 | [72] |
P. lividus | DD (1.6), HD (3.0) and OD (4.5) | Not detected | Upregulation of Jun and Foxo | [73] |
P. lividus | Mixture of 5-, 9-, 11-, 15-HEPEs (1.0–7.0) | Synergic effect of HEPEs | Downregulation of MTase, p38 MAPK and Alix | [74] |
P. lividus | N. shiloi (1.8) and C. closterium (1.6) | Malformed plutei | Upregulation of Blimp, hsp70, hsp60, GS, cytb, 14-3-3ε, Nec, p19, jun, Blimp, Wnt6, nodal, FoxG, Foxo, OneCut, MT, CAT, MDR1; downregulation of MTase, p53, HIF1A, SM30, BMP5/7, uni, FOXA, GFI1, δ-2-catenin, VEGF and MT8 | [75] |
P. lividus | Mixture of DD (0.5), HD (1.0) and OD (1.5) | Synergic effect of PUAs | Downregulation of cytb, caspase-8, Alix, δ-2-catenin, tcf4, GFI1, OneCut, TAK1 and MT7 | [76] |
P. lividus | C. scutellum (1.5) and Diploneis sp. (1.6) | Malformed plutei with Diploneis sp. | Upregulation of p53, GS, Alix, Wnt5, NF-kB, ERCC3, p16, MT, CAT and MDR1; downregulation of δ-2-catenin, hsp70, hsp60, tcf4 and MT8 | [77] |
P. lividus | Mixture of PUAs (DD 0.3, HD 0.7 and OD 1) and HEPEs (1.6) | Higher morphological effects than those detected with individual oxylipins and PUAs/HEPEs mixtures | Upregulation of ADMP2, Delta, Goosecoid, KIF19, jun and CAT; downregulation of ARF1, GS, HIF1A and sox9 | [78] |
Species | Oxylipins/Diatom | Morphological Effects | Molecular Effects | Reference |
---|---|---|---|---|
A. tonsa P. elongates T. longicornis | S. marinoi GF04-9B (264 μm3), GF04-1G (622 μm3) and GF04-7J (141 μm3) | Reduction of egg production and hatching success | Not detected | [84] |
T. stylifera | S. marinoi and S. pseudocostatum (60*103 cells/mL), T. rotula CCMP1647 and CCMP1018 (8*103 cells/mL) | Reduction of egg production and viability, naupliar and female survival | Not detected | [85] |
T. stylifera | T. rotula (2036 μm3) and S. marinoi (196 μm3) | Increase of mortality | Not detected | [86] |
T. stylifera | 15-HEPE, DD and HD (1.0 to 20 μg/mL) | Reduction of egg production, naupliar and female survival | Not detected | [87] |
C. finmarchicus | S. marinoi G4 (400 cells/mL and 1000 cells/mL) | No effect on hatching success and naupliar survival | Not detected | [88] |
C. helgolandicus | S. marinoi (45,000–60,000 cells/mL) | Not detected | Downregulation of ATUB and BTUB | [89] |
C. helgolandicus | S. marinoi (45,000–60,000 cells/mL) and C. socialis (48,000–58,000 cells/mL) | Not detected | Upregulation of CYP4; downregulation of GST, GSH-S, SOD, ALDH6, ALDH2, CARP, CAS, IAP, ATUB | [90] |
A. bifilosa | S. marinoi (41.6 μgC/cell) | Reduction of egg production | Not detected | [91] |
C. helgolandicus | S. marinoi (45,000–6,0000 cells/mL) | Not detected | Upregulation of HSP70, GST, SOD, ALDH3, ALDH8, ALDH9, BTUB | [92] |
T. stylifera | DD (0.5 to 2 μg/mL) | Reduction of egg production, hatching success and increase of mortality | Not detected | [24] |
C. helgolandicus | S. marinoi (45,000 cells/mL) | Not detected | Upregulation of HSP70, cyclin B1, glicoprotein 93, chaperonin-subunit ETA, diphosphate kinase, finger protein 121,14-3-3-protein, superoxide dismutase; downregulation of proteasome subunit | [93] |
P. annandalei | DD (0.75 to 4.5 μM) | Dose-dependent reduction of female survival and nauplii production | Not detected | [94] |
A. clausi C. helgolandicus | PUAs (0.97 μg/mg protein in 2004 and 1.2 μg/mg protein in 2005) and oxygenated fatty acids (3.6 μg/mg protein in 2004 and 14 μg/mg protein in 2005) | Reduction of egg production and hatching success | Not detected | [40] |
C. sinicus | S. marinoi (45,000 cells/mL) | Not detected | Upregulation of ALDH2, ALDH8, ALDH9, SOD, GSH-S, GST, CAS, CARP; downregulation of HSP70 | [95] |
P. latisetosa | S. marinoi (104 to 106 cells/mL) | Reduction of egg production, hatching success and incomplete naupliar development | Not detected | [96] |
C. helgolandicus | oxygenated fatty acids (0.001 to 1389.13 ng/mg) | Reduction of egg production and hatching success | Upregulation of ALDH8, ALDH7, ALDH6, CAT, GST, HSP40, HSP70; downregulation of CAS, CARP, BTUB, ATUB, ALDH3, SOD, CYP | [41] |
T. japonicus A. pacifica P. annandalei | C. muelleri and N. closterium f. minutissima (0.35 to 17.00 μgC/mL for T. japonicus and 0.35 to 8.5 μgC/mL for A. pacifica and P. annandalei) | Incomplete naupliar development | Not detected | [97] |
Species | Oxylipins (μM)/Extract | Morphological Effects | Molecular Effects | Reference |
---|---|---|---|---|
N. virens | DD (up to 50) | Dose- and time-dependent effects on reproductive and cycle-life | Not detected | [99] |
C. intestinalis | DD (0.8–8.9) | Delay or block of metamorphosis and decrease of endogenous NO levels | Upregulation of gclm and ggt | [100] |
C. intestinalis | DD (2–3.3) | Dose-dependent malformations and delay of larvae | Upregulation of gclm, gst; downregulation of hox1, hox12, cdx | [101] |
Microzooplankton | Mixtures of HD (0.005–0.02) and OD (0.0005–0.002) | Dose-dependent delay of growth | Not detected | [102] |
O. dioica | DD (0.33–16.42), S. marinoi and C. affinis extracts (5–100) | Dose-dependent aberrations of chordate embryos | Upregulation of gclm, Aldh3, Aldh2, Aldh8 | [103] |
R. canadum | DD (0, 0.1, 0.3, 0.5, 0.7, 1.0) | Decreasing of larval survival and juvenile growth | Not detected | [104] |
Oxylipins/Diatom | Target Cells/Organism | Activity | Reference |
---|---|---|---|
DD and DT | Human colon adenocarcinoma (Caco2) | Anticancer | [7] |
DD | B. proboscidea and T. heterouncinata | Anti-parasitic | [119] |
DD | S. salar | Anti-parasitic | [120] |
C. scutellum parva | Breast carcinoma (BT20) | Anticancer | [121] |
DD, HD, OD | Adenocarcinoma (A549 and COLO 205) | Anticancer | [63] |
C. debaryana | TNF-α, IL-1β, IL-6 and IL-17 | Anti-inflammatory | [122] |
S. marinoi | Human melanoma (A2058) and S. aureus | Anti-cancer and anti-bacterial | [123] |
S. costatum, C. pseudocurvisetus | M. tuberculosis and M. bovis | Anti-tuberculosis | [124] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruocco, N.; Albarano, L.; Esposito, R.; Zupo, V.; Costantini, M.; Ianora, A. Multiple Roles of Diatom-Derived Oxylipins within Marine Environments and Their Potential Biotechnological Applications. Mar. Drugs 2020, 18, 342. https://doi.org/10.3390/md18070342
Ruocco N, Albarano L, Esposito R, Zupo V, Costantini M, Ianora A. Multiple Roles of Diatom-Derived Oxylipins within Marine Environments and Their Potential Biotechnological Applications. Marine Drugs. 2020; 18(7):342. https://doi.org/10.3390/md18070342
Chicago/Turabian StyleRuocco, Nadia, Luisa Albarano, Roberta Esposito, Valerio Zupo, Maria Costantini, and Adrianna Ianora. 2020. "Multiple Roles of Diatom-Derived Oxylipins within Marine Environments and Their Potential Biotechnological Applications" Marine Drugs 18, no. 7: 342. https://doi.org/10.3390/md18070342
APA StyleRuocco, N., Albarano, L., Esposito, R., Zupo, V., Costantini, M., & Ianora, A. (2020). Multiple Roles of Diatom-Derived Oxylipins within Marine Environments and Their Potential Biotechnological Applications. Marine Drugs, 18(7), 342. https://doi.org/10.3390/md18070342