Marine-Derived Macrocyclic Alkaloids (MDMAs): Chemical and Biological Diversity
Abstract
:1. Introduction
2. Macrocyclic Alkaloids
2.1. Macrocycles Containing a Pyrrole Moiety
Densanins
2.2. Macrocycles Containing a Quinoline Moiety
Njaoamines
2.3. Macrocycles Containing a Bis-Quinolizidine Moiety
Petrosins
2.4. Macrocycles Containing a Bis-1-Oxaquinolizidine Moiety
Xestospongins/Araguspongines
2.5. Macrocycles Containing a 3-Alkylpiperidine Moiety
2.5.1. Pentacyclic Derivatives
Saraines/Sarains
Madangamines
Haliclonadiamines
Ingenamines and Ingamines
2.5.2. Tetracyclic Derivatives
Halicyclamines
Arenosclerins
2.6. Manzamines
2.6.1. Pentacyclic Manzamines
2.6.2. Tetracyclic Manzamines
2.6.3. Monomacrocycle Containing Manzamines and Related Compounds
2.6.4. Structure–Activity Relationship (SAR) of Manzamine Derivatives on Antimalarial Activity
2.7. Macrocycles Containing 3-Alkyl Pyridinium Salts
2.7.1. Cyclostellettamines
2.7.2. Njaoaminiums
2.8. Motuporamines
3. Biosynthetic Considerations
4. Conclusion and Future Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Nalini, S.; Richard, D.S.; Riyaz, S.M.; Kavitha, G.; Inbakandan, D. Antibacterial macro molecules from marine organisms. Int. J. Biol. Macromol. 2018, 115, 696–710. [Google Scholar] [CrossRef] [PubMed]
- Arora, G.; Kulshreshtha, A.; Arora, K.; Talwar, P.; Raj, R.; Grewal, G.; Sajid, A.; Kukreti, R. Emerging themes in drug resistance. In Drug Resistance in Bacteria, Fungi, Malaria, and Cancer; Arora, G., Sajid, A., Kalia, V.C., Eds.; Springer: Cham, Switzerland, 2017; pp. 1–630. [Google Scholar]
- Pereira, F.; Aires-de-Sousa, J. Computational methodologies in the exploration of marine natural product leads. Mar. Drugs 2018, 16, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakshmi, V.; Srivastava, S.; Mishra, S.K.; Misra, S.; Verma, M.; Misra-Bhattacharya, S. In vitro and in vivo antifilarial potential of marine sponge, Haliclona exigua (Kirkpatrick), against human lymphatic filarial parasite Brugia malayi: Antifilarial activity of H. exigua. Parasitol. Res. 2009, 105, 1295–1301. [Google Scholar] [CrossRef]
- Pereira, F. Have marine natural product drug discovery efforts been productive and how can we improve their efficiency? Expert Opin. Drug Discov. 2019, 14, 717–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higa, T.; Tanaka, J.-I.; Tan, L.T. Cytotoxic macrocycles from marine sponges. In New Trends in Natural Product Chemistry, 1st ed.; Rahman, A.-U., Le Quesne, P.W., Eds.; CRC Press: Boca Raton, FL, USA, 1998; pp. 109–120. [Google Scholar]
- Rangel, M.; Falkenberg, M. An overview of the marine natural products in clinical trials and on the market. J. Coast. Life Med. 2015, 3, 421–428. [Google Scholar]
- De Oliveira, J.H.H.L.; Grube, A.; Köck, M.; Berlinck, R.G.S.; Macedo, M.L.; Ferreira, A.G.; Hajdu, E. Ingenamine G and cyclostellettamines G−I, K, and L from the new Brazilian species of marine sponge Pachychalina sp. J. Nat. Prod. 2004, 67, 1685–1689. [Google Scholar] [CrossRef] [Green Version]
- Gafni, J.; Munsch, J.A.; Lam, T.H.; Catlin, M.C.; Costa, L.G.; Molinski, T.F.; Pessah, I.N. Xestospongins: Potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Neuron 1997, 19, 723–733. [Google Scholar] [CrossRef] [Green Version]
- Ang, K.K.H.; Holmes, M.J.; Higa, T.; Hamann, M.T.; Kara, U.A.K. In vivo antimalarial activity of the beta-carboline alkaloid manzamine A. Antimicrob. Agents Chemother. 2000, 44, 1645–1649. [Google Scholar] [CrossRef] [Green Version]
- Hwang, B.S.; Oh, J.S.; Jeong, E.J.; Sim, C.J.; Rho, J.-R. Densanins A and B, new macrocyclic pyrrole alkaloids isolated from the marine sponge Haliclona densaspicula. Org. Lett. 2012, 14, 6154–6157. [Google Scholar] [CrossRef]
- Bachiller, S.; Jiménez-Ferrer, I.; Paulus, A.; Yang, Y.; Swanberg, M.; Deierborg, T.; Boza-Serrano, A. Microglia in neurological diseases: A road map to brain-disease dependent-inflammatory response. Front. Cell. Neurosci. 2018, 12, 488. [Google Scholar] [CrossRef] [Green Version]
- Reyes, F.; Fernandez, R.; Urda, C.; Francesch, A.; Bueno, S.; de Eguilior, C.; Cuevas, C. Njaoamines A-F, new cytotoxic polycyclic alkaloids from the haplosclerid sponge Reniera sp. Tetrahedron 2007, 63, 2432–2438. [Google Scholar] [CrossRef]
- Sorek, H.; Rudi, A.; Benayahu, Y.; Kashman, Y. Njaoamines G and H, two new cytotoxic polycyclic alkaloids and a tetrahydroquinolone from the marine sponge Neopetrosia sp. Tetrahedron Lett. 2007, 48, 7691–7694. [Google Scholar] [CrossRef]
- Urda, C.; Pérez, M.; Rodríguez, J.; Fernández, R.; Jiménez, C.; Cuevas, C. Njaoamine I, a cytotoxic polycyclic alkaloid from the Haplosclerida sponge Haliclona (Reniera) sp. Tetrahedron Lett. 2018, 59, 2577–2580. [Google Scholar] [CrossRef]
- Braekman, J.C.; Daloze, D.; de Abreu, P.M.; Piccinni-Leopardi, C.; Germain, G.; Van Meerssche, M. A novel type of bis-quinolizidine alkaloid from the sponge: Petrosia seriata. Tetrahedron Lett. 1982, 23, 4277–4280. [Google Scholar] [CrossRef]
- Braekman, J.C.; Daloze, D.; Defay, N.; Zimmermann, D. Petrosin-A and-B, two new bis-quinolizidine alkaloids from the sponge Petrosia Seriata. Bull. Soc. Chim. Belg. 1984, 93, 941–944. [Google Scholar] [CrossRef]
- Braekman, J.C.; Daloze, D.; Cimino, G.; Trivellone, E. 2D-NMR study of petrosins: Revised structure for petrosin-A. Bull. Soc. Chim. Belg. 1988, 97, 519–524. [Google Scholar] [CrossRef]
- Kobayashi, M.; Kawazoe, K.; Kitagawa, I. Aragupetrosine A, a new vasodilative macrocyclic quinolizidine alkaloid from an Okinawan marine sponge Xestospongia sp. Tetrahedron Lett. 1989, 30, 4149–4152. [Google Scholar] [CrossRef]
- Dung, D.T.; Hang, D.T.T.; Yen, P.H.; Quang, T.H.; Nhiem, N.X.; Tai, B.H.; Minh, C.V.; Kim, Y.C.; Kim, D.C.; Oh, H.; et al. Macrocyclic bis-quinolizidine alkaloids from Xestospongia muta. Nat. Prod. Res. 2019, 33, 400–406. [Google Scholar] [CrossRef]
- Goud, T.V.; Reddy, N.S.; Swamy, N.R.; Ram, T.S.; Venkateswarlu, Y. Anti-HIV active petrosins from the marine sponge Petrosia similis. Biol. Pharm. Bull. 2003, 26, 1498–1501. [Google Scholar] [CrossRef] [Green Version]
- Iwagawa, T.; Kaneko, M.; Okamura, H.; Nakatani, M.; van Soest, R.W.; Shiro, M. A new quinolizidine alkaloid from the Papua New Guinean sponge Xestospongia exigua. J. Nat. Prod. 2000, 63, 1310–1311. [Google Scholar] [CrossRef]
- Nakagawa, M.; Endo, M.; Tanaka, N.; Lee, G.P. Structures of xestospongin A, B, C and D, novel vasodilative compounds from marine sponge, Xestospongia exigua. Tetrahedron Lett. 1984, 25, 3227–3230. [Google Scholar] [CrossRef]
- Singh, K.S.; Das, B.; Naik, C.G. Quinolizidines alkaloids: Petrosin and xestospongins from the sponge Oceanapia sp. J. Chem. Sci. 2011, 123, 601–607. [Google Scholar] [CrossRef]
- Moon, S.-S.; MacMillan, J.B.; Olmstead, M.M.; Ta, T.A.; Pessah, I.N.; Molinski, T.F. (+)-7 S-Hydroxyxestospongin A from the marine sponge Xestospongia sp. and absolute configuration of (+)-xestospongin D. J. Nat. Prod. 2002, 65, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Quirion, J.-C.; Sevenet, T.; Husson, H.-P.; Weniger, B.; Debitus, C. Two new alkaloids from Xestospongia sp., a new Caledonian sponge. J. Nat. Prod. 1992, 55, 1505–1508. [Google Scholar] [CrossRef]
- Reddy, M.V.R.; Faulkner, D.J. 3β,3′β-Dimethylxestospongin C, a new bis-1-oxaquinolizidine alkaloid from the Palauan sponge Xestospongia sp. Nat. Prod. Lett. 1997, 11, 53–59. [Google Scholar] [CrossRef]
- Li, Y.; Qin, S.; Guo, Y.-W.; Gu, Y.-C.; van Soest, R.W. 9′-Epi-3β,3′β-dimethylxestospongin C, a new macrocyclic diamine alkaloid from the Hainan sponge Neopetrosia exigua. Planta Med. 2011, 77, 179–181. [Google Scholar] [CrossRef]
- Kobayashi, M.; Kawazoe, K.; Kitagawa, I. Araguspongines B, C, D, E, F, G, H, and J, new vasodilative bis-1-oxaquinolizidine alkaloids from an Okinawan marine sponge, Xestospongia sp. Chem. Pharm. Bull. 1989, 37, 1676–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkateswarlu, Y.; Reddy, M.V.R.; Rao, J.V. bis-1-Oxaquinolizidines from the sponge Haliclona exigua. J. Nat. Prod. 1994, 57, 1283–1285. [Google Scholar] [CrossRef]
- Hoye, T.R.; North, J.T.; Yao, L.J. Conformational considerations in 1-oxaquinolizidines related to the xestospongin/araguspongine family: Reassignment of stereostructures for araguspongines B and E. J. Org. Chem. 1994, 59, 6904–6910. [Google Scholar] [CrossRef]
- Boerjesson, L.; Csoeregh, I.; Welch, C.J. Synthesis and conformational analysis of 2, 9-disubstituted 1-oxaquinolizidines. J. Org. Chem. 1995, 60, 2989–2999. [Google Scholar] [CrossRef]
- Orabi, K.Y.; El Sayed, K.A.; Hamann, M.T.; Dunbar, D.C.; Al-Said, M.S.; Higa, T.; Kelly, M. Araguspongines K and L, new bioactive bis-1-oxaquinolizidine N-oxide alkaloids from Red Sea specimens of Xestospongia exigua. J. Nat. Prod. 2002, 65, 1782–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Mishima, Y.; Fujiwara, T.; Nagai, H.; Kitazawa, A.; Mine, Y.; Kobayashi, H.; Yao, X.; Yamada, J.; Oda, T. Isolation of araguspongine M, a new stereoisomer of an araguspongine/xestospongin alkaloid, and dopamine from the marine sponge Neopetrosia exigua collected in Palau. Mar. Drugs 2004, 2, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, J.; Higa, T.; Garcia, G.; Ruffles, G. bis-1-Oxaquinolizidine alkaloids from a marine sponge with antitumor activity. WO 97/04783. 13 February 1997. [Google Scholar]
- Mol, V.L.; Raveendran, T.; Parameswaran, P. Antifouling activity exhibited by secondary metabolites of the marine sponge, Haliclona exigua (Kirkpatrick). Int. Biodeterior. Biodegradation. 2009, 63, 67–72. [Google Scholar]
- Akl, M.R.; Ayoub, N.M.; Ebrahim, H.Y.; Mohyeldin, M.M.; Orabi, K.Y.; Foudah, A.I.; Sayed, K.A.E. Araguspongine C induces autophagic death in breast cancer cells through suppression of c-Met and HER2 receptor tyrosine kinase signaling. Mar. Drugs 2015, 13, 288–311. [Google Scholar] [CrossRef] [Green Version]
- Jaimovich, E.; Mattei, C.; Liberona, J.L.; Cardenas, C.; Estrada, M.; Barbier, J.; Debitus, C.; Laurent, D.; Molgó, J. Xestospongin B, a competitive inhibitor of IP3-mediated Ca2+ signalling in cultured rat myotubes, isolated myonuclei, and neuroblastoma (NG108-15) cells. FEBS Lett. 2005, 579, 2051–2057. [Google Scholar] [CrossRef] [PubMed]
- Cimino, G.; Stefano, S.D.; Scognamiglio, G.; Sodano, G.; Trivellone, E. Sarains: A new class of alkaloids from the marine sponge Reniera sarai. Bull. Soc. Chim. Belg. 1986, 95, 783–800. [Google Scholar] [CrossRef]
- Cimino, G.; Spinella, A.; Trivellone, E. Isosarain-1: A new alkaloid from the Mediterranean sponge Reniera sarai. Tetrahedron Lett. 1989, 30, 133–136. [Google Scholar] [CrossRef]
- Guo, Y.; Trivellone, E.; Scognamiglio, G.; Cimino, G. Absolute stereochemistry of isosaraine-1 and isosaraine-2. Tetrahedron Lett. 1998, 39, 463–466. [Google Scholar] [CrossRef]
- Guo, Y.; Madaio, A.; Trivellone, E.; Scognamiglio, G.; Cimino, G. Further studies of alkaloids from Reniera sarai: Structures of saraine-3 and isosaraine-3; Absolute stereochemistry of saraine-1 and saraine-2. Tetrahedron 1996, 52, 14961–14974. [Google Scholar] [CrossRef]
- Guo, Y.; Madaio, A.; Trivellone, E.; Scognamiglio, G.; Cimino, G. Structural and stereochemical studies of saraines: Macrocyclic alkaloids of the sponge Reniera sarai. Tetrahedron 1996, 52, 8341–8348. [Google Scholar] [CrossRef]
- Cimino, G.; Scognamiglio, G.; Spinella, A.; Trivellone, E. Structural studies on saraine A. J. Nat. Prod. 1990, 53, 1519–1525. [Google Scholar] [CrossRef]
- Caprioli, V.; Cimino, G.; De, A.G.; Madaio, A.; Scognamiglio, G.; Trivellone, E. Selected biological activities of saraines. Comp. Biochem. Physiol. B 1992, 103, 293–296. [Google Scholar] [CrossRef]
- Kong, F.; Andersen, R.J.; Allen, T.M. Madangamine A, a novel cytotoxic alkaloid from the marine sponge Xestospongia ingens. J. Am. Chem. Soc. 1994, 116, 6007–6008. [Google Scholar] [CrossRef]
- Kong, F.; Graziani, E.I.; Andersen, R.J. Madangamines B−E, pentacyclic alkaloids from the marine sponge Xestospongia ingens. J. Nat. Prod. 1998, 61, 267–271. [Google Scholar] [CrossRef]
- De Oliveira, J.; Nascimento, A.M.; Kossuga, M.H.; Cavalcanti, B.C.; Pessoa, C.O.; Moraes, M.O.; Macedo, M.L.; Ferreira, A.G.; Hajdu, E.; Pinheiro, U.S.; et al. Cytotoxic alkylpiperidine alkaloids from the Brazilian marine sponge Pachychalina alcaloidifera. J. Nat. Prod. 2007, 70, 538–543. [Google Scholar] [CrossRef]
- Amat, M.; Pérez, M.; Ballette, R.; Proto, S.; Bosch, J. The alkaloids of the madangamine group. In The Alkaloids; Knölker, H.-J., Ed.; Elsevier: Oxford, UK, 2015; Volume 74, pp. 159–199. [Google Scholar]
- Abdjul, D.B.; Yamazaki, H.; Kanno, S.; Takahashi, O.; Kirikoshi, R.; Ukai, K.; Namikoshi, M. Haliclonadiamine derivatives and 6-epi-monanchorin from the marine sponge Halichondria panicea collected at Iriomote Island. J. Nat. Prod. 2016, 79, 1149–1154. [Google Scholar] [CrossRef]
- Baker, B.J.; Scheuer, P.J.; Shoolery, J.N. Papuamine, an antifungal pentacyclic alkaloid from a marine sponge, Haliclona sp. J. Am. Chem. Soc. 1988, 110, 965–966. [Google Scholar] [CrossRef]
- Fahy, E.; Molinski, T.F.; Harper, M.K.; Sullivan, B.W.; Faulkner, D.J.; Parkanyi, L.; Clardy, J. Haliclonadiamine, an antimicrobial alkaloid from the sponge Haliclona sp. Tetrahedron Lett. 1988, 29, 3427–3428. [Google Scholar] [CrossRef]
- Hou, X.M.; Wang, C.Y.; Gerwick, W.H.; Shao, C.L. Marine natural products as potential anti-tubercular agents. Eur. J. Med. Chem. 2019, 165, 273–292. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-B.; Imler, G.H.; Baldridge, K.K.; O’Connor, R.D.; Siegel, J.S.; Deschamps, J.R.; Bewley, C.A. X-ray crystallography and unexpected chiroptical properties reassign the configuration of haliclonadiamine. J. Am. Chem. Soc. 2020, 142, 2755–2759. [Google Scholar] [CrossRef]
- Kong, F.; Andersen, R.J.; Allen, T.M. Ingamines A and B, new cytotoxic alkaloids from the marine sponge Xestospongia ingens. Tetrahedron 1994, 50, 6137–6144. [Google Scholar] [CrossRef]
- Kong, F.; Andersen, R.J.; Allen, T.M. Ingenamine, a novel pentacyclic alkaloid from the marine sponge Xestospongia ingens. Tetrahedron Lett. 1994, 35, 1643–1646. [Google Scholar] [CrossRef]
- Kong, F.; Andersen, R.J. Ingenamine alkaloids isolated from the sponge Xestospongia ingens: Structures and absolute configurations. Tetrahedron 1995, 51, 2895–2906. [Google Scholar] [CrossRef]
- Ilias, M.; Ibrahim, M.A.; Khan, S.I.; Jacob, M.R.; Tekwani, B.L.; Walker, L.A.; Samoylenko, V. Pentacyclic ingamine alkaloids, a new antiplasmodial pharmacophore from the marine sponge Petrosid Ng5 Sp5. Planta Med. 2012, 78, 1690–1697. [Google Scholar] [CrossRef]
- Rodriguez, J.; Peters, B.M.; Kurz, L.; Schatzman, R.C.; McCarley, D.; Lou, L.; Crews, P. An alkaloid protein kinase C inhibitor, xestocyclamine A, from the marine sponge Xestospongia sp. J. Am. Chem. Soc. 1993, 115, 10436–10437. [Google Scholar] [CrossRef]
- Jaspars, M.; Pasupathy, V.; Crews, P. A tetracyclic diamine alkaloid, halicyclamine A, from the marine sponge Haliclona sp. J. Org. Chem. 1994, 59, 3253–3255. [Google Scholar] [CrossRef]
- Harrison, B.; Talapatra, S.; Lobkovsky, E.; Clardy, J.; Crews, P. The structure and biogenetic origin of (-) halicyclamine B from a Xestospongia sponge. Tetrahedron Lett. 1996, 37, 9151–9154. [Google Scholar] [CrossRef]
- Charan, R.D.; Garson, M.J.; Brereton, I.M.; Willis, A.C.; Hooper, J.N. Haliclonacyclamines A and B, cytotoxic alkaloids from the tropical marine sponge Haliclona sp. Tetrahedron 1996, 52, 9111–9120. [Google Scholar] [CrossRef]
- Arai, M.; Ishida, S.; Setiawan, A.; Kobayashi, M. Haliclonacyclamines, tetracyclic alkylpiperidine alkaloids, as anti-dormant mycobacterial substances from a marine sponge of Haliclona sp. Chem. Pharm. Bull. 2009, 57, 1136–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mudianta, I.W.; Katavic, P.L.; Lambert, L.K.; Hayes, P.Y.; Banwell, M.G.; Munro, M.H.; Bernhardt, P.V.; Garson, M.J. Structure and absolute configuration of 3-alkylpiperidine alkaloids from an Indonesian sponge of the genus Halichondria. Tetrahedron 2010, 66, 2752–2760. [Google Scholar] [CrossRef]
- Arai, M.; Liu, L.; Fujimoto, T.; Setiawan, A.; Kobayashi, M. DedA protein relates to action-mechanism of halicyclamine A, a marine spongean macrocyclic alkaloid, as an anti-dormant mycobacterial substance. Mar. Drugs 2011, 9, 984–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mani, L.; Petek, S.; Valentin, A.; Chevalley, S.; Folcher, E.; Aalbersberg, W.; Debitus, C. The in vivo anti-plasmodial activity of haliclonacyclamine A, an alkaloid from the marine sponge, Haliclona sp. Nat. Prod. Res. 2011, 25, 1923–1930. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.J.; Field, K.L.; Charan, R.D.; Garson, M.J.; Brereton, M.; Willis, A.C. The haliclonacyclamines, cytotoxic tertiary alkaloids from the tropical marine sponge Haliclona sp. Tetrahedron 1998, 54, 8811–8826. [Google Scholar] [CrossRef]
- Torres, Y.R.; Berlinck, R.G.; Magalhães, A.; Schefer, A.B.; Ferreira, A.G.; Hajdu, E.; Muricy, G. Arenosclerins A−C and haliclonacyclamine E, new tetracyclic alkaloids from a Brazilian endemic Haplosclerid sponge Arenosclerab rasiliensis. J. Nat. Prod. 2000, 63, 1098–1105. [Google Scholar] [CrossRef]
- Torres, Y.R.; Berlinck, R.G.; Nascimento, G.G.; Fortier, S.C.; Pessoa, C.; de Moraes, M.O. Antibacterial activity against resistant bacteria and cytotoxicity of four alkaloid toxins isolated from the marine sponge Arenosclera brasiliensis. Toxicon 2002, 40, 885–891. [Google Scholar] [CrossRef]
- Chill, L.; Yosief, T.; Kashman, Y. Halichondramine, a new tetracyclic bipiperidine alkaloid from the marine sponge Halichondria sp. J. Nat. Prod. 2002, 65, 1738–1741. [Google Scholar] [CrossRef]
- Wei, X.; Nieves, K.; Rodríguez, A.D. Neopetrosiamine A, biologically active bis-piperidine alkaloid from the Caribbean Sea sponge Neopetrosia proxima. Bioorg. Med. Chem. Lett. 2010, 20, 5905–5908. [Google Scholar] [CrossRef] [Green Version]
- Kato, H.; El-Desoky, A.H.; Takeishi, Y.; Nehira, T.; Angkouw, E.D.; Mangindaan, R.E.P.; de Voogd, N.J.; Tsukamoto, S. Tetradehydrohalicyclamine B, a new proteasome inhibitor from the marine sponge Acanthostrongylophora ingens. Bioorg. Med. Chem. Lett. 2019, 29, 8–10. [Google Scholar] [CrossRef]
- Rodriguez, J. Bioactive natural products (part E); polycyclic amine alkaloids (3-alkylpiperidine alkaloids), novel narine bioactive compounds: Structure, synthesis and biochemical aspects. In Studies in Natural Products Chemistry, 1st ed.; Atta-ur-Rahman, Ed.; Elsevier Science, B.V.: Amsterdam, The Netherlands, 2000; Volume 24, pp. 573–681. [Google Scholar]
- Peng, J.; Rao, K.V.; Choo, Y.M.; Hamann, M.T. Manzamine alkaloids. In Modern Alkaloids: Structure, Isolation, Synthesis, and Biology; Fattorusso, E., Taglialatela-Scafati, O., Eds.; WILEY-VCH Verlag GmbH & Co.: Weinheim, Germany, 2008; pp. 189–232. [Google Scholar]
- Sakai, R.; Higa, T.; Jefford, C.W.; Bernardinelli, G. Manzamine A, a novel antitumor alkaloid from a sponge. J. Am. Chem. Soc. 1986, 108, 6404–6405. [Google Scholar] [CrossRef]
- Nakamura, H.; Deng, S.; Kobayashi, J.i.; Ohizumi, Y.; Tomotake, Y.; Matsuzaki, T.; Hirata, Y. Keramamine-A and-B, novel antimicrobial alkaloids from the Okinawan marine sponge Pellina sp. Tetrahedron Lett. 1987, 28, 621–624. [Google Scholar] [CrossRef]
- Rao, K.V.; Kasanah, N.; Wahyuono, S.; Tekwani, B.L.; Schinazi, R.F.; Hamann, M.T. Three new manzamine alkaloids from a common Indonesian sponge and their activity against infectious and tropical parasitic diseases. J. Nat. Prod. 2004, 67, 1314–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kallifatidis, G.; Hoepfner, D.; Jaeg, T.; Guzman, E.A.; Wright, A.E. The marine natural product manzamine A targets vacuolar ATPases and inhibits autophagy in pancreatic cancer cells. Mar. Drugs 2013, 11, 3500–3516. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.C.; Kuo, T.T.; Chang, H.Y.; Liu, W.S.; Hsia, S.M.; Huang, T.C. Manzamine A exerts anticancer activity against human colorectal cancer cells. Mar. Drugs 2018, 16, 252. [Google Scholar] [CrossRef] [Green Version]
- Hamann, M.; Alonso, D.; Martín-Aparicio, E.; Fuertes, A.; Pérez-Puerto, M.J.; Castro, A.; Morales, S.; Navarro, M.L.; del Monte-Millán, M.; Medina, M. Glycogen synthase kinase-3 (GSK-3) inhibitory activity and structure—Activity relationship (SAR) studies of the manzamine alkaloids. potential for Alzheimer’s disease. J. Nat. Prod. 2007, 70, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- Palem, J.R.; Mudit, M.; Hsia, S.V.; Sayed, K.A. Discovery and preliminary structure-activity relationship of the marine natural product manzamines as herpes simplex virus type-1 inhibitors. Z. Nat. C 2017, 72, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Ichiba, T.; Corgiat, J.M.; Scheuer, P.J.; Kelly-Borges, M. 8-Hydroxymanzamine A, a β-carboline alkaloid from a sponge, Pachypellina sp. J. Nat. Prod. 1994, 57, 168–170. [Google Scholar] [CrossRef]
- Ashok, P.; Ganguly, S.; Murugesan, S. Manzamine alkaloids: Isolation, cytotoxicity, antimalarial activity and SAR studies. Drug Discov. Today 2014, 19, 1781–1791. [Google Scholar] [CrossRef]
- Kobayashi, J.i.; Tsuda, M.; Kawasaki, N.; Sasaki, T.; Mikami, Y. 6-Hydroxymanzamine A and 3, 4-dihydromanzamine A, new alkaloids from the Okinawan marine sponge Amphimedon sp. J. Nat. Prod. 1994, 57, 1737–1740. [Google Scholar] [CrossRef]
- Crews, P.; Cheng, X.-C.; Adamczeski, M.; Rodríguez, J.; Jaspars, M.; Schmitz, F.J.; Traeger, S.C.; Pordesimo, E.O. 1,2,3,4-Tetrahydro-8-hydroxymanzamines, alkaloids from two different haplosclerid sponges. Tetrahedron 1994, 50, 13567–13574. [Google Scholar] [CrossRef]
- Kondo, K.; Shigemori, H.; Kikuchi, Y.; Ishibashi, M.; Sasaki, T.; Kobayashi, J. Ircinals A and B from the Okinawan marine sponge Ircinia sp.: Plausible biogenetic precursors of manzamine alkaloids. J. Org. Chem. 1992, 57, 2480–2483. [Google Scholar] [CrossRef]
- Watanabe, D.; Tsuda, M.; Kobayashi, J.i. Three new manzamine congeners from Amphimedon sponge. J. Nat. Prod. 1998, 61, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.-N.; Slebodnick, C.; Johnson, R.K.; Mattern, M.R.; Kingston, D.G. New cytotoxic manzamine alkaloids from a Palaun sponge. Tetrahedron 2000, 56, 5781–5784. [Google Scholar] [CrossRef]
- Yousaf, M.; El Sayed, K.A.; Rao, K.V.; Lim, C.W.; Hu, J.-F.; Kelly, M.; Franzblau, S.G.; Zhang, F.; Peraud, O.; Hill, R.T. 12,34-Oxamanzamines, novel biocatalytic and natural products from manzamine producing Indo-Pacific sponges. Tetrahedron 2002, 58, 7397–7402. [Google Scholar] [CrossRef]
- El Sayed, K.; Kelly, M.; Kara, U.; Ang, K.; Katsuyama, I.; Dunbar, D.; Khan, A.; Hamann, M. New manzamine alkaloids with potent activity against infectious diseases. J. Am. Chem. Soc. 2001, 123, 1804–1808. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, M.; Hammond, N.L.; Peng, J.; Wahyuono, S.; McIntosh, K.A.; Charman, W.N.; Mayer, A.M.; Hamann, M.T. New manzamine alkaloids from an Indo-Pacific sponge. Pharmacokinetics, oral availability, and the significant activity of several manzamines against HIV-I, AIDS opportunistic infections, and inflammatory diseases. J. Med. Chem. 2004, 47, 3512–3517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edrada, R.A.; Proksch, P.; Wray, V.; Witte, L.; Müller, W.; Van Soest, R.W. Four new bioactive manzamine-type alkaloids from the Philippine marine sponge Xestospongia ashmorica. J. Nat. Prod. 1996, 59, 1056–1060. [Google Scholar] [CrossRef] [Green Version]
- Furusato, A.; Kato, H.; Nehira, T.; Eguchi, K.; Kawabata, T.; Fujiwara, Y.; Losung, F.; Mangindaan, R.E.; de Voogd, N.J.; Takeya, M. Acanthomanzamines A–E with new manzamine frameworks from the marine sponge Acanthostrongylophora ingens. Org. Lett. 2014, 16, 3888–3891. [Google Scholar] [CrossRef]
- El-Desoky, A.H.; Kato, H.; Eguchi, K.; Kawabata, T.; Fujiwara, Y.; Losung, F.; Mangindaan, R.E.; de Voogd, N.J.; Takeya, M.; Yokosawa, H.; et al. Acantholactam and pre-neo-kauluamine, manzamine-related alkaloids from the Indonesian marine sponge Acanthostrongylophora ingens. J. Nat. Prod. 2014, 77, 1536–1540. [Google Scholar] [CrossRef]
- Yamada, M.; Takahashi, Y.; Kubota, T.; Fromont, J.; Ishiyama, A.; Otoguro, K.; Yamada, H.; Ōmura, S.; Kobayashi, J. Zamamidine C, 3,4-dihydro-6-hydroxy-10,11-epoxymanzamine A, and 3,4-dihydromanzamine J N-oxide, new manzamine alkaloids from sponge Amphimedon sp. Tetrahedron 2009, 65, 2313–2317. [Google Scholar] [CrossRef]
- Kubota, T.; Nakamura, K.; Kurimoto, S.I.; Sakai, K.; Fromont, J.; Gonoi, T.; Kobayashi, J. Zamamidine D, a manzamine alkaloid from an Okinawan Amphimedon sp. marine sponge. J. Nat. Prod. 2017, 80, 1196–1199. [Google Scholar] [CrossRef]
- Kobayashi, J.; Watanabe, D.; Kawasaki, N.; Tsuda, M. Nakadomarin A, a novel hexacyclic manzamine-related alkaloid from Amphimedon sponge. J. Org. Chem. 1997, 62, 9236–9239. [Google Scholar] [CrossRef]
- Tsuda, M.; Kawasaki, N.; Kobayashi, J. Ircinols A and B, first antipodes of manzamine-related alkaloids from an Okinawan marine sponge. Tetrahedron 1994, 50, 7957–7960. [Google Scholar] [CrossRef]
- AlTarabeen, M.; Daletos, G.; Ebrahim, W.; Müller, W.E.; Hartmann, R.; Lin, W.; Proksch, P. Ircinal E, a new manzamine derivative from the Indonesian marine sponge Acanthostrongylophora ingens. Nat. Prod. Commun. 2015, 10, 1951–1953. [Google Scholar] [CrossRef] [Green Version]
- Rao, K.V.; Donia, M.S.; Peng, J.; Garcia-Palomero, E.; Alonso, D.; Martinez, A.; Medina, M.; Franzblau, S.G.; Tekwani, B.L.; Khan, S.I. Manzamine B and E and ircinal A related alkaloids from an Indonesian Acanthostrongylophora sponge and their activity against infectious, tropical parasitic, and Alzheimer’s diseases. J. Nat. Prod. 2006, 69, 1034–1040. [Google Scholar] [CrossRef] [Green Version]
- Ichiba, T.; Sakai, R.; Kohmoto, S.; Saucy, G.; Higa, T. New manzamine alkaloids from a sponge of the genus Xestospongia. Tetrahedron Lett. 1988, 29, 3083–3086. [Google Scholar] [CrossRef]
- Sakai, R.; Kohmoto, S.; Higa, T.; Jefford, C.W.; Bernardinelli, G. Manzamine B and C, two novel alkaloids from the sponge Haliclona sp. Tetrahedron Lett. 1987, 28, 5493–5496. [Google Scholar] [CrossRef]
- Tsuda, M.; Inaba, K.; Kawasaki, N.; Honma, K.; Kobayashi, J.i. Chiral resolution of (±)-keramaphidin B and isolation of manzamine L, a new β-carboline alkaloid from a sponge Amphimedon sp. Tetrahedron 1996, 52, 2319–2324. [Google Scholar] [CrossRef]
- Kim, C.K.; Riswanto, R.; Won, T.H.; Kim, H.; Elya, B.; Sim, C.J.; Oh, D.C.; Oh, K.B.; Shin, J. Manzamine alkaloids from an Acanthostrongylophora sp. sponge. J. Nat. Prod. 2017, 80, 1575–1583. [Google Scholar] [CrossRef]
- Tsuda, M.; Watanabe, D.; Kobayashi, J. Ma’eganedin A, a new manzamine alkaloid from Amphimedon sponge. Tetrahedron Lett. 1998, 39, 1207–1210. [Google Scholar] [CrossRef]
- Takahashi, Y.; Kubota, T.; Fromont, J.; Kobayashi, J.i. Zamamidines A and B, new manzamine alkaloids from the sponge Amphimedon species. Org. Lett. 2008, 11, 21–24. [Google Scholar] [CrossRef]
- Longley, R.E.; McConnell, O.J.; Essich, E.; Harmody, D. Evaluation of marine sponge metabolites for cytotoxicity and signal transduction activity. J. Nat. Prod. 1993, 56, 915–920. [Google Scholar] [CrossRef]
- Tsuda, M.; Kawasaki, N.; Kobayashi, J.i. Keramaphidin C and keramamine C plausible biogenetic precursors of manzamine C from an Okinawan marine sponge. Tetrahedron Lett. 1994, 35, 4387–4388. [Google Scholar] [CrossRef]
- Wahba, A.E.; Fromentin, Y.; Zou, Y.; Hamann, M.T. Acantholactone, a new manzamine related alkaloid with an unprecedented delta-lactone and epsilon-lactam ring system. Tetrahedron Lett. 2012, 53, 6329–6331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, K.V.; Santarsiero, B.D.; Mesecar, A.D.; Schinazi, R.F.; Tekwani, B.L.; Hamann, M.T. New manzamine alkaloids with activity against infectious and tropical parasitic diseases from an Indonesian sponge. J. Nat. Prod. 2003, 66, 823–828. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Chen, Y.-J.; Aoki, S.; In, Y.; Ishida, T.; Kitagawa, I. Four new β-carboline alkaloids isolated from two Okinawan marine sponges of Xestospongia sp. and Haliclona sp. Tetrahedron 1995, 51, 3727–3736. [Google Scholar] [CrossRef]
- Peng, J.; Hu, J.-F.; Kazi, A.B.; Li, Z.; Avery, M.; Peraud, O.; Hill, R.T.; Franzblau, S.G.; Zhang, F.; Schinazi, R.F. Manadomanzamines A and B: A novel alkaloid ring system with potent activity against mycobacteria and HIV-1. J. Am. Chem. Soc. 2003, 125, 13382–13386. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, J.i.; Tsuda, M.; Kawasaki, N.; Matsumoto, K.; Adachi, T. Keramaphidin B, a novel pentacyclic alkaloid from a marine sponge Amphimedon sp.: A plausible biogenetic precursor of manzamine alkaloids. Tetrahedron Lett. 1994, 35, 4383–4386. [Google Scholar] [CrossRef]
- Ohtani, I.I.; Ichiba, T.; Isobe, M.; Kelly-Borges, M.; Scheuer, P.J. Kauluamine, an unprecedented manzamine dimer from an Indonesian marine sponge, Prianos sp. J. Am. Chem. Soc. 1995, 117, 10743–10744. [Google Scholar] [CrossRef]
- Fusetani, N.; Asai, N.; Matsunaga, S.; Honda, K.; Yasumuro, K. Cyclostellettamines AF, pyridine alkaloids which inhibit binding of methyl quinuclidinyl benzilate (QNB) to muscarinic acetylcholine receptors, from the marine sponge, Stelletta maxima. Tetrahedron Lett. 1994, 35, 3967–3970. [Google Scholar] [CrossRef]
- De Oliveira, J.; Seleghim, M.; Timm, C.; Grube, A.; Köck, M.; Nascimento, G.; Martins, A.; Silva, E.; De Souza, A.; Minarini, P. Antimicrobial and antimycobacterial activity of cyclostellettamine alkaloids from sponge Pachychalina sp. Mar. Drugs 2006, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Oku, N.; Nagai, K.; Shindoh, N.; Terada, Y.; van Soest, R.W.; Matsunaga, S.; Fusetani, N. Three new cyclostellettamines, which inhibit histone deacetylase, from a marine sponge of the genus Xestospongia. Bioorg. Med. Chem. Lett. 2004, 14, 2617–2620. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.J.; Sun, X.; Yan, X.J. A new cyclostellettamine from sponge Amphimedon compressa. Chin. Chem. Lett. 2007, 18, 947–950. [Google Scholar] [CrossRef]
- Schmidt, G.; Timm, C.; Köck, M. New haliclamines E and F from the Arctic sponge Haliclona viscosa. Org. Biomol. Chem. 2009, 7, 3061–3064. [Google Scholar] [CrossRef]
- Lee, Y.; Jang, K.H.; Jeon, J.; Yang, W.-Y.; Sim, C.J.; Oh, K.-B.; Shin, J. Cyclic bis-1,3-dialkylpyridiniums from the sponge Haliclona sp. Mar. Drugs 2012, 10, 2126–2137. [Google Scholar] [CrossRef] [PubMed]
- Einarsdottir, E.; Magnusdottir, M.; Astarita, G.; Köck, M.; Ögmundsdottir, H.; Thorsteinsdottir, M.; Rapp, H.; Omarsdottir, S.; Paglia, G. Metabolic profiling as a Screening tool for cytotoxic compounds: Identification of 3-alkyl pyridine alkaloids from sponges collected at a shallow water hydrothermal vent Site North of Iceland. Mar. Drugs 2017, 15, 52. [Google Scholar] [CrossRef] [Green Version]
- Laville, R.; Genta-Jouve, G.; Urda, C.; Fernández, R.; Thomas, O.; Reyes, F.; Amade, P. Njaoaminiums A, B, and C: Cyclic 3-alkylpyridinium salts from the marine sponge Reniera sp. Molecules 2009, 14, 4716–4724. [Google Scholar] [CrossRef]
- Williams, D.E.; Lassota, P.; Andersen, R.J. Motuporamines A−C, cytotoxic alkaloids isolated from the marine sponge Xestospongia exigua (Kirkpatrick). J. Org. Chem. 1998, 63, 4838–4841. [Google Scholar] [CrossRef]
- Williams, D.E.; Craig, K.S.; Patrick, B.; McHardy, L.M.; van Soest, R.; Roberge, M.; Andersen, R.J. Motuporamines, anti-invasion and anti-angiogenic alkaloids from the marine sponge Xestospongia exigua (Kirkpatrick): Isolation, structure elucidation, analogue synthesis, and conformational analysis. J. Org. Chem. 2002, 67, 245–258. [Google Scholar] [CrossRef]
- Andersen, R.J.; Van Soest, R.W.; Kong, F. 3-Alkylpiperidine alkaloids isolated from marine sponges in the order haplosclerida. In Alkaloids: Chemical and Biological Perspectives, 1st ed.; Pelletier, S.W., Ed.; Pergamon Press: Oxford, UK, 1996; Volume 10, pp. 301–355. [Google Scholar]
- Baldwin, J.; Whitehead, R. On the biosynthesis of manzamines. Tetrahedron Lett. 1992, 33, 2059–2062. [Google Scholar] [CrossRef]
- Dorosti, Z.; Yousefi, M.; Sharafi, S.M.; Darani, H.Y. Mutual action of anticancer and antiparasitic drugs: Are there any shared targets? Future Oncol. 2014, 10, 2529–2539. [Google Scholar] [CrossRef]
- Gil, L.; Gateau-Olesker, A.; Marazano, C.; Das, B.C. 3-Alkyl 1,6-dihydropyridines from 3-alkyl 5,6-dihydro-pyridinium salts. Implications in the biosynthesis of some macrocyclic marine alkaloids. Tetrahedron Lett. 1995, 36, 707–710. [Google Scholar] [CrossRef]
- Jakubowicz, K.; Abdeljelil, K.B.; Herdemann, M.; Martin, M.T.; Gateau-Olesker, A.; Mourabit, A.A.; Marazano, C.; Das, B.C. Reactions of aminopentadienal derivatives with 5,6-dihydropyridinium salts as an approach to manzamine alkaloids based upon biogenetic considerations. J. Org. Chem. 1999, 64, 7381–7387. [Google Scholar] [CrossRef]
- Kubota, T.; Kurimoto, S.; Kobayashi, J. The manzamine alkaloids. In The Alkaloids: Chemistry and Biology, 1st ed.; Knölker, H.-J., Ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 84, pp. 1–124. [Google Scholar]
Compound No. | Subclasses | Name of Compounds | Marine Organism | Biological Activities |
---|---|---|---|---|
1–2 | Pyrroles | Densanins A and B | Haliclona densaspicula | Anti-inflammatory |
3–8 | Quinolines | Njaoamines A–F | Reniera sp. | Cytotoxic and Anti-HIV |
9–10 | Njaoamines G–H | Neopetrosia sp. | ||
11 | Njaoamine I | Reniera sp. | ||
12 | Bis-Quinolizidines | Petrosin | Petrosia seriata | |
13–14 | Petrosins A and B | |||
15 | Aragupetrosine A | Xestospongia sp. | ||
16 | Xestosin A | Xestospongia exigua | ||
17 | Xestospongin A (Araguspongine D) | |||
18 | Xestospongin B | |||
19 | Xestospongin C (Araguspongine E) | |||
20 | Xestospongin D (Araguspongine A) | Xestospongia sp. | ||
21–26 | Xestospongins E–J | Oceanapia sp. | ||
27 | (+)-7S-Hydroxyxestospongin A | Xestospongia sp. | ||
28 | Demethylxestospongin B | Xestospongia sp. and Neopetrosia exigua | ||
29 | 3β,3ʹβ-Dimethylxestospongin C | |||
30 | 9′-epi-3β,3′β–Dimethylxestospongin C | |||
31 | Araguspongine B | Antimicrobial and Cytotoxic | ||
32 | Araguspongine C | Xestospongia muta | ||
33–36 | Araguspongines F–H and J | Xestospongia sp. | ||
37 | 3a-Araguspongin C | Haliclona exigua | ||
38–39 | Araguspongines K and L | Neopetrosia exigua | ||
40 | Araguspongine M | |||
41–43 | Araguspongines N–P | Xestospongia muta | ||
44 | meso-araguspongine C | |||
45–47 | 3-Alkyl piperidines | Saraines 1–3 | Reniera sarai | Cytotoxic |
48–50 | Isosaraines 1–3 | Antimicrobial | ||
51–53 | Saraines A-C | |||
54–58 | Madangamines A–E | Xestospongia ingens | Cytotoxic | |
59 | Madangamine F | Pachychalina alcaloidifera | ||
60 | (10E,12Z)-haliclonadiamine | Halichondria panicea | Antimicrobial | |
61 | (10Z,12E)-Haliclonadiamine | Halichondria panacea | ||
62 | Papuamine | Haliclona sp. | ||
63–64 | Haliclonadiamine | Haliclona sp. | ||
65–66 | Ingamines A and B | Xestospongia ingens | Antimalarial | |
67 | Ingenamine | |||
68–72 | Ingenamines B–F | |||
73 | Ingenamine G | Pachychalina sp. | ||
74 | Dihydroingenamine D | Petrosid Ng5 Sp5 | ||
75 | 22(S)-Hydroxyingamine A | |||
76 | Xestocyclamine | Xestospongia sp. | protein kinase C inhibitor | |
77–78 | Halicyclamines A-B | Xestospongia sp. | Cytotoxic | |
79-80 | Haliclonacyclamines A–B | Haliclona sp. | ||
81 | 22-Hydroxyhaliclonacyclamine B | Halichondria sp. | ||
82 | 2-epi-Tetradehydrohaliclonacyclamine | Halichondria sp. | ||
83 | Tetradehydrohaliclonacyclamine A mono-N-oxide | Halichondria sp. | ||
84 | Tetradehydrohaliclonacyclamine A | Halichondria sp. | ||
85 | Haliclonacyclamine C | Haliclona sp. | ||
86 | Haliclonacyclamine D | Haliclona sp. | ||
87 | Haliclonacyclamine E | Arenosclera brasiliensis | Antimalarial, Cytotoxic, Proteasome and Immunoproteasome inhibition | |
88 | Haliclonacyclamine F | P. alcaloidifera | ||
89 | Halichondramine | Halichondria sp. | ||
90 | Neopetrosiamine A | Neopetrosia proxima | ||
91 | Tetradehydrohalicyclamine B | Acanthostrongylophora ingens | ||
92–94 | Arenosclerins A–C | A. brasiliensis | Cytotoxic, Anti-leishmanial, and Anti-HIV | |
95–96 | Arenosclerins D and E | P. alcaloidifera | ||
97 | Manzamines | Manzamine A (Keramamine A) | Haliclona sp. | |
98 | 8-Hydroxymanzamine A (Manzamine G) | Amphimedon sp. and Pachypellina sp. | ||
99 | 3,4-Dihydromanzamine A | Amphimedon sp. | ||
100 | 6-Hydroxymanzamine A (Manzamine Y) | Amphimedon sp. and Haliclona sp. | ||
101 | 1,2,3,4-Tetrahydro-8-hydroxymanza-mine A (8-Hydroxymanzamine D) | Cribochalina sp. and Petrosia sp. | ||
102 | 1,2,3,4-Tetrahydro-2-N-methyl-8-hyd-roxymanzamine A (8-Hydroxy-2-N-methylmanzamine D) | |||
103 | Manzamine D (1,2,3,4-Tetrahydromanzamine A) | Ircinia sp. | ||
104 | 3,4-Dihydro-6-hydroxymanzamine A | Amphimedon sp. | ||
105 | Manzamine M | |||
106 | N-Methyl-epi-manzamine D | Unidentified Paluan sponge | ||
107 | epi-Manzamine D | |||
108 | 12,34-Oxamanzamine A | Sponge 011ND 35 | ||
109 | ent-8-Hydroxymanzamine A | Unidentified Indo-Pacific sponge | ||
110 | 12,28-Oxamanzamine A | Acanthostrongylophora sp. | ||
111 | 12,28-Oxa-8-hydroxymanzamine A | |||
112 | Manzamine A N-oxide | Xestospongia ashmorica | ||
113 | 3,4-Dihydromanzamine A N-oxide | |||
114–115 | Acanthomanzamines A and B | Acanthostrongylophora sp. | ||
116 | Pre-neo-kauluamine | Acanthostrongylophora ingens | ||
117 | Zamamidine C | Amphimedon sp. | ||
118 | Zamamidine D | |||
119 | Nakadomarin A | |||
120 | Ircinol A | |||
121 | Ircinal A | Ircinia sp. | ||
122 | Ircinal E | |||
123 | 12,28-Oxaircinal A | |||
124 | Manzamine E | Xestospongia sp. | ||
125 | Manzamine F (Keramamine B) | |||
126 | ent-Manzamine F | |||
127–128 | ent-12,34-Oxamanzamines E and F | Sponge 011ND 35 | ||
129 | 12,34-Oxamanzamine E | Acanthostrongylophora sp. | ||
130 | 6-Hydroxymanzamine E | |||
131 | 12,28-Oxamanzamine E | |||
132 | 12,34-Oxa-6-hydroxymanzamine E | |||
133 | 31-Keto-12,34-oxa-32,33-dihydroircinal A | |||
134 | Manzamine B | Haliclona sp. | ||
135–136 | Manzamines H, J | Ircinia sp. | ||
137 | Manzamine J N-oxide | Xestospongiaashmorica | ||
138 | 8-Hydroxymanzamine B | Acanthostrongylophora sp. | ||
139 | Manzamine L | Amphimedon sp. | ||
140 | Manzamine B N-oxide | Acanthostrongylophora sp. | ||
141 | 3,4-Dihydromanzamine B N-oxide | |||
142 | 11-Hydroxymanzamine J | |||
143 | Ma’eganedin A | Amphimedon sp. | ||
144 | 8-Hydroxymanzamine J | Acanthostrongylophora | ||
145 | 3,4-Dihydromanzamine J | Amphimedon sp. | ||
146–147 | Acanthomanzamines D and E | Acanthostrongylophora sp. | ||
148–149 | Zamamidines A and B | Amphimedon sp. | ||
150 | Ircinal B | Ircinia sp. | ||
151 | Ircinol B | Amphimedon sp. | ||
152 | Manzamine C | Haliclona sp. | Cytotoxic | |
153 | Keramamine C | Amphimedon sp. | ||
154 | Acanthomanzamine C | Acanthostrongylophora sp. | ||
155 | Kepulauamine A | |||
156 | Acantholactam | |||
157 | Acantholactone | Acanthostrongylophora sp. | ||
158 | 32,33-Dihydro-31-hydroxymanzamine A | Indonesian sponge | ||
159 | 32,33-Dihydro-6-hydroxymanzamine A-35-one | |||
160 | 32,33-Dihydro-6,31-dihydroxymanzamine A | |||
161 | Manzamine X | Xestospongia sp. | ||
162 | 6-Deoxymanzamine X | X. ashmorica | ||
163–164 | Manadomanzamines A and B | Acanthostrongylophora sp. | ||
165 | Keramaphidin B | Amphimedon sp. | ||
166 | Kauluamine | Prianos sp. | ||
167–172 | 3-Alkyl pyridinium salts | Cyclostellettamines A–F | Stelletta maxima | Antimicrobial and Cytotoxic |
173–177 | Cyclostellettamines G–I, K, and L | Pachychalina sp. | ||
178–179 | Dehydrocyclostellettamines D, E | Xestospongia sp. | ||
180 | 8,8‘-Dienecyclostellettamine | Amphimedon compressa | ||
181–184 | Cyclostellettamines N, R, O, Q | Haliclona sp. | ||
185–192 | Cyclostellettamines | Haliclona sp. | ||
193 | Cyclostellettamine P | Xestospongia exigua | ||
194–196 | Njaoaminiums A–C | Reniera sp. | Cytotoxic | |
197–205 | Motuporamines | Motuporamines A–I | Xestospongia exigua | Anti-invasion |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Althagbi, H.I.; Alarif, W.M.; Al-Footy, K.O.; Abdel-Lateff, A. Marine-Derived Macrocyclic Alkaloids (MDMAs): Chemical and Biological Diversity. Mar. Drugs 2020, 18, 368. https://doi.org/10.3390/md18070368
Althagbi HI, Alarif WM, Al-Footy KO, Abdel-Lateff A. Marine-Derived Macrocyclic Alkaloids (MDMAs): Chemical and Biological Diversity. Marine Drugs. 2020; 18(7):368. https://doi.org/10.3390/md18070368
Chicago/Turabian StyleAlthagbi, Hanan I., Walied M. Alarif, Khalid O. Al-Footy, and Ahmed Abdel-Lateff. 2020. "Marine-Derived Macrocyclic Alkaloids (MDMAs): Chemical and Biological Diversity" Marine Drugs 18, no. 7: 368. https://doi.org/10.3390/md18070368
APA StyleAlthagbi, H. I., Alarif, W. M., Al-Footy, K. O., & Abdel-Lateff, A. (2020). Marine-Derived Macrocyclic Alkaloids (MDMAs): Chemical and Biological Diversity. Marine Drugs, 18(7), 368. https://doi.org/10.3390/md18070368