Research Strategies to Develop Environmentally Friendly Marine Antifouling Coatings
Abstract
:1. Introduction
2. Formation Mechanism of Fouling
- (1)
- Conditioned film [17]: When a clean surface is placed in seawater, a layer of organic matter, including polysaccharides, lipids and protein molecules, will accumulate within minutes. The physical adsorption of these molecules on the surface of the material causes the accumulation of organic molecules to form a thin film, which is usually called the conditioned film. This adsorption is reversible, relying only on weak non-covalent bond forces, such as van der Waals forces, electrostatic forces and hydrogen bonding.
- (2)
- Micro-fouling [18,19]: After the conditioned film is formed, bacteria and diatoms and other microorganisms will adhere to the conditioned film within 24 h, and floating bacteria will gather on the surface. These attached bacteria and algae will secrete new extracellular polymers (EPS) in order to further improve their fixation ability with the material surface or conditioned film, thereby forming a biofilm composed of water, organic matter, microorganisms and extracellular metabolites. This process is irreversible, and this process is called micro-fouling.
- (3)
- Macro-fouling [20]: The formation of micro-fouling can further aggravate the generation of biological fouling. Biofilms provide abundant food and nutrition for the attachment of larvae of multicellular species and large marine organisms. Barnacles, shellfish and other large fouling organisms adhere to and grow within a few days, and complex biomes slowly form, and large-scale fouling will form in a few months. This is called macro-fouling. This process can be completed within 1–2 months and organisms can be attached to the surface for several years.
3. Marine Antifouling Coating
3.1. Natural Product Antifoulant
3.1.1. Marine Products with Antifouling Activity
3.1.2. Terrestrial Products with Antifouling Activity
3.2. Fouling Release Coatings
3.2.1. Organic Fluorine
3.2.2. Silicone
3.3. Biomimetic Antifouling Coating
3.4. Photocatalytic Antifouling Coating
3.5. Nano-Composite Antifouling Coating
3.6. Other Antifouling Coatings
3.6.1. Microcapsules Coating
3.6.2. Dynamic Surface Antifouling
3.6.3. Oil-Infused Polymers
3.6.4. Sol-Gel Coating
3.6.5. Coating Based on a Synergistic Strategy
4. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Schultz, M.P.; Bendick, J.A.; Holm, E.R.; Hertel, W.M. Economic impact of biofouling on a naval surface ship. Biofouling 2011, 27, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Satheesh, S.; Ba-akdah, M.A.; Al-Sofyani, A.A. Natural antifouling compound production by microbes associated with marine macroorganisms—A review. Electron. J. Biotechnol. 2016, 21, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Dafforn, K.A.; Lewis, J.A.; Johnston, E.L. Antifouling strategies: History and regulation, ecological impacts and mitigation. Mar. Pollut. Bull. 2011, 62, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Lejars, M.; Margaillan, A.; Bressy, C. Fouling release coatings: A nontoxic alternative to biocidal antifouling coatings. Chem. Rev. 2012, 112, 4347–4390. [Google Scholar] [CrossRef]
- Selim, M.S.; Shenashen, M.A.; El-Safty, S.A.; Higazy, S.A.; Selim, M.M.; Isago, H.; Elmarakbi, A. Recent progress in marine foul-release polymeric nanocomposite coatings. Prog. Mater. Sci. 2017, 87, 1–32. [Google Scholar] [CrossRef]
- Schultz, M.P. Effects of coating roughness and biofouling on ship resistance and powering. Biofouling 2007, 23, 331–341. [Google Scholar] [CrossRef]
- Gu, Y.Q.; Yu, S.W.; Mou, J.G.; Wu, D.H.; Zheng, S.H. Research progress on the collaborative drag reduction effect of polymers and surfactants. Materials 2020, 13, 444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.Q.; Mou, J.G.; Dai, D.S.; Zheng, S.H.; Jiang, L.F.; Wu, D.H.; Ren, Y.; Liu, F.Q. Characteristics on drag reduction of bionic jet surface based on earthworm’s back orifice jet. Acta Phys. Sin. 2015, 64, 024701. [Google Scholar]
- Dupraz, V.; Stachowski-Haberkorn, H.S.; Ménard, D.; Limon, G.; Akcha, F.; Budzinski, H.; Cedergreen, N. Combined effects of antifouling biocides on the growth of three marine microalgal species. Chemosphere 2018, 209, 801–814. [Google Scholar] [CrossRef] [Green Version]
- Feng, D.Q.; He, J.; Chen, S.Y.; Su, P.; Ke, C.H.; Wang, W. The plant alkaloid camptothecin as a novel antifouling compound for marine paints: Laboratory bioassays and field trials. Mar. Biotechnol. 2018, 20, 623–638. [Google Scholar] [CrossRef]
- Miralles, L.; Ardura, A.; Arias, A.; Borrell, Y.J.; Clusa, L.; Dopico, E.; de Rojas, A.H.; Lopez, B.; Munoz-Colmenero, M.; Roca, A.; et al. Barcodes of marine invertebrates from north Iberian ports: Native diversity and resistance to biological invasions. Mar. Pollut. Bull. 2016, 112, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Maia, F.; Silva, A.P.; Fernandes, S.; Cunha, A.; Almeida, A.; Tedim, J.; Zheludkevich, M.L.; Ferreira, M.G.S. Incorporation of biocides in nanocapsules for protective coatings used in maritime applications. Chem. Eng. J. 2015, 270, 150–157. [Google Scholar] [CrossRef]
- Ytreberg, E.; Bighiu, M.A.; Lundgren, L.; Eklund, B. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats. Environ. Pollut. 2016, 213, 594–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selim, M.S.; El-Safty, S.A.; El-Sockary, M.A.; Hashem, A.I.; Elenien, O.M.A.; El-Saeed, A.M.; Fatthallah, N.A. Modeling of spherical silver nanoparticles in silicone-based nanocomposites for marine antifouling. RSC Adv. 2015, 5, 63175–63185. [Google Scholar] [CrossRef]
- Qian, P.Y.; Li, Z.R.; Xu, Y.; Fusetani, N. Mini-review: Marine natural products and their synthetic analogs as antifouling compounds: 2009–2014. Biofouling 2015, 31, 101–122. [Google Scholar] [CrossRef]
- Sun, Z.Z.; Yang, L.; Zhang, D.; Bian, F.G.; Song, W.L. High-performance biocompatible nano-biocomposite artificial muscles based on a renewable ionic electrolyte made of cellulose dissolved in ionic liquid. Nanotechnology 2019, 30, 285503. [Google Scholar] [CrossRef] [PubMed]
- Yebra, D.M.; Kiil, S.; Weinell, C.E.; Dam-Johansen, K. Presence and effects of marine microbial biofilms on biocide-based antifouling paints. Biofouling 2006, 22, 33–41. [Google Scholar] [CrossRef]
- Rosenhahn, A.; Schilp, S.; Kreuzer, H.J.; Grunze, M. The role of “inert” surface chemistry in marine biofouling prevention. Phys. Chem. Chem. Phys. 2010, 12, 4275–4286. [Google Scholar] [CrossRef] [PubMed]
- Magin, C.M.; Cooper, S.P.; Brennan, A.B. Non-toxic antifouling strategies. Mater. Today 2010, 13, 36–44. [Google Scholar] [CrossRef]
- Callow, J.A.; Callow, M.E. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat. Commun. 2011, 2, 244. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.C.; Uzunoglu, E.; Wu, Y.; Libera, M. Self-assembled poly (ethylene glycol)-co-acrylic acid microgels to inhibit bacterial colonization of synthetic surfaces. ACS Appl. Mater. Interfaces 2012, 4, 2498–2506. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.R.; Vasconcelos, V. Natural antifouling compounds: Effectiveness in preventing invertebrate settlement and adhesion. Biotechnol. Adv. 2015, 33, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.L.; Maki, J.S.; Rittschof, D.; Teo, S.L.M. Early marine bacterial biofilm on a copper-based antifouling paint. Int. Biodeterior. Biodegrad. 2013, 83, 71–76. [Google Scholar] [CrossRef]
- Qian, P.Y.; Wong, Y.H.; Zhang, Y. Changes in the proteome and phosphoproteome expression in the bryozoan Bugula neritina larvae in response to the antifouling agent butenolide. Proteomics 2010, 10, 3435–3446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.F.; Zhang, H.M.; He, L.S.; Liu, C.D.; Xu, Y.; Qian, P.Y. Butenolide inhibits marine fouling by altering the primary metabolism of three target organisms. ACS Chem. Biol. 2012, 7, 1049–1058. [Google Scholar] [CrossRef]
- Li, Y.X.; Zhang, F.Y.; Xu, Y.; Matsumura, K.; Han, Z.; Liu, L.L.; Lin, W.H.; Jia, Y.X.; Qian, P.Y. Structural optimization and evaluation of butenolides as potent antifouling agents: Modification of the side chain affects the biological activities of compounds. Biofouling 2012, 28, 857–864. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, Y.; Liao, X.J.; Deng, Z.; Xu, S.H. Isolation of a new butenolide from the South China Sea gorgonian coral Subergorgia suberosa. Nat. Prod. Res. 2014, 28, 150–155. [Google Scholar] [CrossRef]
- Zhang, J.; Ling, W.; Yang, Z.Q.; Liang, Y.; Zhang, L.Y.; Guo, C.; Wang, K.L.; Zhong, B.L.; Xu, S.H.; Xu, Y. Isolation and structure-activity relationship of subergorgic acid and synthesis of its derivatives as antifouling agent. Mar. Drugs 2019, 17, 101. [Google Scholar] [CrossRef] [Green Version]
- Puglisi, M.P.; Sneed, J.M.; Sharp, K.H.; Ritson-Williams, R.; Paul, V.J. Marine chemical ecology in benthic environments. Nat. Prod. Rep. 2019, 31, 1510–1553. [Google Scholar] [CrossRef]
- Borges, A.; Simoes, M. Quorum sensing inhibition by marine bacteria. Mar. Drugs 2019, 17, 427. [Google Scholar] [CrossRef] [Green Version]
- Saurav, K.; Borbone, N.; Burgsdorf, I.; Teta, R.; Caso, A.; Bar-Shalom, R.; Esposito, G.; Britstein, M.; Steindler, L.; Costantino, V. Identification of quorum sensing activators and inhibitors in the marine sponge sarcotragus spinosulus. Mar. Drugs 2020, 18, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toupoint, N.; Mohit, V.; Linossier, I.; Bourgougnon, N.; Myrand, B.; Olivier, F.; Lovejoy, C.; Tremblay, R. Effect of biofilm age on settlement of mytilus edulis. Biofouling 2012, 28, 985–1001. [Google Scholar] [CrossRef] [PubMed]
- Tintillier, F.; Moriou, C.; Petek, S.; Fauchon, M.; Hellio, C.; Saulnier, D.; Ekins, M.; Hooper, J.N.A.; AI-Mourabit, A.; Debitus, C. Quorum sensing inhibitory and antifouling activities of new bromotyrosine metabolites from the polynesian sponge pseudoceratina n. sp. Mar. Drugs 2020, 18, 272. [Google Scholar] [CrossRef]
- Penez, N.; Culioli, G.; Perez, T.; Briand, J.F.; Thomas, O.P.; Blache, Y. Antifouling properties of simple indole and purine alkaloids from the Mediterranean gorgonian paramuricea clavata. J. Nat. Prod. 2011, 74, 2304–2308. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Ni, C.H.; Yu, L.M.; Zhou, W.J.; Li, X. Synthesis and evaluation of acrylate resins suspending indole derivative structure in the side chain for marine antifouling. Colloids Surf. B Biointerfaces 2019, 184, 110518. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.G.; Qian, P.Y. Review on molecular mechanisms of antifouling compounds: An update since 2012. Mar. Drugs 2017, 15, 264. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yu, L.M.; Lin, C.G. Extraction of protease produced by sea mud bacteria and evaluation of antifouling performance. J. Ocean Univ. China 2019, 18, 1139–1146. [Google Scholar] [CrossRef]
- Perez, M.; Sanchez, M.; Stupak, M.; Garcia, M.; de Almeida, M.T.R.; Oberti, J.C.; Palermo, J.A.; Blustein, G. Antifouling activity of celastroids isolated from maytenus species, natural and sustainable alternatives for marine coatings. Ind. Eng. Chem. Res. 2014, 53, 7655–7659. [Google Scholar] [CrossRef]
- Liu, H.; Chen, S.Y.; Guo, J.Y.; Su, P.; Qiu, Y.K.; Ke, C.H.; Feng, D.Q. Effective natural antifouling compounds from the plant Nerium oleander and testing. Int. Biodeterior. Biodegrad. 2018, 127, 170–177. [Google Scholar] [CrossRef]
- Almeida, J.R.; Moreira, J.; Pereira, D.; Pereira, S.; Antunes, J.; Palmeira, A.; Vasconcelos, V.; Pinto, M.; Correia-da-Silva, M.; Cidade, H. Potential of synthetic chalcone derivatives to prevent marine biofouling. Sci. Total Environ. 2018, 643, 98–106. [Google Scholar] [CrossRef]
- Sathicq, A.; Paola, A.; Perez, M.; Dallesandro, O.; Garcia, M.; Roldan, J.P.; Romanelli, G.; Blustein, G. Furylchalcones as new potential marine antifoulants. Int. Biodeterior. Biodegrad. 2019, 143, 104730. [Google Scholar] [CrossRef]
- Chaturvedi, T.; Kumar, A.; Verma, R.S.; Padalia, R.C.; Sundaresan, V.; Chauhan, A.; Saikia, D.; Singh, V.R. Chemical composition, genetic diversity, antibacterial, antifungal and antioxidant activities of camphor-basil (Ocimum kilimandscharicum Guerke). Ind. Crops Prod. 2018, 118, 246–258. [Google Scholar] [CrossRef]
- Akella, V.S.; Singh, D.K.; Mandre, S.; Bandi, M.M. Dynamics of a camphoric acid boat at the air–water interface. Phys. Lett. A 2018, 382, 1176–1180. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Jing, S.Y.; Liu, Y.Y.; Liu, S.J.; Tan, Y.B. Diblock copolymer containing bioinspired borneol and dopamine moieties: Synthesis and antibacterial coating applications. Polymer 2017, 116, 314–323. [Google Scholar] [CrossRef]
- Hu, J.K.; Sun, B.K.; Zhang, H.C.; Lu, A.; Zhang, H.Q.; Zhang, H.L. Terpolymer resin containing bioinspired borneol and controlled release of camphor: Synthesis and antifouling coating application. Nature 2020, 10, 10375. [Google Scholar]
- Santos, S.E.; Ribeiro, F.P.; Menezes, P.M.; Duarte-Fiho, L.A.; Quintans, J.S.; Quintans-Junior, L.J.; Silva, F.S.; Ribeiro, L.A. New insights on relaxant effects of-borneol monoterpene in rat aortic rings. Fundam. Clin. Pharmacol. 2019, 33, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Qian, P.Y.; Xu, Y.; Fusetani, N. Natural products as antifouling compounds: Recent progress and future perspectives. Biofouling 2010, 26, 223–234. [Google Scholar] [CrossRef]
- Wang, X.; Yu, L.M.; Liu, Y.J.; Jiang, X.H. Synthesis and fouling resistance of capsaicin derivatives containing amide groups. Sci. Total Environ. 2020, 710, 136361. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, X.Q.; Huang, J.; Li, H. Flame sprayed environmentally friendly high density polyethylene (HDPE)-capsaicin composite coatings for marine antifouling applications. Mater. Lett. 2019, 238, 46–50. [Google Scholar] [CrossRef]
- David, R.; Neumann, A.W. Contact angle patterns on low-energy surfaces. Adv. Colloid Interface Sci. 2014, 206, 46–56. [Google Scholar] [CrossRef]
- Gao, Z.Q.; Jiang, S.M.; Zhang, Q.F.; Li, X.G. Advances in research of marine antifouling fluorine resin coatings with low surface energy. Electropating Finish. 2017, 36, 273–279. [Google Scholar]
- Arukalam, I.O.; Oguzie, E.E.; Li, Y. Fabrication of FDTS-modified PDMS-ZnO nanocomposite hydrophobic coating with anti-fouling capability for corrosion protection of Q235 steel. J. Colloid Interface Sci. 2016, 484, 220–228. [Google Scholar] [CrossRef]
- Xu, B.B.; Liu, Y.J.; Sun, X.W.; Hu, J.H.; Shi, P.; Huang, X.Y. Semifluorinated synergistic nonfouling/fouling-release surface. ACS Appl. Mater. Interfaces 2017, 9, 16517–16523. [Google Scholar] [CrossRef] [PubMed]
- Selim, M.S.; Yang, H.; Wang, F.Q.; Li, X.; Huang, Y.; Fatthallah, N.A. Silicone/Ag@SiO2 core-shell nanocomposite as a self-cleaning antifouling coating material. RSC Adv. 2018, 8, 9910–9921. [Google Scholar] [CrossRef] [Green Version]
- Carman, M.L.; Estes, T.G.; Feinberg, A.W.; Schumacher, J.F.; Wikerson, W.; Wilson, L.H.; Callow, M.E.; Callow, J.A.; Brennan, A.B. Engineered antifouling microtopographies-correlating wettability with cell attachment. Biofouling 2006, 22, 11–21. [Google Scholar] [CrossRef]
- Scardino, A.J.; Guenther, J.; de Nys, R. Attachment point theory revisited: The fouling response to a microtextured matrix. Biofouling 2008, 24, 45–53. [Google Scholar] [CrossRef]
- Bixler, G.D.; Bhushan, B. Shark skin inspired low-drag micro-structured surfaces in closed channel flow. J. Colloid Interface Sci. 2013, 393, 384–396. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, J.F.; Carman, M.L.; Estes, T.G.; Feinberg, A.W.; Wilson, L.H.; Callow, M.E.; Callow, J.A.; Finlay, J.A.; Brennan, A.B. Engineered antifouling microtopographies-effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva. Biofouling 2007, 23, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Weaver, J.C.; Lauder, G.V. Biomimetic shark skin: Design, fabrication and hydrodynamic function. J. Exp. Biol. 2014, 217, 1656–1666. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.Q.; Zhao, G.; Zheng, J.X.; Li, Z.Y.; Liu, W.B.; Muhammad, F.K. Experimental and numerical investigation on drag reduction of non-smooth bionic jet surface. Ocean. Eng. 2014, 81, 50–57. [Google Scholar] [CrossRef]
- Gu, Y.Q.; Yu, S.W.; Mou, J.G.; Fan, T.X.; Zheng, S.H.; Zhao, G. Experimental study of drag reduction characteristics related to the multifactor coupling of a bionic jet surface. J. Hydrodyn. 2019, 31, 186–194. [Google Scholar] [CrossRef]
- Luo, Y.H.; Zhang, D.Y. Investigation on fabricating continuous vivid sharkskin surface by bio-replicated rolling method. Appl. Surf. Sci. 2013, 282, 370–375. [Google Scholar]
- Gu, Y.Q.; Fan, T.X.; Mou, J.G.; Wu, D.H.; Zheng, S.H.; Wang, E. Characteristics and mechanism investigation on drag reduction of oblique riblets. J. Cent. South Univ. 2017, 24, 1379–1386. [Google Scholar] [CrossRef]
- Pu, X.; Li, G.J.; Huang, H.L. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface. Biol. Open 2016, 5, 389–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.M.; Chen, R.R.; Lou, L.G.; Jing, X.Y.; Liu, Q.; Liu, J.Y.; Yu, J.; Liu, P.L.; Wang, J. Layer-by-Layer-Assembled antifouling films with surface microtopography inspired by Laminaria japonica. Appl. Surf. Sci. 2020, 511, 145564. [Google Scholar] [CrossRef]
- Zhang, P.C.; Lin, L.; Zang, D.M.; Guo, X.L.; Liu, M.J. Designing Bioinspired Anti-Biofouling Surfaces based on a Superwettability Strategy. Small 2016, 13, 1503334. [Google Scholar] [CrossRef] [PubMed]
- Darmanin, T.; Guittard, F. Superhydrophobic and superoleophobic properties in nature. Mater. Today 2015, 18, 273–285. [Google Scholar] [CrossRef]
- Jiang, R.J.; Hao, L.W.; Song, L.J.; Tian, L.M.; Fan, Y.; Zhao, J.; Liu, C.Z.; Ming, W.H.; Ren, L.Q. Lotus-leaf-inspired hierarchical structured surface with non-fouling and mechanical bactericidal performances. Chem. Eng. J. 2020, 398, 125609. [Google Scholar] [CrossRef]
- Sun, Z.Z.; Li, Z.X.; Li, W.Z.; Bian, F.G. Mesoporous cellulose/TiO2/SiO2/TiN-based nanocomposite hydrogels for efficient solar steam evaporation: Low thermal conductivity and high light-heat conversion. Cellulose 2020, 27, 481–491. [Google Scholar] [CrossRef]
- Selim, M.S.; El-Safty, S.A.; El-Sockary, M.A.; Hashem, A.I.; Elenien, O.M.A.; EL-Saeed, A.M.; Fatthallah, N.A. Smart photo-induced silicone/TiO2 nanocomposites with dominant [110] exposed surfaces for self-cleaning foul-release coatings of ship hulls. Mater. Des. 2016, 101, 218–225. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Yu, J.Q.; Zhang, Y.; Cui, Z.X.; Sun, Y.; Hou, B.R. Fabrication of InVO4/AgVO3 heterojunctions with enhanced photocatalytic antifouling efficiency under visible-light. Appl. Catal. 2018, 220, 57–66. [Google Scholar] [CrossRef]
- Gu, Y.Q.; Xia, K.; Wu, D.H.; Mou, J.G.; Zheng, S.H. Technical characteristics and wear-resistant mechanism of Nano coatings: A review. Coatings 2020, 10, 233. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Jiang, D.Y.; Pu, J.B.; Sun, X.F.; Li, Z.M.; Wu, B.; Zheng, W.R.; Liu, W.Q.; Liu, Z.X. A new hybrid silicone-based antifouling coating with nanocomposite hydrogel for durable antifouling properties. Chem. Eng. J. 2019, 370, 1–9. [Google Scholar] [CrossRef]
- Selim, M.S.; Yang, H.; El-Safty, A.S.; Fatthallah, N.A.; Shenashen, M.A.; Wang, F.Q.; Huang, Y. Superhydrophobic coating of silicone/β–MnO2 nanorod composite for marine antifouling. Colloids Surf. 2019, 570, 518–530. [Google Scholar] [CrossRef]
- Li, Y.; Wang, G.Q.; Guo, Z.H.; Wang, P.Q.; Wang, A.M. Preparation of microcapsules coating and the study of their bionic anti-fouling performance. Materials 2020, 13, 1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Q.Y.; Pan, J.S.; Ma, C.F.; Zhang, G.Z. Dynamic surface antifouling: Mechanism and systems. Soft Matter 2019, 15, 1087–1107. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xie, Q.Y.; Ma, C.F.; Chen, Z.J.; Zhang, G.Z. Inhibition of marine biofouling by use of degradable and hydrolyzable silyl acrylate copolymer. Ind. Eng. Chem. Res. 2015, 54, 9559–9565. [Google Scholar] [CrossRef]
- Kommeren, S.; Guerin, A.J.; Dale, M.L.; Ferguson, J.; Lyall, G.; Reynolds, K.J.; Clare, A.S.; Bastiaansen, C.W.M.; Sullivan, T. Antifouling and fouling-release performance of photo-embossed fluorogel elastomers. J. Mar. Sci. Eng. 2019, 7, 419. [Google Scholar] [CrossRef] [Green Version]
- Richards, C.; Briciu-Burghina, C.; Jacobs, M.R.; Barrett, A.; Regan, F. Assessment of antifouling potential of novel transparent sol gel coatings for application in the marine environment. Molecules 2019, 24, 2983. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.H.; Guo, H.S.; Zhao, W.Q.; Zhang, L. Environmentally friendly marine antifouling coating based on a synergistic strategy. Langmuir 2020, 36, 2396–2402. [Google Scholar] [CrossRef]
Type | Components | Mechanism | Characteristic | Referent |
---|---|---|---|---|
Coatings with antifoulant | Chemical antifoulant. | Poisoning or inhibiting biological growth. | Currently widely used; There are hidden environmental hazards. | [12,13,14,15,16] |
Natural product antifoulant. | Inhibiting settlement and adhesion of marine organisms. | Difficult or expensive to obtain; It is hard to retain activity. | [21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49] | |
Fouling release coatings | Silicone; Organic fluorine. | Low surface energy makes organisms difficult to attach. | Commercially available; Vulnerable; Low efficiency at static. | [50,51,52,53,54] |
Biomimetic coatings | Micro-structured surfaces. | Increase the difficulty of attaching fouling organisms. | Poor effect; It is hard to be applied. | [55,56,57,58,59,60,61,62,63,64,65,66,67,68] |
Other | Photocatalytic Antifouling Coating. | Photocatalysis enhances surface oxidizability and reducibility. | Have almost no effect at night and in deep sea. | [69,70,71] |
Nano-composite coating. | Strong sterilization ability; Hydrophobic. | Enhance the compatibility of other ingredients. | [72,73,74] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Y.; Yu, L.; Mou, J.; Wu, D.; Xu, M.; Zhou, P.; Ren, Y. Research Strategies to Develop Environmentally Friendly Marine Antifouling Coatings. Mar. Drugs 2020, 18, 371. https://doi.org/10.3390/md18070371
Gu Y, Yu L, Mou J, Wu D, Xu M, Zhou P, Ren Y. Research Strategies to Develop Environmentally Friendly Marine Antifouling Coatings. Marine Drugs. 2020; 18(7):371. https://doi.org/10.3390/md18070371
Chicago/Turabian StyleGu, Yunqing, Lingzhi Yu, Jiegang Mou, Denghao Wu, Maosen Xu, Peijian Zhou, and Yun Ren. 2020. "Research Strategies to Develop Environmentally Friendly Marine Antifouling Coatings" Marine Drugs 18, no. 7: 371. https://doi.org/10.3390/md18070371
APA StyleGu, Y., Yu, L., Mou, J., Wu, D., Xu, M., Zhou, P., & Ren, Y. (2020). Research Strategies to Develop Environmentally Friendly Marine Antifouling Coatings. Marine Drugs, 18(7), 371. https://doi.org/10.3390/md18070371