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Abstract: A new concise general methodology for the synthesis of different tetracyclic meroterpenoids
is reported: (+)-aureol (1), the key intermediate of this general route. The synthesis of (+)-aureol (1)
was achieved in seven steps (28% overall yield) from (+)-albicanol. The key steps of this route include
a C—C bond-forming reaction between (+)-albicanal and a lithiated arene unit and a rearrangement
involving 1,2-hydride and 1,2-methy]l shifts promoted by BF;eEt,O as activator and water as initiator.
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1. Introduction

Marine sponges appear to have become an almost inexhaustible source of new natural compounds,
showing a broad spectrum of biological activities and different structural patterns. Among these
compounds there is a structurally unique class of natural products, the meroterpenoids, which are
constituted by a sesquiterpene unit linked to a phenolic or quinone moiety [1]. Important examples
of tetracyclic meroterpenoids (Figure 1) include (+)-aureol (1) [2,3], (+)-strongylin A (2) [4],
(—)-cyclosmenospongine (3) [5] and (+)-smenoqualone (4) [6].

OH NH, OMe
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1: (+)-Aureol 2: (+)-Strongylin A 3: (-)-Cyclosmenospongine 4: (+)-Smenoqualone
Figure 1. Selected members of tetracyclic meroterpenoids.

(+)-Aureol (1) was initially isolated and characterized by Faulker et al. [2] from the Caribbean
sponge Smeonspongia aurea. It was later also found in some other species of Caribbean sponges,
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Verongula gigantea and Smenospongia sp. [7]. (+)-Aureol (1) is a tetracyclic meroterpenoid with a
unique structure that combines a cis-decalin system with a substituted benzopyran moiety. It shows
anti-influenza-A virus activity [8] and selective cytotoxicity against human tumor cells, including colon
adenocarcinoma HT-29 cells [9] and nonsmall cell lung cancer A549 [9].

Although the tetracyclic meroterpenoids have exclusive structural features and a wide assortment
of biological activities, only one highly modular and robust platform for the synthesis of this class of
natural products has been reported to date [10]. The rest of the reported routes are synthetic operations
(10-27 linear steps) that have not enabled straightforward access to the whole family of these interesting
natural products [11-20].

2. Results and Discussion

As a continuation of our research on the synthesis of marine natural bioactive compounds [18,21-23],
we have developed a new concise route for the synthesis of tetracyclic meroterpenoids. In this new
synthetic route, aureol (1) is the key intermediate from which other tetracyclic meroterpenoids, such as
2,3 and 4, can be easily synthesized by simple functional modification of its aromatic ring.

We thought the synthesis of 1 could be achieved through a coupling of albicanal (6) with
2-lithiohydroquinone dimethyl ether and a biogenetic-type rearrangement (previously explored by us)
as pivotal steps (Scheme 1).
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Scheme 1. Retrosynthesis of tetracyclic meroterpenoids.

The synthesis of (+)-aureol ((+)-1) (Scheme 2) used as starting material (+)-albicanol (5), which was
prepared through Cp,TiCl-catalyzed radical cascade cyclization of epoxy-farnesyl acetate, as previously
reported by us and others [24,25]. Dess-Martin oxidation of 5 almost quantitatively afforded
(+)-albicanal (6). The first key step was the coupling of (+)-albicanal (6) with the lithiated arene unit.
For this purpose, an efficient and economical methodology previously reported by Seifert et al. [26]
was used. In our hands, the addition of 2-lithiohydroquinone dimethyl ether to (+)-albicanal (6) gave a
mixture of diastereomeric benzylic alcohols. In order to remove the free hydroxy group, the reaction
crude was treated with lithium in liquid NH3/THF followed by NH4Cl. In this way, trans-decaline 7
was obtained in 90% yield (two steps).

The second key step in our synthesis of (+)-aureol ((+)-1) was based on a biogenetic-type
rearrangement of 7 to give 8 that was previously reported by us [18]. In this way, a BF;eEt,O-mediated
rearrangement of 7 leads to the formation of the desired product 8 as a single stereoisomer in a 62%
yield, together with a minor tetracyclic compound 9 in a 28% yield. Demethylation of 8 following
the conditions reported by Wright et al. [27] in the synthesis of natural compound (+)-frondosin
gave 10 in an 82% yield over the two steps. Finally, cyclization of phenolic compound 10 was
carried out with BF3eEt,O. This reaction afforded (+)-aureol ((+)-1) in a 62% yield. Physical and
spectroscopic properties of synthetic (+)-aureol ((+)-1) matched those previously reported for the
natural compound [2]. Thus, the synthesis of (+)-aureol ((+)-1) from (+)-albicanol (5) was completed in
only seven steps and a global 28% yield, substantially improving the synthetic procedures previously
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published [11-20]. Moreover, a simple epimerization of aureol (1) to 5-epi-aureol (11) has already been
reported [10]. From these two compounds, aureol (1) and 5-epi-aureol (11), adequate functionalization
sequences can lead to (—)-cyclomenospongine (3), (+)-strongylin A (2) and (+)-smenoquealone (4),
sequences that can be considered alternative formal syntheses of these tetracyclic compounds [9,28].
In this way, the methodology here described can be considered a general method for the synthesis of
tetracyclic meroterponoids.
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Scheme 2. Reagents and conditions: (a) Dess-Martin, 99.7%; (b) (i) Hydroquinone dimethyl ether
(3 equiv), Et,O, sec-BuLi (2 equiv), 5 min at 0 °C, 3 h at room temperature (rt). Then, 6 (1 equiv),
Et,O, 5 min, rt, quantitative; (ii) Liquid NH3, THF, Li (5.3 equiv), 15 min, =78 °C. Then, mixture of
benzylalcohols (1 equiv), THF, 15 min, —78 °C. Finally, NH4ClI (13.6 equiv), 30 min, —78 °C, 90% (two
steps); (¢) 7 (1 equiv), BF3eEt,O (5.0 equiv), CH,Cly, 5 h, =50 to =5 °C, 62% (8), 28% (9); (d) (i) 8
(1 equiv), AgO (2.0 equiv), 6N HNOj3 (3.0 equiv), 1,4-dioxane, rt, 15 min; (ii) 10% Pd/C (0.05 equiv), Hj
(1 atm), CHCl3, 25 min, rt, 82%; (e) 10 (1 equiv), BF3eEt,O (4.5 equiv), CH,Cl,, =60 to —20 °C, 3 h, 62%;
(f) HI, benzene, 90 °C, ref. 10, 87%.

The transformation of the exocyclic alkene 7 into the rearranged products 8 and 9 can be rationalized
as depicted in Scheme 3. It is known that pure Lewis acids, such as boron trifluoride, are not effective
initiators in alkene cationic polymerization [29], which makes more likely a pathway involving a proton
transfer. On the other hand, it is well known that BF3eEt,O is very moisture-sensitive, and inevitably
over time the HF that forms from the hydrolysis of BF3 will react with excess BF; to form HBF4, which
is a strong acid and possibly triggers the cationic rearrangement. Thus, when the exocyclic alkene
group in the bicyclic compound 7 is activated by a proton, the tertiary carbocation intermediate I is
formed. Since the cleavage of a C—H bond is usually easier than a C—C bond, the hydrogen on C9 has a
higher migratory aptitude than the alkyl group. In addition, migration of any of the hydrogens on C7
would lead to a secondary carbocation, less stable. In this way, the carbocationic intermediate II would
be formed. From the stereochemical point of view, the configuration of C9 facilitates a 1,2-hydrogen
shift on the a-face of the carbocation intermediate I to form carbocation intermediate II. Subsequently,
the configuration of C10 facilitates a 1,2-methyl shift on the (3-face of the carbocation intermediate II to
form the carbocation intermediate III, which leads (pathway a, Scheme 3), after losing a H*, to the
major compound 8. On the other hand, the intermediate III could suffer a 1,2-hydride shift from the C1
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position to the carbocation on C10 to form the carbocationic intermediate IV (pathway b, Scheme 3),
which can react with the aromatic ring by electrophilic substitution to generate the minor tetracyclic
by-product 9. In both pathways, a H* is liberated, which can react with more alkene 7 to continue the
catalytic cycle. On the other hand, the simultaneous formation of 8 and 9 suggests that the all of the
abovementioned rearrangements leading from 7 to 8 are not part of a concerted process, but proceed
through a series of rapidly interconverting carbocations.
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Scheme 3. Proposed reaction mechanisms for the formation of tetrasubstituted alkene 8 and by-product 9.

3. Experimental Section

3.1. General Methods

All reagents were used as received from commercial sources. All solvents were distilled before
use. THF was refluxed over Na and CH;Cl, over calcium hydride before being distilled under an Ar
atmosphere. Reaction products were purified by conventional column chromatography on Merck
silica gel 50. Analytical thin-layer chromatography (TLC) was performed on 0.2 mm DC-Fertigfolien
Alugram® Xtra Sil G/UV254 silica gel plates and visualized under a UV lamp or by immersion in
an ethanol solution of phosphomolybdic acid (7%) followed by heating. 'H and 3C NMR spectra
were recorded in Varian spectrometers operating at 300, 500 or 600 MHz. CDCl; was always used
as NMR solvent. (+)-Albicanol was prepared from commercial farnesol according to a known
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procedure [22,24]. Copies of 'H and '3C NMR spectra of relevant known compounds are provided in
Supplementary Materials.

3.2. Dess—Martin Oxidation of (+)-Albicanol 5

To a CH,Cl, (35 mL) solution of compound 5 (1.85 g, 8.32 mmol), 5.3 g of Dess-Martin periodinane
(12.5 mmol) was added and the mixture stirred for 1 h at room temperature until completion by TLC.
The mixture was then washed with NaHCOj (sat. soln. 3 X 20 mL) and the organic phase dried over
MgSOy, filtered and the solvent removed in vacuo. Chromatographic purification of the crude residue
(silica gel column, Hexane/AcOEt 9:1) yielded (+)-albicanal (6) (1.83 g, 8.30 mmol, 99.7%) as a colorless
oil. 'H and '3C NMR were identical to those previously reported [30].

3.3. Synthesis of Cis-Decaline 7

Hydroquinone dimethyl ether (0.83 g, 6.0 mmol) was dissolved in Et,O (13 mL) and sec-BuLi
(3.1mL, 1.3 M in cyclohexane) was added at 0 °C. After stirring the mixture for 3 h at room temperature,
a solution of (+)-albicanal (6) (440 mg, 2.0 mmol) in Et,O (3 mL) was dropwise added. The reaction
was stirred for 5 min before dropwise addition of NH4Cl (0.3 mL of saturated solution). To the mixture
was then added 3 mL of saturated NaCl-solution, the organic phase dried over anhydrous Na;SO4 and
the solvent removed in vacuo.

A mixture of liquid NHj3 (24 mL), THF (13 mL) and Li (70 mg, 10 mmol, granulate, Merck) at
—78 °C was prepared and stirred for 15 min. To this mixture was added a solution of the former reaction
crude in THF (7 mL). The reaction was then stirred for 15 min at the same temperature. After that,
NH4CI (1.4 g) was added in portions (a change in color was observed from dark blue to colorless).
Next, the mixture was allowed to reach room temperature to allow the evaporation of NH3 (2 h) and
finally the reaction mixture was extracted with EtOAc. The combined organic layers were washed
with brine, dried (anhydrous Na;SO4) and the solvent removed in vacuo. Column chromatography
(Hexane/AcOEt 9:1) of the residue yielded the coupling product 7 (618 mg, 1.8 mmol) (90%), isolated as
a colorless solid, m.p. 74-75 °C. IR (ATR) v (cm~1) 3000, 2940, 2860, 2830, 1640, 1605, 1495, 1460, 1440,
1210, 1050. 'H NMR (500 MHz, CDCl3) & (ppm) 6.75-6.60 (m, 3H), 4.74 (s, 1H), 4.61 (s, 1H), 3.79 (s, 3H),
3.74 (s, 3H), 2.75 (d, ] = 15 Hz, 2H), 2.36 (m, 1H), 2.22 (m, 1H), 2.01 (m, 1H), 1.88 (m, 1H), 1.80-1.20 (m,
9H), 0.90 (s, 3H), 0.84 (s, 3H), 0.82 (s, 3H). '3C NMR (125 MHz, CDCl3) § (ppm) 153.2 (C), 151.7 (C),
148.3 (C),132.1 (C), 116,2 (CH), 110.8 (CH), 109.6 (CH), 107.6 (CH>), 55.9 (CH), 55.8 (CH3), 55.7 (CH),
55.5 (CH3), 42.2 (CHy), 39.9 (C), 39.1 (CHy), 38.3 (CH,), 33.6 (C), 33.6 (CH3), 24.4 (CH,), 23.2 (CH,),
21.8 (CH3), 19.5 (CHy), 14.6 (CH3). HRMS (ESI/Q-TOF) m/z: [M + H]* caled for Co3Hz50, 343.2632;
found 343.2629. 'H and '*C NMR data match with those previously reported [26].

3.4. Synthesis of Tetrasubstituted Olefin 8

BF;eEt,O (0.35 mL, 2.5 mmol) was added to a chilled solution (=50 °C) of 7 (171 mg, 0.5 mmol) in
CH,Cl, (50 mL). The mixture was slowly warmed up to —5 °C and stirred for 5 h. Then, the solvent was
removed and the residue suspended in Et,O. The solution was washed with brine, dried over Na;SO4
and the solvent was removed in vacuo. Column chromatography of the residue (cyclohexane) yielded
8 (106 mg, 0.31 mmol, 62%) together with the by-product 9 (48 mg, 0.14 mmol, 28%). Compound 8 as a
white solid; m.p. 58-61 °C.

IR (ATR) v (cm~1) 3020, 2930, 2850, 1620, 1592, 1495, 1240. 'H NMR (500 MHz, CDCl3) & (ppm)
6.87 (d, ] = 3 Hz, 1H), 6.75 (d, ] = 9 Hz, 1H), 6.68 (dd, ] = 9, 3.1 Hz, 1H), 3.76 (s, 3H), 3.73 (s, 3H), 2.93 (d,
J =15Hz, 1H), 2.62 (d, | = 15 Hz, 1H), 2.09-2.01 (m, 4H), 1.96-1.90 (m, 1H), 1.69-1.58 (m, 4H), 1.39-1.32
(m, 2H), 1.01 (s, 3H), 1.00 (s, 3H), 0.92 (s, 3H), 0.79 (d, ] = 7 Hz, 3H). 13C NMR (125 MHz, CDCl3) &
(ppm) 152.9 (C), 152.2 (C), 135.6 (C), 132.6 (C), 129.6 (C), 116.4 (CH), 110.8 (CH), 110.7 (CH), 55.7 (CH),
55.5 (CH3), 41.4 (C), 39.7 (CHy), 34.5 (CHy), 34.2 (C), 33.3 (CH), 28.2 (CH3), 28.0 (CH3), 26.6 (CHy), 26.2
(CHy), 23.4 (CHy), 21.9 (CH3), 19.8 (CHy), 15.9 (CH3). HRMS (ESI/Q-TOF) m/z: [M + H]* calcd for
Cy3H350, 343.2632; found 343.2630. Compound 9 as a colorless solid, m.p. 111-113 °C. IR (ATR) v



Mar. Drugs 2020, 18, 441 60f8

(em™1) 3010, 2950, 2870, 1610, 1592, 1461, 1249. 'H NMR (500 MHz, CDCl3) § (ppm) 6.67-6.63 (m, 2H),
3.79 (s, 3H), 3.74 (s, 3H), 3.08-3.00 (m, 3H), 2.12-2.06 (m, 2H), 1.60-1.10 (m, 9H), 1.01 (d, ] = 13 Hz, 3H),
0.85 (s, 3H), 0.79 (s, 3H), 0.75 (s, 3H). 1*C NMR (125 MHz, CDCl3) & (ppm) 153.1 (C), 151.8 (C), 128.3 (C),
128.2 (C), 108.4 (CH), 106.5 (CH), 55.7 (CH3), 55.4 (CH3), 42.3 (CH), 39.0 (CH), 38.3 (CH), 38.1 (CHy),
34.5 (C), 33.5 (CH), 32.7 (CHy), 32.5 (C), 30.5 (CH3), 28.9 (CHy), 25.0 (CH3), 24.0 (CHy), 21.5 (CHy), 20.3
(CH3), 14.6 (CH3). HRMS (ESI/Q-TOF) m/z: [M + H]* calcd for Cp3Hz50; 343.2632; found 343.2629. 'H
and '3C NMR data for compounds 8 [18] and 9 [31] were in agreement with those previously reported.

3.5. Preparation of 10 by Methyl Ether Deprotection of 8

A solution of 8 (171 mg, 0.5 mmol) in dioxane (13 mL) was placed in a flame-dried flask under
Ar. AgO (125 mg, 1.0 mmol) followed by 6N HNOj3 (0.24 mL, 1.5 mmol) were added and the mixture
stirred for 15 min at room temperature. Then, NaHCO; (aq. sat. soln., 5 mL) was added and the
mixture extracted with Et;O (20 mL + 2 X 5 mL). The combined organic layers were washed with H,O
(3 X 10 mL) and brine (2 x 10 mL), dried over Na,SO, and the solvent removed in vacuo. The crude
quinone was used without purification in the next step. In this way, the residue was dissolved in
CHCl3 (15 mL), 55 mg added of 10% Pd/C (0.025 mmol) and the flask evacuated and backfilled with Hp
(3 cycles). After stirring the reaction mixture under an atmosphere of H; (balloon) for 15 min, it was
filtered through a short pad of SiO, with the aid of Et,O (3.0 mL). Finally, the solvent was removed in
vacuo and the residue purified by column chromatography (Hexane/AcOEt, 95:5) to give 138 mg of
the product 10 (82%) as a white foam. IR (ATR) v (cm™1) 3375, 3082, 2925, 2873, 1541, 1490, 1192. H
NMR (500 MHz, CDCl3) 6 (ppm) 6.67 (d, ] =9 Hz, 1H), 6.65 (d, ] = 3 Hz, 1H), 6.55 (dd, ] =9, 3 Hz,
1H), 4.91 (s, 1H), 2.93 (d, ] = 15 Hz, 1H), 2.50 (d, ] = 15 Hz, 1H), 2.13-2.08 (m, 1H), 2.00-1.95 (m, 1H),
1.91-1.86 (m, 2H), 1.76-1.73 (m, 1H), 1.66-1.63 (m, 1H), 1.59-1.39 (m, 5H), 1.05 (s, 3H), 1.00 (s, 3H), 0.98
(s, 3H), 0.84 (d, ] = 7 Hz, 3H). '3C NMR (125 MHz, CDCl3) § (ppm) 148.9 (C), 148.7 (C), 137.8 (C), 132.7
(©), 127.7 (C), 118.4 (CH), 116.5 (CH), 113.7 (CH), 41.7 (C), 40.5 (CH,), 39.6 (CH3), 39.5 (C), 35.7 (CH,),
34.6 (CH), 28.5 (CHj3), 28.1 (CHy), 27.1 (CHj3), 26.2 (CHy), 22.3 (CHj3), 19.7 (CH;), 15.8 (CH3). HRMS
(ESI/Q-TOF) m/z: [M + H]" caled for Cp1Hz10; 315.2319; found 315.2315. NMR data of compound 10
were consistent with those of the original isolation literature [2].

3.6. Synthesis of (+)-Aureol ((+)-1)

Hydroquinone 10 (157 mg, 1.0 mmol) was dissolved in anhydrous CH,Cl, (50 mL) and the
solution cooled to —60 °C. Then, BF3eEt,O (0.28 mL, 2.25 mmol) was added and the mixture stirred
for 3 h at —60 °C. After that, it was warmed to —20 °C and the reaction stopped by addition of NH4Cl
(aqueous saturated solution). The mixture was extracted with CH,Cl; (3 x 10 mL) and the combined
organic layers dried (Na;SO4) and the solvent removed in vacuo. Column chromatography of the
residue (Hexane/AcOEt 9:1) yielded (+)-aureol ((+)-1) as a white solid (195 mg, 62%), m.p. 143-144 °C.
IR (ATR) v (cm™1): 3312, 3005, 3296, 2938, 2869, 1492, 1458, 1208, 948. 'H NMR (CDCl;, 500 MHz):
56.60(d, ] =9Hz, 1H),6.56 (dd, ] =9,3 Hz, 1H), 6.49 (d, ] =3 Hz, 1H), 4.26 (br s, 1H), 3.37 (d, ] = 17 Hz,
1H), 2.11-1.99 (m, 2H), 1.97 (d, ] = 17 Hz, 1H), 1.85-1.75 (m, 2H), 1.70-1.65 (m, 2H), 1.60-1.50 (m, 1H),
1.49-1.30 (m, 5H), 1.11 (d, | = 7 Hz, 3H), 1.07 (s, 3H), 0.92 (s, 3H), 0.78 (s, 3H). 3CNMR (CDCl3,
125 MHz): 6 148.3 (C), 145.8 (C), 122.2 (C), 117.3 (CH), 115.1 (CH), 114.0 (CH), 82.4 (C), 44.0 (CH),
39.3 (CH), 38.1 (C), 37.4 (CHy), 33.9 (CHy), 33.8 (C), 31.9 (CH3), 29.8 (CH3), 29.3 (CHy), 27.9 (CHy),
22.2 (CH,), 20.2 (CHj3), 18.4 (CH,), 17.3 (CH;3). HRMS (ESI/Q-TOF) m/z: [M + H]" caled for Cp1H3z10;
315.2319; found 315.2312. Physical and spectroscopic data of (+)-aureol ((+)-1) matched those reported
in the original isolation literature [2].

4. Conclusions

We devised a short and efficient synthetic route for the synthesis of (+)-aureol (1) and
(+)-5-epi-aureol (11). Our strategy relies on a C-C bond-forming reaction between (+)-albicanal
(6) and an aryllithium derivative and a sequence of 1,2-hydride and 1,2-methyl shifts mediated by
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BF3eEt,O as activator and water as initiator. We are currently engaged in a computational study of
the reaction mechanism, which will be published in due course. (+)-Aureol (1) and (+)-5-epi-aureol
(5) obtained by this route are key intermediates for the synthesis of a large number of natural and
synthetic derivative tetracyclic meroterpenoids, which will be used for further analysis as antitumor
and antiviral agents.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/18/9/441/s1:
Figures S2-513: 'H NMR of compounds 1, 5-10 and '*C NMR of 1, 7-10.
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